• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //=- AArch64PromoteConstant.cpp --- Promote constant to global for AArch64 -==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AArch64PromoteConstant pass which promotes constants
11 // to global variables when this is likely to be more efficient. Currently only
12 // types related to constant vector (i.e., constant vector, array of constant
13 // vectors, constant structure with a constant vector field, etc.) are promoted
14 // to global variables. Constant vectors are likely to be lowered in target
15 // constant pool during instruction selection already; therefore, the access
16 // will remain the same (memory load), but the structure types are not split
17 // into different constant pool accesses for each field. A bonus side effect is
18 // that created globals may be merged by the global merge pass.
19 //
20 // FIXME: This pass may be useful for other targets too.
21 //===----------------------------------------------------------------------===//
22 
23 #include "AArch64.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/InstIterator.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/raw_ostream.h"
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "aarch64-promote-const"
46 
47 // Stress testing mode - disable heuristics.
48 static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
49                             cl::desc("Promote all vector constants"));
50 
51 STATISTIC(NumPromoted, "Number of promoted constants");
52 STATISTIC(NumPromotedUses, "Number of promoted constants uses");
53 
54 //===----------------------------------------------------------------------===//
55 //                       AArch64PromoteConstant
56 //===----------------------------------------------------------------------===//
57 
58 namespace {
59 /// Promotes interesting constant into global variables.
60 /// The motivating example is:
61 /// static const uint16_t TableA[32] = {
62 ///   41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
63 ///   31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
64 ///   25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
65 ///   21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
66 /// };
67 ///
68 /// uint8x16x4_t LoadStatic(void) {
69 ///   uint8x16x4_t ret;
70 ///   ret.val[0] = vld1q_u16(TableA +  0);
71 ///   ret.val[1] = vld1q_u16(TableA +  8);
72 ///   ret.val[2] = vld1q_u16(TableA + 16);
73 ///   ret.val[3] = vld1q_u16(TableA + 24);
74 ///   return ret;
75 /// }
76 ///
77 /// The constants in this example are folded into the uses. Thus, 4 different
78 /// constants are created.
79 ///
80 /// As their type is vector the cheapest way to create them is to load them
81 /// for the memory.
82 ///
83 /// Therefore the final assembly final has 4 different loads. With this pass
84 /// enabled, only one load is issued for the constants.
85 class AArch64PromoteConstant : public ModulePass {
86 
87 public:
88   struct PromotedConstant {
89     bool ShouldConvert = false;
90     GlobalVariable *GV = nullptr;
91   };
92   typedef SmallDenseMap<Constant *, PromotedConstant, 16> PromotionCacheTy;
93 
94   struct UpdateRecord {
95     Constant *C;
96     Instruction *User;
97     unsigned Op;
98 
UpdateRecord__anon0aa520580111::AArch64PromoteConstant::UpdateRecord99     UpdateRecord(Constant *C, Instruction *User, unsigned Op)
100         : C(C), User(User), Op(Op) {}
101   };
102 
103   static char ID;
AArch64PromoteConstant()104   AArch64PromoteConstant() : ModulePass(ID) {}
105 
getPassName() const106   const char *getPassName() const override { return "AArch64 Promote Constant"; }
107 
108   /// Iterate over the functions and promote the interesting constants into
109   /// global variables with module scope.
runOnModule(Module & M)110   bool runOnModule(Module &M) override {
111     DEBUG(dbgs() << getPassName() << '\n');
112     if (skipModule(M))
113       return false;
114     bool Changed = false;
115     PromotionCacheTy PromotionCache;
116     for (auto &MF : M) {
117       Changed |= runOnFunction(MF, PromotionCache);
118     }
119     return Changed;
120   }
121 
122 private:
123   /// Look for interesting constants used within the given function.
124   /// Promote them into global variables, load these global variables within
125   /// the related function, so that the number of inserted load is minimal.
126   bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache);
127 
128   // This transformation requires dominator info
getAnalysisUsage(AnalysisUsage & AU) const129   void getAnalysisUsage(AnalysisUsage &AU) const override {
130     AU.setPreservesCFG();
131     AU.addRequired<DominatorTreeWrapperPass>();
132     AU.addPreserved<DominatorTreeWrapperPass>();
133   }
134 
135   /// Type to store a list of Uses.
136   typedef SmallVector<std::pair<Instruction *, unsigned>, 4> Uses;
137   /// Map an insertion point to all the uses it dominates.
138   typedef DenseMap<Instruction *, Uses> InsertionPoints;
139 
140   /// Find the closest point that dominates the given Use.
141   Instruction *findInsertionPoint(Instruction &User, unsigned OpNo);
142 
143   /// Check if the given insertion point is dominated by an existing
144   /// insertion point.
145   /// If true, the given use is added to the list of dominated uses for
146   /// the related existing point.
147   /// \param NewPt the insertion point to be checked
148   /// \param User the user of the constant
149   /// \param OpNo the operand number of the use
150   /// \param InsertPts existing insertion points
151   /// \pre NewPt and all instruction in InsertPts belong to the same function
152   /// \return true if one of the insertion point in InsertPts dominates NewPt,
153   ///         false otherwise
154   bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo,
155                    InsertionPoints &InsertPts);
156 
157   /// Check if the given insertion point can be merged with an existing
158   /// insertion point in a common dominator.
159   /// If true, the given use is added to the list of the created insertion
160   /// point.
161   /// \param NewPt the insertion point to be checked
162   /// \param User the user of the constant
163   /// \param OpNo the operand number of the use
164   /// \param InsertPts existing insertion points
165   /// \pre NewPt and all instruction in InsertPts belong to the same function
166   /// \pre isDominated returns false for the exact same parameters.
167   /// \return true if it exists an insertion point in InsertPts that could
168   ///         have been merged with NewPt in a common dominator,
169   ///         false otherwise
170   bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo,
171                    InsertionPoints &InsertPts);
172 
173   /// Compute the minimal insertion points to dominates all the interesting
174   /// uses of value.
175   /// Insertion points are group per function and each insertion point
176   /// contains a list of all the uses it dominates within the related function
177   /// \param User the user of the constant
178   /// \param OpNo the operand number of the constant
179   /// \param[out] InsertPts output storage of the analysis
180   void computeInsertionPoint(Instruction *User, unsigned OpNo,
181                              InsertionPoints &InsertPts);
182 
183   /// Insert a definition of a new global variable at each point contained in
184   /// InsPtsPerFunc and update the related uses (also contained in
185   /// InsPtsPerFunc).
186   void insertDefinitions(Function &F, GlobalVariable &GV,
187                          InsertionPoints &InsertPts);
188 
189   /// Do the constant promotion indicated by the Updates records, keeping track
190   /// of globals in PromotionCache.
191   void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates,
192                         PromotionCacheTy &PromotionCache);
193 
194   /// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
195   /// Append Use to this list and delete the entry of IPI in InsertPts.
appendAndTransferDominatedUses(Instruction * NewPt,Instruction * User,unsigned OpNo,InsertionPoints::iterator & IPI,InsertionPoints & InsertPts)196   static void appendAndTransferDominatedUses(Instruction *NewPt,
197                                              Instruction *User, unsigned OpNo,
198                                              InsertionPoints::iterator &IPI,
199                                              InsertionPoints &InsertPts) {
200     // Record the dominated use.
201     IPI->second.emplace_back(User, OpNo);
202     // Transfer the dominated uses of IPI to NewPt
203     // Inserting into the DenseMap may invalidate existing iterator.
204     // Keep a copy of the key to find the iterator to erase.  Keep a copy of the
205     // value so that we don't have to dereference IPI->second.
206     Instruction *OldInstr = IPI->first;
207     Uses OldUses = std::move(IPI->second);
208     InsertPts[NewPt] = std::move(OldUses);
209     // Erase IPI.
210     InsertPts.erase(OldInstr);
211   }
212 };
213 } // end anonymous namespace
214 
215 char AArch64PromoteConstant::ID = 0;
216 
217 namespace llvm {
218 void initializeAArch64PromoteConstantPass(PassRegistry &);
219 }
220 
221 INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
222                       "AArch64 Promote Constant Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)223 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
224 INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
225                     "AArch64 Promote Constant Pass", false, false)
226 
227 ModulePass *llvm::createAArch64PromoteConstantPass() {
228   return new AArch64PromoteConstant();
229 }
230 
231 /// Check if the given type uses a vector type.
isConstantUsingVectorTy(const Type * CstTy)232 static bool isConstantUsingVectorTy(const Type *CstTy) {
233   if (CstTy->isVectorTy())
234     return true;
235   if (CstTy->isStructTy()) {
236     for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
237          EltIdx < EndEltIdx; ++EltIdx)
238       if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx)))
239         return true;
240   } else if (CstTy->isArrayTy())
241     return isConstantUsingVectorTy(CstTy->getArrayElementType());
242   return false;
243 }
244 
245 /// Check if the given use (Instruction + OpIdx) of Cst should be converted into
246 /// a load of a global variable initialized with Cst.
247 /// A use should be converted if it is legal to do so.
248 /// For instance, it is not legal to turn the mask operand of a shuffle vector
249 /// into a load of a global variable.
shouldConvertUse(const Constant * Cst,const Instruction * Instr,unsigned OpIdx)250 static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
251                              unsigned OpIdx) {
252   // shufflevector instruction expects a const for the mask argument, i.e., the
253   // third argument. Do not promote this use in that case.
254   if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
255     return false;
256 
257   // extractvalue instruction expects a const idx.
258   if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
259     return false;
260 
261   // extractvalue instruction expects a const idx.
262   if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
263     return false;
264 
265   if (isa<const AllocaInst>(Instr) && OpIdx > 0)
266     return false;
267 
268   // Alignment argument must be constant.
269   if (isa<const LoadInst>(Instr) && OpIdx > 0)
270     return false;
271 
272   // Alignment argument must be constant.
273   if (isa<const StoreInst>(Instr) && OpIdx > 1)
274     return false;
275 
276   // Index must be constant.
277   if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
278     return false;
279 
280   // Personality function and filters must be constant.
281   // Give up on that instruction.
282   if (isa<const LandingPadInst>(Instr))
283     return false;
284 
285   // Switch instruction expects constants to compare to.
286   if (isa<const SwitchInst>(Instr))
287     return false;
288 
289   // Expected address must be a constant.
290   if (isa<const IndirectBrInst>(Instr))
291     return false;
292 
293   // Do not mess with intrinsics.
294   if (isa<const IntrinsicInst>(Instr))
295     return false;
296 
297   // Do not mess with inline asm.
298   const CallInst *CI = dyn_cast<const CallInst>(Instr);
299   return !(CI && isa<const InlineAsm>(CI->getCalledValue()));
300 }
301 
302 /// Check if the given Cst should be converted into
303 /// a load of a global variable initialized with Cst.
304 /// A constant should be converted if it is likely that the materialization of
305 /// the constant will be tricky. Thus, we give up on zero or undef values.
306 ///
307 /// \todo Currently, accept only vector related types.
308 /// Also we give up on all simple vector type to keep the existing
309 /// behavior. Otherwise, we should push here all the check of the lowering of
310 /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
311 /// constant via global merge and the fact that the same constant is stored
312 /// only once with this method (versus, as many function that uses the constant
313 /// for the regular approach, even for float).
314 /// Again, the simplest solution would be to promote every
315 /// constant and rematerialize them when they are actually cheap to create.
shouldConvertImpl(const Constant * Cst)316 static bool shouldConvertImpl(const Constant *Cst) {
317   if (isa<const UndefValue>(Cst))
318     return false;
319 
320   // FIXME: In some cases, it may be interesting to promote in memory
321   // a zero initialized constant.
322   // E.g., when the type of Cst require more instructions than the
323   // adrp/add/load sequence or when this sequence can be shared by several
324   // instances of Cst.
325   // Ideally, we could promote this into a global and rematerialize the constant
326   // when it was a bad idea.
327   if (Cst->isZeroValue())
328     return false;
329 
330   if (Stress)
331     return true;
332 
333   // FIXME: see function \todo
334   if (Cst->getType()->isVectorTy())
335     return false;
336   return isConstantUsingVectorTy(Cst->getType());
337 }
338 
339 static bool
shouldConvert(Constant & C,AArch64PromoteConstant::PromotionCacheTy & PromotionCache)340 shouldConvert(Constant &C,
341               AArch64PromoteConstant::PromotionCacheTy &PromotionCache) {
342   auto Converted = PromotionCache.insert(
343       std::make_pair(&C, AArch64PromoteConstant::PromotedConstant()));
344   if (Converted.second)
345     Converted.first->second.ShouldConvert = shouldConvertImpl(&C);
346   return Converted.first->second.ShouldConvert;
347 }
348 
findInsertionPoint(Instruction & User,unsigned OpNo)349 Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User,
350                                                         unsigned OpNo) {
351   // If this user is a phi, the insertion point is in the related
352   // incoming basic block.
353   if (PHINode *PhiInst = dyn_cast<PHINode>(&User))
354     return PhiInst->getIncomingBlock(OpNo)->getTerminator();
355 
356   return &User;
357 }
358 
isDominated(Instruction * NewPt,Instruction * User,unsigned OpNo,InsertionPoints & InsertPts)359 bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User,
360                                          unsigned OpNo,
361                                          InsertionPoints &InsertPts) {
362 
363   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
364       *NewPt->getParent()->getParent()).getDomTree();
365 
366   // Traverse all the existing insertion points and check if one is dominating
367   // NewPt. If it is, remember that.
368   for (auto &IPI : InsertPts) {
369     if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
370         // When IPI.first is a terminator instruction, DT may think that
371         // the result is defined on the edge.
372         // Here we are testing the insertion point, not the definition.
373         (IPI.first->getParent() != NewPt->getParent() &&
374          DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
375       // No need to insert this point. Just record the dominated use.
376       DEBUG(dbgs() << "Insertion point dominated by:\n");
377       DEBUG(IPI.first->print(dbgs()));
378       DEBUG(dbgs() << '\n');
379       IPI.second.emplace_back(User, OpNo);
380       return true;
381     }
382   }
383   return false;
384 }
385 
tryAndMerge(Instruction * NewPt,Instruction * User,unsigned OpNo,InsertionPoints & InsertPts)386 bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User,
387                                          unsigned OpNo,
388                                          InsertionPoints &InsertPts) {
389   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
390       *NewPt->getParent()->getParent()).getDomTree();
391   BasicBlock *NewBB = NewPt->getParent();
392 
393   // Traverse all the existing insertion point and check if one is dominated by
394   // NewPt and thus useless or can be combined with NewPt into a common
395   // dominator.
396   for (InsertionPoints::iterator IPI = InsertPts.begin(),
397                                  EndIPI = InsertPts.end();
398        IPI != EndIPI; ++IPI) {
399     BasicBlock *CurBB = IPI->first->getParent();
400     if (NewBB == CurBB) {
401       // Instructions are in the same block.
402       // By construction, NewPt is dominating the other.
403       // Indeed, isDominated returned false with the exact same arguments.
404       DEBUG(dbgs() << "Merge insertion point with:\n");
405       DEBUG(IPI->first->print(dbgs()));
406       DEBUG(dbgs() << "\nat considered insertion point.\n");
407       appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
408       return true;
409     }
410 
411     // Look for a common dominator
412     BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
413     // If none exists, we cannot merge these two points.
414     if (!CommonDominator)
415       continue;
416 
417     if (CommonDominator != NewBB) {
418       // By construction, the CommonDominator cannot be CurBB.
419       assert(CommonDominator != CurBB &&
420              "Instruction has not been rejected during isDominated check!");
421       // Take the last instruction of the CommonDominator as insertion point
422       NewPt = CommonDominator->getTerminator();
423     }
424     // else, CommonDominator is the block of NewBB, hence NewBB is the last
425     // possible insertion point in that block.
426     DEBUG(dbgs() << "Merge insertion point with:\n");
427     DEBUG(IPI->first->print(dbgs()));
428     DEBUG(dbgs() << '\n');
429     DEBUG(NewPt->print(dbgs()));
430     DEBUG(dbgs() << '\n');
431     appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
432     return true;
433   }
434   return false;
435 }
436 
computeInsertionPoint(Instruction * User,unsigned OpNo,InsertionPoints & InsertPts)437 void AArch64PromoteConstant::computeInsertionPoint(
438     Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) {
439   DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n");
440   DEBUG(User->print(dbgs()));
441   DEBUG(dbgs() << '\n');
442 
443   Instruction *InsertionPoint = findInsertionPoint(*User, OpNo);
444 
445   DEBUG(dbgs() << "Considered insertion point:\n");
446   DEBUG(InsertionPoint->print(dbgs()));
447   DEBUG(dbgs() << '\n');
448 
449   if (isDominated(InsertionPoint, User, OpNo, InsertPts))
450     return;
451   // This insertion point is useful, check if we can merge some insertion
452   // point in a common dominator or if NewPt dominates an existing one.
453   if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts))
454     return;
455 
456   DEBUG(dbgs() << "Keep considered insertion point\n");
457 
458   // It is definitely useful by its own
459   InsertPts[InsertionPoint].emplace_back(User, OpNo);
460 }
461 
ensurePromotedGV(Function & F,Constant & C,AArch64PromoteConstant::PromotedConstant & PC)462 static void ensurePromotedGV(Function &F, Constant &C,
463                              AArch64PromoteConstant::PromotedConstant &PC) {
464   assert(PC.ShouldConvert &&
465          "Expected that we should convert this to a global");
466   if (PC.GV)
467     return;
468   PC.GV = new GlobalVariable(
469       *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr,
470       "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
471   PC.GV->setInitializer(&C);
472   DEBUG(dbgs() << "Global replacement: ");
473   DEBUG(PC.GV->print(dbgs()));
474   DEBUG(dbgs() << '\n');
475   ++NumPromoted;
476 }
477 
insertDefinitions(Function & F,GlobalVariable & PromotedGV,InsertionPoints & InsertPts)478 void AArch64PromoteConstant::insertDefinitions(Function &F,
479                                                GlobalVariable &PromotedGV,
480                                                InsertionPoints &InsertPts) {
481 #ifndef NDEBUG
482   // Do more checking for debug purposes.
483   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
484 #endif
485   assert(!InsertPts.empty() && "Empty uses does not need a definition");
486 
487   for (const auto &IPI : InsertPts) {
488     // Create the load of the global variable.
489     IRBuilder<> Builder(IPI.first);
490     LoadInst *LoadedCst = Builder.CreateLoad(&PromotedGV);
491     DEBUG(dbgs() << "**********\n");
492     DEBUG(dbgs() << "New def: ");
493     DEBUG(LoadedCst->print(dbgs()));
494     DEBUG(dbgs() << '\n');
495 
496     // Update the dominated uses.
497     for (auto Use : IPI.second) {
498 #ifndef NDEBUG
499       assert(DT.dominates(LoadedCst,
500                           findInsertionPoint(*Use.first, Use.second)) &&
501              "Inserted definition does not dominate all its uses!");
502 #endif
503       DEBUG({
504             dbgs() << "Use to update " << Use.second << ":";
505             Use.first->print(dbgs());
506             dbgs() << '\n';
507             });
508       Use.first->setOperand(Use.second, LoadedCst);
509       ++NumPromotedUses;
510     }
511   }
512 }
513 
promoteConstants(Function & F,SmallVectorImpl<UpdateRecord> & Updates,PromotionCacheTy & PromotionCache)514 void AArch64PromoteConstant::promoteConstants(
515     Function &F, SmallVectorImpl<UpdateRecord> &Updates,
516     PromotionCacheTy &PromotionCache) {
517   // Promote the constants.
518   for (auto U = Updates.begin(), E = Updates.end(); U != E;) {
519     DEBUG(dbgs() << "** Compute insertion points **\n");
520     auto First = U;
521     Constant *C = First->C;
522     InsertionPoints InsertPts;
523     do {
524       computeInsertionPoint(U->User, U->Op, InsertPts);
525     } while (++U != E && U->C == C);
526 
527     auto &Promotion = PromotionCache[C];
528     ensurePromotedGV(F, *C, Promotion);
529     insertDefinitions(F, *Promotion.GV, InsertPts);
530   }
531 }
532 
runOnFunction(Function & F,PromotionCacheTy & PromotionCache)533 bool AArch64PromoteConstant::runOnFunction(Function &F,
534                                            PromotionCacheTy &PromotionCache) {
535   // Look for instructions using constant vector. Promote that constant to a
536   // global variable. Create as few loads of this variable as possible and
537   // update the uses accordingly.
538   SmallVector<UpdateRecord, 64> Updates;
539   for (Instruction &I : instructions(&F)) {
540     // Traverse the operand, looking for constant vectors. Replace them by a
541     // load of a global variable of constant vector type.
542     for (Use &U : I.operands()) {
543       Constant *Cst = dyn_cast<Constant>(U);
544       // There is no point in promoting global values as they are already
545       // global. Do not promote constant expressions either, as they may
546       // require some code expansion.
547       if (!Cst || isa<GlobalValue>(Cst) || isa<ConstantExpr>(Cst))
548         continue;
549 
550       // Check if this constant is worth promoting.
551       if (!shouldConvert(*Cst, PromotionCache))
552         continue;
553 
554       // Check if this use should be promoted.
555       unsigned OpNo = &U - I.op_begin();
556       if (!shouldConvertUse(Cst, &I, OpNo))
557         continue;
558 
559       Updates.emplace_back(Cst, &I, OpNo);
560     }
561   }
562 
563   if (Updates.empty())
564     return false;
565 
566   promoteConstants(F, Updates, PromotionCache);
567   return true;
568 }
569