• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//=- AArch64SchedCyclone.td - Cyclone Scheduling Definitions -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the machine model for AArch64 Cyclone to support
11// instruction scheduling and other instruction cost heuristics.
12//
13//===----------------------------------------------------------------------===//
14
15def CycloneModel : SchedMachineModel {
16  let IssueWidth = 6; // 6 micro-ops are dispatched per cycle.
17  let MicroOpBufferSize = 192; // Based on the reorder buffer.
18  let LoadLatency = 4; // Optimistic load latency.
19  let MispredictPenalty = 16; // 14-19 cycles are typical.
20  let CompleteModel = 1;
21}
22
23//===----------------------------------------------------------------------===//
24// Define each kind of processor resource and number available on Cyclone.
25
26// 4 integer pipes
27def CyUnitI : ProcResource<4> {
28  let BufferSize = 48;
29}
30
31// 2 branch units: I[0..1]
32def CyUnitB : ProcResource<2> {
33  let Super  = CyUnitI;
34  let BufferSize = 24;
35}
36
37// 1 indirect-branch unit: I[0]
38def CyUnitBR : ProcResource<1> {
39  let Super  = CyUnitB;
40}
41
42// 2 shifter pipes: I[2..3]
43// When an instruction consumes a CyUnitIS, it also consumes a CyUnitI
44def CyUnitIS : ProcResource<2> {
45  let Super = CyUnitI;
46  let BufferSize = 24;
47}
48
49// 1 mul pipe: I[0]
50def CyUnitIM : ProcResource<1> {
51  let Super = CyUnitBR;
52  let BufferSize = 32;
53}
54
55// 1 div pipe: I[1]
56def CyUnitID : ProcResource<1> {
57  let Super = CyUnitB;
58  let BufferSize = 16;
59}
60
61// 1 integer division unit. This is driven by the ID pipe, but only
62// consumes the pipe for one cycle at issue and another cycle at writeback.
63def CyUnitIntDiv : ProcResource<1>;
64
65// 2 ld/st pipes.
66def CyUnitLS : ProcResource<2> {
67  let BufferSize = 28;
68}
69
70// 3 fp/vector pipes.
71def CyUnitV : ProcResource<3> {
72  let BufferSize = 48;
73}
74// 2 fp/vector arithmetic and multiply pipes: V[0-1]
75def CyUnitVM : ProcResource<2> {
76  let Super = CyUnitV;
77  let BufferSize = 32;
78}
79// 1 fp/vector division/sqrt pipe: V[2]
80def CyUnitVD : ProcResource<1> {
81  let Super = CyUnitV;
82  let BufferSize = 16;
83}
84// 1 fp compare pipe: V[0]
85def CyUnitVC : ProcResource<1> {
86  let Super = CyUnitVM;
87  let BufferSize = 16;
88}
89
90// 2 fp division/square-root units.  These are driven by the VD pipe,
91// but only consume the pipe for one cycle at issue and a cycle at writeback.
92def CyUnitFloatDiv : ProcResource<2>;
93
94//===----------------------------------------------------------------------===//
95// Define scheduler read/write resources and latency on Cyclone.
96// This mirrors sections 7.7-7.9 of the Tuning Guide v1.0.1.
97
98let SchedModel = CycloneModel in {
99
100//---
101// 7.8.1. Moves
102//---
103
104// A single nop micro-op (uX).
105def WriteX : SchedWriteRes<[]> { let Latency = 0; }
106
107// Move zero is a register rename (to machine register zero).
108// The move is replaced by a single nop micro-op.
109// MOVZ Rd, #0
110// AND Rd, Rzr, #imm
111def WriteZPred : SchedPredicate<[{TII->isGPRZero(*MI)}]>;
112def WriteImmZ  : SchedWriteVariant<[
113                   SchedVar<WriteZPred, [WriteX]>,
114                   SchedVar<NoSchedPred, [WriteImm]>]>;
115def : InstRW<[WriteImmZ], (instrs MOVZWi,MOVZXi,ANDWri,ANDXri)>;
116
117// Move GPR is a register rename and single nop micro-op.
118// ORR Xd, XZR, Xm
119// ADD Xd, Xn, #0
120def WriteIMovPred : SchedPredicate<[{TII->isGPRCopy(*MI)}]>;
121def WriteVMovPred : SchedPredicate<[{TII->isFPRCopy(*MI)}]>;
122def WriteMov      : SchedWriteVariant<[
123                      SchedVar<WriteIMovPred, [WriteX]>,
124                      SchedVar<WriteVMovPred, [WriteX]>,
125                      SchedVar<NoSchedPred,   [WriteI]>]>;
126def : InstRW<[WriteMov], (instrs COPY,ORRXrr,ADDXrr)>;
127
128// Move non-zero immediate is an integer ALU op.
129// MOVN,MOVZ,MOVK
130def : WriteRes<WriteImm, [CyUnitI]>;
131
132//---
133// 7.8.2-7.8.5. Arithmetic and Logical, Comparison, Conditional,
134//              Shifts and Bitfield Operations
135//---
136
137// ADR,ADRP
138// ADD(S)ri,SUB(S)ri,AND(S)ri,EORri,ORRri
139// ADD(S)rr,SUB(S)rr,AND(S)rr,BIC(S)rr,EONrr,EORrr,ORNrr,ORRrr
140// ADC(S),SBC(S)
141// Aliases: CMN, CMP, TST
142//
143// Conditional operations.
144// CCMNi,CCMPi,CCMNr,CCMPr,
145// CSEL,CSINC,CSINV,CSNEG
146//
147// Bit counting and reversal operations.
148// CLS,CLZ,RBIT,REV,REV16,REV32
149def : WriteRes<WriteI, [CyUnitI]>;
150
151// ADD with shifted register operand is a single micro-op that
152// consumes a shift pipeline for two cycles.
153// ADD(S)rs,SUB(S)rs,AND(S)rs,BIC(S)rs,EONrs,EORrs,ORNrs,ORRrs
154// EXAMPLE: ADDrs Xn, Xm LSL #imm
155def : WriteRes<WriteISReg, [CyUnitIS]> {
156  let Latency = 2;
157  let ResourceCycles = [2];
158}
159
160// ADD with extended register operand is the same as shifted reg operand.
161// ADD(S)re,SUB(S)re
162// EXAMPLE: ADDXre Xn, Xm, UXTB #1
163def : WriteRes<WriteIEReg, [CyUnitIS]> {
164  let Latency = 2;
165  let ResourceCycles = [2];
166}
167
168// Variable shift and bitfield operations.
169// ASRV,LSLV,LSRV,RORV,BFM,SBFM,UBFM
170def : WriteRes<WriteIS, [CyUnitIS]>;
171
172// EXTR Shifts a pair of registers and requires two micro-ops.
173// The second micro-op is delayed, as modeled by ReadExtrHi.
174// EXTR Xn, Xm, #imm
175def : WriteRes<WriteExtr, [CyUnitIS, CyUnitIS]> {
176  let Latency = 2;
177  let NumMicroOps = 2;
178}
179
180// EXTR's first register read is delayed by one cycle, effectively
181// shortening its writer's latency.
182// EXTR Xn, Xm, #imm
183def : ReadAdvance<ReadExtrHi, 1>;
184
185//---
186// 7.8.6. Multiplies
187//---
188
189// MUL/MNEG are aliases for MADD/MSUB.
190// MADDW,MSUBW,SMADDL,SMSUBL,UMADDL,UMSUBL
191def : WriteRes<WriteIM32, [CyUnitIM]> {
192  let Latency = 4;
193}
194// MADDX,MSUBX,SMULH,UMULH
195def : WriteRes<WriteIM64, [CyUnitIM]> {
196  let Latency = 5;
197}
198
199//---
200// 7.8.7. Divide
201//---
202
203// 32-bit divide takes 7-13 cycles. 10 cycles covers a 20-bit quotient.
204// The ID pipe is consumed for 2 cycles: issue and writeback.
205// SDIVW,UDIVW
206def : WriteRes<WriteID32, [CyUnitID, CyUnitIntDiv]> {
207  let Latency = 10;
208  let ResourceCycles = [2, 10];
209}
210// 64-bit divide takes 7-21 cycles. 13 cycles covers a 32-bit quotient.
211// The ID pipe is consumed for 2 cycles: issue and writeback.
212// SDIVX,UDIVX
213def : WriteRes<WriteID64, [CyUnitID, CyUnitIntDiv]> {
214  let Latency = 13;
215  let ResourceCycles = [2, 13];
216}
217
218//---
219// 7.8.8,7.8.10. Load/Store, single element
220//---
221
222// Integer loads take 4 cycles and use one LS unit for one cycle.
223def : WriteRes<WriteLD, [CyUnitLS]> {
224  let Latency = 4;
225}
226
227// Store-load forwarding is 4 cycles.
228//
229// Note: The store-exclusive sequence incorporates this
230// latency. However, general heuristics should not model the
231// dependence between a store and subsequent may-alias load because
232// hardware speculation works.
233def : WriteRes<WriteST, [CyUnitLS]> {
234  let Latency = 4;
235}
236
237// Load from base address plus an optionally scaled register offset.
238// Rt latency is latency WriteIS + WriteLD.
239// EXAMPLE: LDR Xn, Xm [, lsl 3]
240def CyWriteLDIdx : SchedWriteVariant<[
241  SchedVar<ScaledIdxPred, [WriteIS, WriteLD]>, // Load from scaled register.
242  SchedVar<NoSchedPred,   [WriteLD]>]>;        // Load from register offset.
243def : SchedAlias<WriteLDIdx, CyWriteLDIdx>;    // Map AArch64->Cyclone type.
244
245// EXAMPLE: STR Xn, Xm [, lsl 3]
246def CyWriteSTIdx : SchedWriteVariant<[
247  SchedVar<ScaledIdxPred, [WriteIS, WriteST]>, // Store to scaled register.
248  SchedVar<NoSchedPred,   [WriteST]>]>;        // Store to register offset.
249def : SchedAlias<WriteSTIdx, CyWriteSTIdx>;    // Map AArch64->Cyclone type.
250
251// Read the (unshifted) base register Xn in the second micro-op one cycle later.
252// EXAMPLE: LDR Xn, Xm [, lsl 3]
253def ReadBaseRS : SchedReadAdvance<1>;
254def CyReadAdrBase : SchedReadVariant<[
255  SchedVar<ScaledIdxPred, [ReadBaseRS]>, // Read base reg after shifting offset.
256  SchedVar<NoSchedPred,   [ReadDefault]>]>;   // Read base reg with no shift.
257def : SchedAlias<ReadAdrBase, CyReadAdrBase>; // Map AArch64->Cyclone type.
258
259//---
260// 7.8.9,7.8.11. Load/Store, paired
261//---
262
263// Address pre/post increment is a simple ALU op with one cycle latency.
264def : WriteRes<WriteAdr, [CyUnitI]>;
265
266// LDP high register write is fused with the load, but a nop micro-op remains.
267def : WriteRes<WriteLDHi, []> {
268  let Latency = 4;
269}
270
271// STP is a vector op and store, except for QQ, which is just two stores.
272def : SchedAlias<WriteSTP, WriteVSTShuffle>;
273def : InstRW<[WriteST, WriteST], (instrs STPQi)>;
274
275//---
276// 7.8.13. Branches
277//---
278
279// Branches take a single micro-op.
280// The misprediction penalty is defined as a SchedMachineModel property.
281def : WriteRes<WriteBr,    [CyUnitB]>  {let Latency = 0;}
282def : WriteRes<WriteBrReg, [CyUnitBR]> {let Latency = 0;}
283
284//---
285// 7.8.14. Never-issued Instructions, Barrier and Hint Operations
286//---
287
288// NOP,SEV,SEVL,WFE,WFI,YIELD
289def : WriteRes<WriteHint, []> {let Latency = 0;}
290// ISB
291def : InstRW<[WriteI], (instrs ISB)>;
292// SLREX,DMB,DSB
293def : WriteRes<WriteBarrier, [CyUnitLS]>;
294
295// System instructions get an invalid latency because the latency of
296// other operations across them is meaningless.
297def : WriteRes<WriteSys, []> {let Latency = -1;}
298
299//===----------------------------------------------------------------------===//
300// 7.9 Vector Unit Instructions
301
302// Simple vector operations take 2 cycles.
303def : WriteRes<WriteV, [CyUnitV]> {let Latency = 2;}
304
305// Define some longer latency vector op types for Cyclone.
306def CyWriteV3 : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
307def CyWriteV4 : SchedWriteRes<[CyUnitV]> {let Latency = 4;}
308def CyWriteV5 : SchedWriteRes<[CyUnitV]> {let Latency = 5;}
309def CyWriteV6 : SchedWriteRes<[CyUnitV]> {let Latency = 6;}
310
311// Simple floating-point operations take 2 cycles.
312def : WriteRes<WriteF, [CyUnitV]> {let Latency = 2;}
313
314//---
315// 7.9.1 Vector Moves
316//---
317
318// TODO: Add Cyclone-specific zero-cycle zeros. LLVM currently
319// generates expensive int-float conversion instead:
320// FMOVDi Dd, #0.0
321// FMOVv2f64ns Vd.2d, #0.0
322
323// FMOVSi,FMOVDi
324def : WriteRes<WriteFImm, [CyUnitV]> {let Latency = 2;}
325
326// MOVI,MVNI are WriteV
327// FMOVv2f32ns,FMOVv2f64ns,FMOVv4f32ns are WriteV
328
329// Move FPR is a register rename and single nop micro-op.
330// ORR.16b Vd,Vn,Vn
331// COPY is handled above in the WriteMov Variant.
332def WriteVMov    : SchedWriteVariant<[
333                     SchedVar<WriteVMovPred, [WriteX]>,
334                     SchedVar<NoSchedPred,   [WriteV]>]>;
335def : InstRW<[WriteVMov], (instrs ORRv16i8)>;
336
337// FMOVSr,FMOVDr are WriteF.
338
339// MOV V,V is a WriteV.
340
341// CPY D,V[x] is a WriteV
342
343// INS V[x],V[y] is a WriteV.
344
345// FMOVWSr,FMOVXDr,FMOVXDHighr
346def : WriteRes<WriteFCopy, [CyUnitLS]> {
347  let Latency = 5;
348}
349
350// FMOVSWr,FMOVDXr
351def : InstRW<[WriteLD], (instrs FMOVSWr,FMOVDXr,FMOVDXHighr)>;
352
353// INS V[x],R
354def CyWriteCopyToFPR : WriteSequence<[WriteVLD, WriteV]>;
355def : InstRW<[CyWriteCopyToFPR], (instregex "INSv")>;
356
357// SMOV,UMOV R,V[x]
358def CyWriteCopyToGPR : WriteSequence<[WriteLD, WriteI]>;
359def : InstRW<[CyWriteCopyToGPR], (instregex "SMOVv","UMOVv")>;
360
361// DUP V,R
362def : InstRW<[CyWriteCopyToFPR], (instregex "DUPv")>;
363
364// DUP V,V[x] is a WriteV.
365
366//---
367// 7.9.2 Integer Arithmetic, Logical, and Comparisons
368//---
369
370// BIC,ORR V,#imm are WriteV
371
372def : InstRW<[CyWriteV3], (instregex "ABSv")>;
373
374// MVN,NEG,NOT are WriteV
375
376def : InstRW<[CyWriteV3], (instregex "SQABSv","SQNEGv")>;
377
378// ADDP is a WriteV.
379def CyWriteVADDLP : SchedWriteRes<[CyUnitV]> {let Latency = 2;}
380def : InstRW<[CyWriteVADDLP], (instregex "SADDLPv","UADDLPv")>;
381
382def : InstRW<[CyWriteV3],
383             (instregex "ADDVv","SMAXVv","UMAXVv","SMINVv","UMINVv")>;
384
385def : InstRW<[CyWriteV3], (instregex "SADDLV","UADDLV")>;
386
387// ADD,SUB are WriteV
388
389// Forward declare.
390def CyWriteVABD : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
391
392// Add/Diff and accumulate uses the vector multiply unit.
393def CyWriteVAccum : SchedWriteRes<[CyUnitVM]> {let Latency = 3;}
394def CyReadVAccum  : SchedReadAdvance<1,
395                    [CyWriteVAccum, CyWriteVADDLP, CyWriteVABD]>;
396
397def : InstRW<[CyWriteVAccum, CyReadVAccum],
398             (instregex "SADALP","UADALP")>;
399
400def : InstRW<[CyWriteVAccum, CyReadVAccum],
401             (instregex "SABAv","UABAv","SABALv","UABALv")>;
402
403def : InstRW<[CyWriteV3], (instregex "SQADDv","SQSUBv","UQADDv","UQSUBv")>;
404
405def : InstRW<[CyWriteV3], (instregex "SUQADDv","USQADDv")>;
406
407def : InstRW<[CyWriteV4], (instregex "ADDHNv","RADDHNv", "RSUBHNv", "SUBHNv")>;
408
409// WriteV includes:
410// AND,BIC,CMTST,EOR,ORN,ORR
411// ADDP
412// SHADD,SHSUB,SRHADD,UHADD,UHSUB,URHADD
413// SADDL,SSUBL,UADDL,USUBL
414// SADDW,SSUBW,UADDW,USUBW
415
416def : InstRW<[CyWriteV3], (instregex "CMEQv","CMGEv","CMGTv",
417                                     "CMLEv","CMLTv",
418                                     "CMHIv","CMHSv")>;
419
420def : InstRW<[CyWriteV3], (instregex "SMAXv","SMINv","UMAXv","UMINv",
421                                     "SMAXPv","SMINPv","UMAXPv","UMINPv")>;
422
423def : InstRW<[CyWriteVABD], (instregex "SABDv","UABDv",
424                                       "SABDLv","UABDLv")>;
425
426//---
427// 7.9.3 Floating Point Arithmetic and Comparisons
428//---
429
430// FABS,FNEG are WriteF
431
432def : InstRW<[CyWriteV4], (instrs FADDPv2i32p)>;
433def : InstRW<[CyWriteV5], (instrs FADDPv2i64p)>;
434
435def : InstRW<[CyWriteV3], (instregex "FMAXPv2i","FMAXNMPv2i",
436                                     "FMINPv2i","FMINNMPv2i")>;
437
438def : InstRW<[CyWriteV4], (instregex "FMAXVv","FMAXNMVv","FMINVv","FMINNMVv")>;
439
440def : InstRW<[CyWriteV4], (instrs FADDSrr,FADDv2f32,FADDv4f32,
441                                  FSUBSrr,FSUBv2f32,FSUBv4f32,
442                                  FADDPv2f32,FADDPv4f32,
443                                  FABD32,FABDv2f32,FABDv4f32)>;
444def : InstRW<[CyWriteV5], (instrs FADDDrr,FADDv2f64,
445                                  FSUBDrr,FSUBv2f64,
446                                  FADDPv2f64,
447                                  FABD64,FABDv2f64)>;
448
449def : InstRW<[CyWriteV3], (instregex "FCMEQ","FCMGT","FCMLE","FCMLT")>;
450
451def : InstRW<[CyWriteV3], (instregex "FACGE","FACGT",
452                                     "FMAXS","FMAXD","FMAXv",
453                                     "FMINS","FMIND","FMINv",
454                                     "FMAXNMS","FMAXNMD","FMAXNMv",
455                                     "FMINNMS","FMINNMD","FMINNMv",
456                                     "FMAXPv2f","FMAXPv4f",
457                                     "FMINPv2f","FMINPv4f",
458                                     "FMAXNMPv2f","FMAXNMPv4f",
459                                     "FMINNMPv2f","FMINNMPv4f")>;
460
461// FCMP,FCMPE,FCCMP,FCCMPE
462def : WriteRes<WriteFCmp, [CyUnitVC]> {let Latency = 4;}
463
464// FCSEL is a WriteF.
465
466//---
467// 7.9.4 Shifts and Bitfield Operations
468//---
469
470// SHL is a WriteV
471
472def CyWriteVSHR : SchedWriteRes<[CyUnitV]> {let Latency = 2;}
473def : InstRW<[CyWriteVSHR], (instregex "SSHRv","USHRv")>;
474
475def CyWriteVSRSHR : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
476def : InstRW<[CyWriteVSRSHR], (instregex "SRSHRv","URSHRv")>;
477
478// Shift and accumulate uses the vector multiply unit.
479def CyWriteVShiftAcc : SchedWriteRes<[CyUnitVM]> {let Latency = 3;}
480def CyReadVShiftAcc  : SchedReadAdvance<1,
481                        [CyWriteVShiftAcc, CyWriteVSHR, CyWriteVSRSHR]>;
482def : InstRW<[CyWriteVShiftAcc, CyReadVShiftAcc],
483             (instregex "SRSRAv","SSRAv","URSRAv","USRAv")>;
484
485// SSHL,USHL are WriteV.
486
487def : InstRW<[CyWriteV3], (instregex "SRSHLv","URSHLv")>;
488
489// SQSHL,SQSHLU,UQSHL are WriteV.
490
491def : InstRW<[CyWriteV3], (instregex "SQRSHLv","UQRSHLv")>;
492
493// WriteV includes:
494// SHLL,SSHLL,USHLL
495// SLI,SRI
496// BIF,BIT,BSL
497// EXT
498// CLS,CLZ,CNT,RBIT,REV16,REV32,REV64,XTN
499// XTN2
500
501def : InstRW<[CyWriteV4],
502             (instregex "RSHRNv","SHRNv",
503                        "SQRSHRNv","SQRSHRUNv","SQSHRNv","SQSHRUNv",
504                        "UQRSHRNv","UQSHRNv","SQXTNv","SQXTUNv","UQXTNv")>;
505
506//---
507// 7.9.5 Multiplication
508//---
509
510def CyWriteVMul : SchedWriteRes<[CyUnitVM]> { let Latency = 4;}
511def : InstRW<[CyWriteVMul], (instregex "MULv","SMULLv","UMULLv",
512                             "SQDMULLv","SQDMULHv","SQRDMULHv")>;
513
514// FMUL,FMULX,FNMUL default to WriteFMul.
515def : WriteRes<WriteFMul, [CyUnitVM]> { let Latency = 4;}
516
517def CyWriteV64Mul : SchedWriteRes<[CyUnitVM]> { let Latency = 5;}
518def : InstRW<[CyWriteV64Mul], (instrs FMULDrr,FMULv2f64,FMULv2i64_indexed,
519                               FNMULDrr,FMULX64,FMULXv2f64,FMULXv2i64_indexed)>;
520
521def CyReadVMulAcc : SchedReadAdvance<1, [CyWriteVMul, CyWriteV64Mul]>;
522def : InstRW<[CyWriteVMul, CyReadVMulAcc],
523             (instregex "MLA","MLS","SMLAL","SMLSL","UMLAL","UMLSL",
524              "SQDMLAL","SQDMLSL")>;
525
526def CyWriteSMul : SchedWriteRes<[CyUnitVM]> { let Latency = 8;}
527def CyWriteDMul : SchedWriteRes<[CyUnitVM]> { let Latency = 10;}
528def CyReadSMul : SchedReadAdvance<4, [CyWriteSMul]>;
529def CyReadDMul : SchedReadAdvance<5, [CyWriteDMul]>;
530
531def : InstRW<[CyWriteSMul, CyReadSMul],
532             (instrs FMADDSrrr,FMSUBSrrr,FNMADDSrrr,FNMSUBSrrr,
533              FMLAv2f32,FMLAv4f32,
534              FMLAv1i32_indexed,FMLAv1i64_indexed,FMLAv2i32_indexed)>;
535def : InstRW<[CyWriteDMul, CyReadDMul],
536             (instrs FMADDDrrr,FMSUBDrrr,FNMADDDrrr,FNMSUBDrrr,
537              FMLAv2f64,FMLAv2i64_indexed,
538              FMLSv2f64,FMLSv2i64_indexed)>;
539
540def CyWritePMUL : SchedWriteRes<[CyUnitVD]> { let Latency = 3; }
541def : InstRW<[CyWritePMUL], (instregex "PMULv", "PMULLv")>;
542
543//---
544// 7.9.6 Divide and Square Root
545//---
546
547// FDIV,FSQRT
548// TODO: Add 64-bit variant with 19 cycle latency.
549// TODO: Specialize FSQRT for longer latency.
550def : WriteRes<WriteFDiv, [CyUnitVD, CyUnitFloatDiv]> {
551  let Latency = 17;
552  let ResourceCycles = [2, 17];
553}
554
555def : InstRW<[CyWriteV4], (instregex "FRECPEv","FRECPXv","URECPEv","URSQRTEv")>;
556
557def WriteFRSQRTE : SchedWriteRes<[CyUnitVM]> { let Latency = 4; }
558def : InstRW<[WriteFRSQRTE], (instregex "FRSQRTEv")>;
559
560def WriteFRECPS : SchedWriteRes<[CyUnitVM]> { let Latency = 8; }
561def WriteFRSQRTS : SchedWriteRes<[CyUnitVM]> { let Latency = 10; }
562def : InstRW<[WriteFRECPS],  (instregex "FRECPSv")>;
563def : InstRW<[WriteFRSQRTS], (instregex "FRSQRTSv")>;
564
565//---
566// 7.9.7 Integer-FP Conversions
567//---
568
569// FCVT lengthen f16/s32
570def : InstRW<[WriteV], (instrs FCVTSHr,FCVTDHr,FCVTDSr)>;
571
572// FCVT,FCVTN,FCVTXN
573// SCVTF,UCVTF V,V
574// FRINT(AIMNPXZ) V,V
575def : WriteRes<WriteFCvt, [CyUnitV]> {let Latency = 4;}
576
577// SCVT/UCVT S/D, Rd = VLD5+V4: 9 cycles.
578def CyWriteCvtToFPR : WriteSequence<[WriteVLD, CyWriteV4]>;
579def : InstRW<[CyWriteCopyToFPR], (instregex "FCVT[AMNPZ][SU][SU][WX][SD]r")>;
580
581// FCVT Rd, S/D = V6+LD4: 10 cycles
582def CyWriteCvtToGPR : WriteSequence<[CyWriteV6, WriteLD]>;
583def : InstRW<[CyWriteCvtToGPR], (instregex "[SU]CVTF[SU][WX][SD]r")>;
584
585// FCVTL is a WriteV
586
587//---
588// 7.9.8-7.9.10 Cryptography, Data Transposition, Table Lookup
589//---
590
591def CyWriteCrypto2 : SchedWriteRes<[CyUnitVD]> {let Latency = 2;}
592def : InstRW<[CyWriteCrypto2], (instrs AESIMCrr, AESMCrr, SHA1Hrr,
593                                       AESDrr, AESErr, SHA1SU1rr, SHA256SU0rr,
594                                       SHA1SU0rrr)>;
595
596def CyWriteCrypto3 : SchedWriteRes<[CyUnitVD]> {let Latency = 3;}
597def : InstRW<[CyWriteCrypto3], (instrs SHA256SU1rrr)>;
598
599def CyWriteCrypto6 : SchedWriteRes<[CyUnitVD]> {let Latency = 6;}
600def : InstRW<[CyWriteCrypto6], (instrs SHA1Crrr, SHA1Mrrr, SHA1Prrr,
601                                       SHA256Hrrr,SHA256H2rrr)>;
602
603// TRN,UZP,ZUP are WriteV.
604
605// TBL,TBX are WriteV.
606
607//---
608// 7.9.11-7.9.14 Load/Store, single element and paired
609//---
610
611// Loading into the vector unit takes 5 cycles vs 4 for integer loads.
612def : WriteRes<WriteVLD, [CyUnitLS]> {
613  let Latency = 5;
614}
615
616// Store-load forwarding is 4 cycles.
617def : WriteRes<WriteVST, [CyUnitLS]> {
618  let Latency = 4;
619}
620
621// WriteVLDPair/VSTPair sequences are expanded by the target description.
622
623//---
624// 7.9.15 Load, element operations
625//---
626
627// Only the first WriteVLD and WriteAdr for writeback matches def operands.
628// Subsequent WriteVLDs consume resources. Since all loaded values have the
629// same latency, this is acceptable.
630
631// Vd is read 5 cycles after issuing the vector load.
632def : ReadAdvance<ReadVLD, 5>;
633
634def : InstRW<[WriteVLD],
635             (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
636def : InstRW<[WriteVLD, WriteAdr],
637             (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
638
639// Register writes from the load's high half are fused micro-ops.
640def : InstRW<[WriteVLD],
641             (instregex "LD1Twov(8b|4h|2s|1d)$")>;
642def : InstRW<[WriteVLD, WriteAdr],
643             (instregex "LD1Twov(8b|4h|2s|1d)_POST")>;
644def : InstRW<[WriteVLD, WriteVLD],
645             (instregex "LD1Twov(16b|8h|4s|2d)$")>;
646def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
647             (instregex "LD1Twov(16b|8h|4s|2d)_POST")>;
648
649def : InstRW<[WriteVLD, WriteVLD],
650             (instregex "LD1Threev(8b|4h|2s|1d)$")>;
651def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
652             (instregex "LD1Threev(8b|4h|2s|1d)_POST")>;
653def : InstRW<[WriteVLD, WriteVLD, WriteVLD],
654             (instregex "LD1Threev(16b|8h|4s|2d)$")>;
655def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD],
656             (instregex "LD1Threev(16b|8h|4s|2d)_POST")>;
657
658def : InstRW<[WriteVLD, WriteVLD],
659             (instregex "LD1Fourv(8b|4h|2s|1d)$")>;
660def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
661             (instregex "LD1Fourv(8b|4h|2s|1d)_POST")>;
662def : InstRW<[WriteVLD, WriteVLD, WriteVLD, WriteVLD],
663             (instregex "LD1Fourv(16b|8h|4s|2d)$")>;
664def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD, WriteVLD],
665             (instregex "LD1Fourv(16b|8h|4s|2d)_POST")>;
666
667def : InstRW<[WriteVLDShuffle, ReadVLD],
668             (instregex "LD1i(8|16|32)$")>;
669def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],
670             (instregex "LD1i(8|16|32)_POST")>;
671
672def : InstRW<[WriteVLDShuffle, ReadVLD],          (instrs LD1i64)>;
673def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],(instrs LD1i64_POST)>;
674
675def : InstRW<[WriteVLDShuffle],
676             (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
677def : InstRW<[WriteVLDShuffle, WriteAdr],
678             (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
679
680def : InstRW<[WriteVLDShuffle, WriteV],
681             (instregex "LD2Twov(8b|4h|2s)$")>;
682def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV],
683             (instregex "LD2Twov(8b|4h|2s)_POST$")>;
684def : InstRW<[WriteVLDShuffle, WriteVLDShuffle],
685             (instregex "LD2Twov(16b|8h|4s|2d)$")>;
686def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle],
687             (instregex "LD2Twov(16b|8h|4s|2d)_POST")>;
688
689def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV],
690             (instregex "LD2i(8|16|32)$")>;
691def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV],
692             (instregex "LD2i(8|16|32)_POST")>;
693def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV],
694             (instregex "LD2i64$")>;
695def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV],
696             (instregex "LD2i64_POST")>;
697
698def : InstRW<[WriteVLDShuffle, WriteV],
699             (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
700def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV],
701             (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
702
703def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV],
704             (instregex "LD3Threev(8b|4h|2s)$")>;
705def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV],
706             (instregex "LD3Threev(8b|4h|2s)_POST")>;
707def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVLDShuffle],
708             (instregex "LD3Threev(16b|8h|4s|2d)$")>;
709def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVLDShuffle],
710             (instregex "LD3Threev(16b|8h|4s|2d)_POST")>;
711
712def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV],
713             (instregex "LD3i(8|16|32)$")>;
714def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV],
715             (instregex "LD3i(8|16|32)_POST")>;
716
717def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV],
718             (instregex "LD3i64$")>;
719def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV],
720             (instregex "LD3i64_POST")>;
721
722def : InstRW<[WriteVLDShuffle, WriteV, WriteV],
723             (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)$")>;
724def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV],
725             (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)_POST")>;
726
727def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV],
728             (instrs LD3Rv1d,LD3Rv2d)>;
729def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV],
730             (instrs LD3Rv1d_POST,LD3Rv2d_POST)>;
731
732def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV],
733             (instregex "LD4Fourv(8b|4h|2s)$")>;
734def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV],
735             (instregex "LD4Fourv(8b|4h|2s)_POST")>;
736def : InstRW<[WriteVLDPairShuffle, WriteVLDPairShuffle,
737              WriteVLDPairShuffle, WriteVLDPairShuffle],
738             (instregex "LD4Fourv(16b|8h|4s|2d)$")>;
739def : InstRW<[WriteVLDPairShuffle, WriteAdr, WriteVLDPairShuffle,
740              WriteVLDPairShuffle, WriteVLDPairShuffle],
741             (instregex "LD4Fourv(16b|8h|4s|2d)_POST")>;
742
743def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV, WriteV],
744             (instregex "LD4i(8|16|32)$")>;
745def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV, WriteV],
746             (instregex "LD4i(8|16|32)_POST")>;
747
748
749def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV, WriteV],
750             (instrs LD4i64)>;
751def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV],
752             (instrs LD4i64_POST)>;
753
754def : InstRW<[WriteVLDShuffle, WriteV, WriteV, WriteV],
755             (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)$")>;
756def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV, WriteV],
757             (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)_POST")>;
758
759def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV],
760             (instrs LD4Rv1d,LD4Rv2d)>;
761def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV],
762             (instrs LD4Rv1d_POST,LD4Rv2d_POST)>;
763
764//---
765// 7.9.16 Store, element operations
766//---
767
768// Only the WriteAdr for writeback matches a def operands.
769// Subsequent WriteVLDs only consume resources.
770
771def : InstRW<[WriteVST],
772             (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
773def : InstRW<[WriteAdr, WriteVST],
774             (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
775
776def : InstRW<[WriteVSTShuffle],
777             (instregex "ST1Twov(8b|4h|2s|1d)$")>;
778def : InstRW<[WriteAdr, WriteVSTShuffle],
779             (instregex "ST1Twov(8b|4h|2s|1d)_POST")>;
780def : InstRW<[WriteVST, WriteVST],
781             (instregex "ST1Twov(16b|8h|4s|2d)$")>;
782def : InstRW<[WriteAdr, WriteVST, WriteVST],
783             (instregex "ST1Twov(16b|8h|4s|2d)_POST")>;
784
785def : InstRW<[WriteVSTShuffle, WriteVST],
786             (instregex "ST1Threev(8b|4h|2s|1d)$")>;
787def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVST],
788             (instregex "ST1Threev(8b|4h|2s|1d)_POST")>;
789def : InstRW<[WriteVST, WriteVST, WriteVST],
790             (instregex "ST1Threev(16b|8h|4s|2d)$")>;
791def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST],
792             (instregex "ST1Threev(16b|8h|4s|2d)_POST")>;
793
794def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
795             (instregex "ST1Fourv(8b|4h|2s|1d)$")>;
796def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
797             (instregex "ST1Fourv(8b|4h|2s|1d)_POST")>;
798def : InstRW<[WriteVST, WriteVST, WriteVST, WriteVST],
799             (instregex "ST1Fourv(16b|8h|4s|2d)$")>;
800def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST, WriteVST],
801             (instregex "ST1Fourv(16b|8h|4s|2d)_POST")>;
802
803def : InstRW<[WriteVSTShuffle],           (instregex "ST1i(8|16|32)$")>;
804def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST1i(8|16|32)_POST")>;
805
806def : InstRW<[WriteVSTShuffle],           (instrs ST1i64)>;
807def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST1i64_POST)>;
808
809def : InstRW<[WriteVSTShuffle],
810             (instregex "ST2Twov(8b|4h|2s)$")>;
811def : InstRW<[WriteAdr, WriteVSTShuffle],
812             (instregex "ST2Twov(8b|4h|2s)_POST")>;
813def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
814             (instregex "ST2Twov(16b|8h|4s|2d)$")>;
815def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
816             (instregex "ST2Twov(16b|8h|4s|2d)_POST")>;
817
818def : InstRW<[WriteVSTShuffle],           (instregex "ST2i(8|16|32)$")>;
819def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST2i(8|16|32)_POST")>;
820def : InstRW<[WriteVSTShuffle],           (instrs ST2i64)>;
821def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST2i64_POST)>;
822
823def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
824             (instregex "ST3Threev(8b|4h|2s)$")>;
825def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
826             (instregex "ST3Threev(8b|4h|2s)_POST")>;
827def : InstRW<[WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle],
828             (instregex "ST3Threev(16b|8h|4s|2d)$")>;
829def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle],
830             (instregex "ST3Threev(16b|8h|4s|2d)_POST")>;
831
832def : InstRW<[WriteVSTShuffle],           (instregex "ST3i(8|16|32)$")>;
833def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST3i(8|16|32)_POST")>;
834
835def :InstRW<[WriteVSTShuffle, WriteVSTShuffle],           (instrs ST3i64)>;
836def :InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64_POST)>;
837
838def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle],
839            (instregex "ST4Fourv(8b|4h|2s|1d)$")>;
840def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle],
841            (instregex "ST4Fourv(8b|4h|2s|1d)_POST")>;
842def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle,
843              WriteVSTPairShuffle, WriteVSTPairShuffle],
844             (instregex "ST4Fourv(16b|8h|4s|2d)$")>;
845def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle,
846              WriteVSTPairShuffle, WriteVSTPairShuffle],
847             (instregex "ST4Fourv(16b|8h|4s|2d)_POST")>;
848
849def : InstRW<[WriteVSTPairShuffle],           (instregex "ST4i(8|16|32)$")>;
850def : InstRW<[WriteAdr, WriteVSTPairShuffle], (instregex "ST4i(8|16|32)_POST")>;
851
852def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],          (instrs ST4i64)>;
853def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],(instrs ST4i64_POST)>;
854
855// Atomic operations are not supported.
856def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
857
858//---
859// Unused SchedRead types
860//---
861
862def : ReadAdvance<ReadI, 0>;
863def : ReadAdvance<ReadISReg, 0>;
864def : ReadAdvance<ReadIEReg, 0>;
865def : ReadAdvance<ReadIM, 0>;
866def : ReadAdvance<ReadIMA, 0>;
867def : ReadAdvance<ReadID, 0>;
868
869} // SchedModel = CycloneModel
870