1 //===-- MCJIT.h - Class definition for the MCJIT ----------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #ifndef LLVM_LIB_EXECUTIONENGINE_MCJIT_MCJIT_H 11 #define LLVM_LIB_EXECUTIONENGINE_MCJIT_MCJIT_H 12 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ExecutionEngine/ObjectCache.h" 17 #include "llvm/ExecutionEngine/ObjectMemoryBuffer.h" 18 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" 19 #include "llvm/ExecutionEngine/RuntimeDyld.h" 20 #include "llvm/IR/Module.h" 21 22 namespace llvm { 23 class MCJIT; 24 25 // This is a helper class that the MCJIT execution engine uses for linking 26 // functions across modules that it owns. It aggregates the memory manager 27 // that is passed in to the MCJIT constructor and defers most functionality 28 // to that object. 29 class LinkingSymbolResolver : public RuntimeDyld::SymbolResolver { 30 public: LinkingSymbolResolver(MCJIT & Parent,std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver)31 LinkingSymbolResolver(MCJIT &Parent, 32 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver) 33 : ParentEngine(Parent), ClientResolver(std::move(Resolver)) {} 34 35 RuntimeDyld::SymbolInfo findSymbol(const std::string &Name) override; 36 37 // MCJIT doesn't support logical dylibs. 38 RuntimeDyld::SymbolInfo findSymbolInLogicalDylib(const std::string & Name)39 findSymbolInLogicalDylib(const std::string &Name) override { 40 return nullptr; 41 } 42 43 private: 44 MCJIT &ParentEngine; 45 std::shared_ptr<RuntimeDyld::SymbolResolver> ClientResolver; 46 }; 47 48 // About Module states: added->loaded->finalized. 49 // 50 // The purpose of the "added" state is having modules in standby. (added=known 51 // but not compiled). The idea is that you can add a module to provide function 52 // definitions but if nothing in that module is referenced by a module in which 53 // a function is executed (note the wording here because it's not exactly the 54 // ideal case) then the module never gets compiled. This is sort of lazy 55 // compilation. 56 // 57 // The purpose of the "loaded" state (loaded=compiled and required sections 58 // copied into local memory but not yet ready for execution) is to have an 59 // intermediate state wherein clients can remap the addresses of sections, using 60 // MCJIT::mapSectionAddress, (in preparation for later copying to a new location 61 // or an external process) before relocations and page permissions are applied. 62 // 63 // It might not be obvious at first glance, but the "remote-mcjit" case in the 64 // lli tool does this. In that case, the intermediate action is taken by the 65 // RemoteMemoryManager in response to the notifyObjectLoaded function being 66 // called. 67 68 class MCJIT : public ExecutionEngine { 69 MCJIT(std::unique_ptr<Module> M, std::unique_ptr<TargetMachine> tm, 70 std::shared_ptr<MCJITMemoryManager> MemMgr, 71 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver); 72 73 typedef llvm::SmallPtrSet<Module *, 4> ModulePtrSet; 74 75 class OwningModuleContainer { 76 public: OwningModuleContainer()77 OwningModuleContainer() { 78 } ~OwningModuleContainer()79 ~OwningModuleContainer() { 80 freeModulePtrSet(AddedModules); 81 freeModulePtrSet(LoadedModules); 82 freeModulePtrSet(FinalizedModules); 83 } 84 begin_added()85 ModulePtrSet::iterator begin_added() { return AddedModules.begin(); } end_added()86 ModulePtrSet::iterator end_added() { return AddedModules.end(); } added()87 iterator_range<ModulePtrSet::iterator> added() { 88 return make_range(begin_added(), end_added()); 89 } 90 begin_loaded()91 ModulePtrSet::iterator begin_loaded() { return LoadedModules.begin(); } end_loaded()92 ModulePtrSet::iterator end_loaded() { return LoadedModules.end(); } 93 begin_finalized()94 ModulePtrSet::iterator begin_finalized() { return FinalizedModules.begin(); } end_finalized()95 ModulePtrSet::iterator end_finalized() { return FinalizedModules.end(); } 96 addModule(std::unique_ptr<Module> M)97 void addModule(std::unique_ptr<Module> M) { 98 AddedModules.insert(M.release()); 99 } 100 removeModule(Module * M)101 bool removeModule(Module *M) { 102 return AddedModules.erase(M) || LoadedModules.erase(M) || 103 FinalizedModules.erase(M); 104 } 105 hasModuleBeenAddedButNotLoaded(Module * M)106 bool hasModuleBeenAddedButNotLoaded(Module *M) { 107 return AddedModules.count(M) != 0; 108 } 109 hasModuleBeenLoaded(Module * M)110 bool hasModuleBeenLoaded(Module *M) { 111 // If the module is in either the "loaded" or "finalized" sections it 112 // has been loaded. 113 return (LoadedModules.count(M) != 0 ) || (FinalizedModules.count(M) != 0); 114 } 115 hasModuleBeenFinalized(Module * M)116 bool hasModuleBeenFinalized(Module *M) { 117 return FinalizedModules.count(M) != 0; 118 } 119 ownsModule(Module * M)120 bool ownsModule(Module* M) { 121 return (AddedModules.count(M) != 0) || (LoadedModules.count(M) != 0) || 122 (FinalizedModules.count(M) != 0); 123 } 124 markModuleAsLoaded(Module * M)125 void markModuleAsLoaded(Module *M) { 126 // This checks against logic errors in the MCJIT implementation. 127 // This function should never be called with either a Module that MCJIT 128 // does not own or a Module that has already been loaded and/or finalized. 129 assert(AddedModules.count(M) && 130 "markModuleAsLoaded: Module not found in AddedModules"); 131 132 // Remove the module from the "Added" set. 133 AddedModules.erase(M); 134 135 // Add the Module to the "Loaded" set. 136 LoadedModules.insert(M); 137 } 138 markModuleAsFinalized(Module * M)139 void markModuleAsFinalized(Module *M) { 140 // This checks against logic errors in the MCJIT implementation. 141 // This function should never be called with either a Module that MCJIT 142 // does not own, a Module that has not been loaded or a Module that has 143 // already been finalized. 144 assert(LoadedModules.count(M) && 145 "markModuleAsFinalized: Module not found in LoadedModules"); 146 147 // Remove the module from the "Loaded" section of the list. 148 LoadedModules.erase(M); 149 150 // Add the Module to the "Finalized" section of the list by inserting it 151 // before the 'end' iterator. 152 FinalizedModules.insert(M); 153 } 154 markAllLoadedModulesAsFinalized()155 void markAllLoadedModulesAsFinalized() { 156 for (ModulePtrSet::iterator I = LoadedModules.begin(), 157 E = LoadedModules.end(); 158 I != E; ++I) { 159 Module *M = *I; 160 FinalizedModules.insert(M); 161 } 162 LoadedModules.clear(); 163 } 164 165 private: 166 ModulePtrSet AddedModules; 167 ModulePtrSet LoadedModules; 168 ModulePtrSet FinalizedModules; 169 freeModulePtrSet(ModulePtrSet & MPS)170 void freeModulePtrSet(ModulePtrSet& MPS) { 171 // Go through the module set and delete everything. 172 for (ModulePtrSet::iterator I = MPS.begin(), E = MPS.end(); I != E; ++I) { 173 Module *M = *I; 174 delete M; 175 } 176 MPS.clear(); 177 } 178 }; 179 180 std::unique_ptr<TargetMachine> TM; 181 MCContext *Ctx; 182 std::shared_ptr<MCJITMemoryManager> MemMgr; 183 LinkingSymbolResolver Resolver; 184 RuntimeDyld Dyld; 185 std::vector<JITEventListener*> EventListeners; 186 187 OwningModuleContainer OwnedModules; 188 189 SmallVector<object::OwningBinary<object::Archive>, 2> Archives; 190 SmallVector<std::unique_ptr<MemoryBuffer>, 2> Buffers; 191 192 SmallVector<std::unique_ptr<object::ObjectFile>, 2> LoadedObjects; 193 194 // An optional ObjectCache to be notified of compiled objects and used to 195 // perform lookup of pre-compiled code to avoid re-compilation. 196 ObjectCache *ObjCache; 197 198 Function *FindFunctionNamedInModulePtrSet(const char *FnName, 199 ModulePtrSet::iterator I, 200 ModulePtrSet::iterator E); 201 202 GlobalVariable *FindGlobalVariableNamedInModulePtrSet(const char *Name, 203 bool AllowInternal, 204 ModulePtrSet::iterator I, 205 ModulePtrSet::iterator E); 206 207 void runStaticConstructorsDestructorsInModulePtrSet(bool isDtors, 208 ModulePtrSet::iterator I, 209 ModulePtrSet::iterator E); 210 211 public: 212 ~MCJIT() override; 213 214 /// @name ExecutionEngine interface implementation 215 /// @{ 216 void addModule(std::unique_ptr<Module> M) override; 217 void addObjectFile(std::unique_ptr<object::ObjectFile> O) override; 218 void addObjectFile(object::OwningBinary<object::ObjectFile> O) override; 219 void addArchive(object::OwningBinary<object::Archive> O) override; 220 bool removeModule(Module *M) override; 221 222 /// FindFunctionNamed - Search all of the active modules to find the function that 223 /// defines FnName. This is very slow operation and shouldn't be used for 224 /// general code. 225 Function *FindFunctionNamed(const char *FnName) override; 226 227 /// FindGlobalVariableNamed - Search all of the active modules to find the 228 /// global variable that defines Name. This is very slow operation and 229 /// shouldn't be used for general code. 230 GlobalVariable *FindGlobalVariableNamed(const char *Name, 231 bool AllowInternal = false) override; 232 233 /// Sets the object manager that MCJIT should use to avoid compilation. 234 void setObjectCache(ObjectCache *manager) override; 235 setProcessAllSections(bool ProcessAllSections)236 void setProcessAllSections(bool ProcessAllSections) override { 237 Dyld.setProcessAllSections(ProcessAllSections); 238 } 239 240 void generateCodeForModule(Module *M) override; 241 242 /// finalizeObject - ensure the module is fully processed and is usable. 243 /// 244 /// It is the user-level function for completing the process of making the 245 /// object usable for execution. It should be called after sections within an 246 /// object have been relocated using mapSectionAddress. When this method is 247 /// called the MCJIT execution engine will reapply relocations for a loaded 248 /// object. 249 /// Is it OK to finalize a set of modules, add modules and finalize again. 250 // FIXME: Do we really need both of these? 251 void finalizeObject() override; 252 virtual void finalizeModule(Module *); 253 void finalizeLoadedModules(); 254 255 /// runStaticConstructorsDestructors - This method is used to execute all of 256 /// the static constructors or destructors for a program. 257 /// 258 /// \param isDtors - Run the destructors instead of constructors. 259 void runStaticConstructorsDestructors(bool isDtors) override; 260 261 void *getPointerToFunction(Function *F) override; 262 263 GenericValue runFunction(Function *F, 264 ArrayRef<GenericValue> ArgValues) override; 265 266 /// getPointerToNamedFunction - This method returns the address of the 267 /// specified function by using the dlsym function call. As such it is only 268 /// useful for resolving library symbols, not code generated symbols. 269 /// 270 /// If AbortOnFailure is false and no function with the given name is 271 /// found, this function silently returns a null pointer. Otherwise, 272 /// it prints a message to stderr and aborts. 273 /// 274 void *getPointerToNamedFunction(StringRef Name, 275 bool AbortOnFailure = true) override; 276 277 /// mapSectionAddress - map a section to its target address space value. 278 /// Map the address of a JIT section as returned from the memory manager 279 /// to the address in the target process as the running code will see it. 280 /// This is the address which will be used for relocation resolution. mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)281 void mapSectionAddress(const void *LocalAddress, 282 uint64_t TargetAddress) override { 283 Dyld.mapSectionAddress(LocalAddress, TargetAddress); 284 } 285 void RegisterJITEventListener(JITEventListener *L) override; 286 void UnregisterJITEventListener(JITEventListener *L) override; 287 288 // If successful, these function will implicitly finalize all loaded objects. 289 // To get a function address within MCJIT without causing a finalize, use 290 // getSymbolAddress. 291 uint64_t getGlobalValueAddress(const std::string &Name) override; 292 uint64_t getFunctionAddress(const std::string &Name) override; 293 getTargetMachine()294 TargetMachine *getTargetMachine() override { return TM.get(); } 295 296 /// @} 297 /// @name (Private) Registration Interfaces 298 /// @{ 299 Register()300 static void Register() { 301 MCJITCtor = createJIT; 302 } 303 304 static ExecutionEngine* 305 createJIT(std::unique_ptr<Module> M, 306 std::string *ErrorStr, 307 std::shared_ptr<MCJITMemoryManager> MemMgr, 308 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver, 309 std::unique_ptr<TargetMachine> TM); 310 311 // @} 312 313 RuntimeDyld::SymbolInfo findSymbol(const std::string &Name, 314 bool CheckFunctionsOnly); 315 // DEPRECATED - Please use findSymbol instead. 316 // This is not directly exposed via the ExecutionEngine API, but it is 317 // used by the LinkingMemoryManager. 318 uint64_t getSymbolAddress(const std::string &Name, 319 bool CheckFunctionsOnly); 320 321 protected: 322 /// emitObject -- Generate a JITed object in memory from the specified module 323 /// Currently, MCJIT only supports a single module and the module passed to 324 /// this function call is expected to be the contained module. The module 325 /// is passed as a parameter here to prepare for multiple module support in 326 /// the future. 327 std::unique_ptr<MemoryBuffer> emitObject(Module *M); 328 329 void NotifyObjectEmitted(const object::ObjectFile& Obj, 330 const RuntimeDyld::LoadedObjectInfo &L); 331 void NotifyFreeingObject(const object::ObjectFile& Obj); 332 333 RuntimeDyld::SymbolInfo findExistingSymbol(const std::string &Name); 334 Module *findModuleForSymbol(const std::string &Name, 335 bool CheckFunctionsOnly); 336 }; 337 338 } // end llvm namespace 339 340 #endif // LLVM_LIB_EXECUTIONENGINE_MCJIT_MCJIT_H 341