1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to GAS-format ARM assembly language.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "ARMAsmPrinter.h"
16 #include "ARM.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMTargetMachine.h"
20 #include "ARMTargetObjectFile.h"
21 #include "InstPrinter/ARMInstPrinter.h"
22 #include "MCTargetDesc/ARMAddressingModes.h"
23 #include "MCTargetDesc/ARMMCExpr.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCAssembler.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCELFStreamer.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/MCInstBuilder.h"
41 #include "llvm/MC/MCObjectStreamer.h"
42 #include "llvm/MC/MCSectionMachO.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/COFF.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ELF.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/TargetParser.h"
51 #include "llvm/Support/TargetRegistry.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <cctype>
55 using namespace llvm;
56
57 #define DEBUG_TYPE "asm-printer"
58
ARMAsmPrinter(TargetMachine & TM,std::unique_ptr<MCStreamer> Streamer)59 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
60 std::unique_ptr<MCStreamer> Streamer)
61 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr),
62 InConstantPool(false), OptimizationGoals(-1) {}
63
EmitFunctionBodyEnd()64 void ARMAsmPrinter::EmitFunctionBodyEnd() {
65 // Make sure to terminate any constant pools that were at the end
66 // of the function.
67 if (!InConstantPool)
68 return;
69 InConstantPool = false;
70 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
71 }
72
EmitFunctionEntryLabel()73 void ARMAsmPrinter::EmitFunctionEntryLabel() {
74 if (AFI->isThumbFunction()) {
75 OutStreamer->EmitAssemblerFlag(MCAF_Code16);
76 OutStreamer->EmitThumbFunc(CurrentFnSym);
77 }
78
79 OutStreamer->EmitLabel(CurrentFnSym);
80 }
81
EmitXXStructor(const DataLayout & DL,const Constant * CV)82 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) {
83 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
84 assert(Size && "C++ constructor pointer had zero size!");
85
86 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
87 assert(GV && "C++ constructor pointer was not a GlobalValue!");
88
89 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
90 ARMII::MO_NO_FLAG),
91 (Subtarget->isTargetELF()
92 ? MCSymbolRefExpr::VK_ARM_TARGET1
93 : MCSymbolRefExpr::VK_None),
94 OutContext);
95
96 OutStreamer->EmitValue(E, Size);
97 }
98
99 /// runOnMachineFunction - This uses the EmitInstruction()
100 /// method to print assembly for each instruction.
101 ///
runOnMachineFunction(MachineFunction & MF)102 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
103 AFI = MF.getInfo<ARMFunctionInfo>();
104 MCP = MF.getConstantPool();
105 Subtarget = &MF.getSubtarget<ARMSubtarget>();
106
107 SetupMachineFunction(MF);
108 const Function* F = MF.getFunction();
109 const TargetMachine& TM = MF.getTarget();
110
111 // Calculate this function's optimization goal.
112 unsigned OptimizationGoal;
113 if (F->hasFnAttribute(Attribute::OptimizeNone))
114 // For best debugging illusion, speed and small size sacrificed
115 OptimizationGoal = 6;
116 else if (F->optForMinSize())
117 // Aggressively for small size, speed and debug illusion sacrificed
118 OptimizationGoal = 4;
119 else if (F->optForSize())
120 // For small size, but speed and debugging illusion preserved
121 OptimizationGoal = 3;
122 else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
123 // Aggressively for speed, small size and debug illusion sacrificed
124 OptimizationGoal = 2;
125 else if (TM.getOptLevel() > CodeGenOpt::None)
126 // For speed, but small size and good debug illusion preserved
127 OptimizationGoal = 1;
128 else // TM.getOptLevel() == CodeGenOpt::None
129 // For good debugging, but speed and small size preserved
130 OptimizationGoal = 5;
131
132 // Combine a new optimization goal with existing ones.
133 if (OptimizationGoals == -1) // uninitialized goals
134 OptimizationGoals = OptimizationGoal;
135 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
136 OptimizationGoals = 0;
137
138 if (Subtarget->isTargetCOFF()) {
139 bool Internal = F->hasInternalLinkage();
140 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
141 : COFF::IMAGE_SYM_CLASS_EXTERNAL;
142 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
143
144 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
145 OutStreamer->EmitCOFFSymbolStorageClass(Scl);
146 OutStreamer->EmitCOFFSymbolType(Type);
147 OutStreamer->EndCOFFSymbolDef();
148 }
149
150 // Emit the rest of the function body.
151 EmitFunctionBody();
152
153 // If we need V4T thumb mode Register Indirect Jump pads, emit them.
154 // These are created per function, rather than per TU, since it's
155 // relatively easy to exceed the thumb branch range within a TU.
156 if (! ThumbIndirectPads.empty()) {
157 OutStreamer->EmitAssemblerFlag(MCAF_Code16);
158 EmitAlignment(1);
159 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
160 OutStreamer->EmitLabel(ThumbIndirectPads[i].second);
161 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
162 .addReg(ThumbIndirectPads[i].first)
163 // Add predicate operands.
164 .addImm(ARMCC::AL)
165 .addReg(0));
166 }
167 ThumbIndirectPads.clear();
168 }
169
170 // We didn't modify anything.
171 return false;
172 }
173
printOperand(const MachineInstr * MI,int OpNum,raw_ostream & O)174 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
175 raw_ostream &O) {
176 const MachineOperand &MO = MI->getOperand(OpNum);
177 unsigned TF = MO.getTargetFlags();
178
179 switch (MO.getType()) {
180 default: llvm_unreachable("<unknown operand type>");
181 case MachineOperand::MO_Register: {
182 unsigned Reg = MO.getReg();
183 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
184 assert(!MO.getSubReg() && "Subregs should be eliminated!");
185 if(ARM::GPRPairRegClass.contains(Reg)) {
186 const MachineFunction &MF = *MI->getParent()->getParent();
187 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
188 Reg = TRI->getSubReg(Reg, ARM::gsub_0);
189 }
190 O << ARMInstPrinter::getRegisterName(Reg);
191 break;
192 }
193 case MachineOperand::MO_Immediate: {
194 int64_t Imm = MO.getImm();
195 O << '#';
196 if (TF == ARMII::MO_LO16)
197 O << ":lower16:";
198 else if (TF == ARMII::MO_HI16)
199 O << ":upper16:";
200 O << Imm;
201 break;
202 }
203 case MachineOperand::MO_MachineBasicBlock:
204 MO.getMBB()->getSymbol()->print(O, MAI);
205 return;
206 case MachineOperand::MO_GlobalAddress: {
207 const GlobalValue *GV = MO.getGlobal();
208 if (TF & ARMII::MO_LO16)
209 O << ":lower16:";
210 else if (TF & ARMII::MO_HI16)
211 O << ":upper16:";
212 GetARMGVSymbol(GV, TF)->print(O, MAI);
213
214 printOffset(MO.getOffset(), O);
215 break;
216 }
217 case MachineOperand::MO_ConstantPoolIndex:
218 GetCPISymbol(MO.getIndex())->print(O, MAI);
219 break;
220 }
221 }
222
223 //===--------------------------------------------------------------------===//
224
225 MCSymbol *ARMAsmPrinter::
GetARMJTIPICJumpTableLabel(unsigned uid) const226 GetARMJTIPICJumpTableLabel(unsigned uid) const {
227 const DataLayout &DL = getDataLayout();
228 SmallString<60> Name;
229 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
230 << getFunctionNumber() << '_' << uid;
231 return OutContext.getOrCreateSymbol(Name);
232 }
233
PrintAsmOperand(const MachineInstr * MI,unsigned OpNum,unsigned AsmVariant,const char * ExtraCode,raw_ostream & O)234 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
235 unsigned AsmVariant, const char *ExtraCode,
236 raw_ostream &O) {
237 // Does this asm operand have a single letter operand modifier?
238 if (ExtraCode && ExtraCode[0]) {
239 if (ExtraCode[1] != 0) return true; // Unknown modifier.
240
241 switch (ExtraCode[0]) {
242 default:
243 // See if this is a generic print operand
244 return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
245 case 'a': // Print as a memory address.
246 if (MI->getOperand(OpNum).isReg()) {
247 O << "["
248 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
249 << "]";
250 return false;
251 }
252 // Fallthrough
253 case 'c': // Don't print "#" before an immediate operand.
254 if (!MI->getOperand(OpNum).isImm())
255 return true;
256 O << MI->getOperand(OpNum).getImm();
257 return false;
258 case 'P': // Print a VFP double precision register.
259 case 'q': // Print a NEON quad precision register.
260 printOperand(MI, OpNum, O);
261 return false;
262 case 'y': // Print a VFP single precision register as indexed double.
263 if (MI->getOperand(OpNum).isReg()) {
264 unsigned Reg = MI->getOperand(OpNum).getReg();
265 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
266 // Find the 'd' register that has this 's' register as a sub-register,
267 // and determine the lane number.
268 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
269 if (!ARM::DPRRegClass.contains(*SR))
270 continue;
271 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
272 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
273 return false;
274 }
275 }
276 return true;
277 case 'B': // Bitwise inverse of integer or symbol without a preceding #.
278 if (!MI->getOperand(OpNum).isImm())
279 return true;
280 O << ~(MI->getOperand(OpNum).getImm());
281 return false;
282 case 'L': // The low 16 bits of an immediate constant.
283 if (!MI->getOperand(OpNum).isImm())
284 return true;
285 O << (MI->getOperand(OpNum).getImm() & 0xffff);
286 return false;
287 case 'M': { // A register range suitable for LDM/STM.
288 if (!MI->getOperand(OpNum).isReg())
289 return true;
290 const MachineOperand &MO = MI->getOperand(OpNum);
291 unsigned RegBegin = MO.getReg();
292 // This takes advantage of the 2 operand-ness of ldm/stm and that we've
293 // already got the operands in registers that are operands to the
294 // inline asm statement.
295 O << "{";
296 if (ARM::GPRPairRegClass.contains(RegBegin)) {
297 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
298 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
299 O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
300 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
301 }
302 O << ARMInstPrinter::getRegisterName(RegBegin);
303
304 // FIXME: The register allocator not only may not have given us the
305 // registers in sequence, but may not be in ascending registers. This
306 // will require changes in the register allocator that'll need to be
307 // propagated down here if the operands change.
308 unsigned RegOps = OpNum + 1;
309 while (MI->getOperand(RegOps).isReg()) {
310 O << ", "
311 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
312 RegOps++;
313 }
314
315 O << "}";
316
317 return false;
318 }
319 case 'R': // The most significant register of a pair.
320 case 'Q': { // The least significant register of a pair.
321 if (OpNum == 0)
322 return true;
323 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
324 if (!FlagsOP.isImm())
325 return true;
326 unsigned Flags = FlagsOP.getImm();
327
328 // This operand may not be the one that actually provides the register. If
329 // it's tied to a previous one then we should refer instead to that one
330 // for registers and their classes.
331 unsigned TiedIdx;
332 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
333 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
334 unsigned OpFlags = MI->getOperand(OpNum).getImm();
335 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
336 }
337 Flags = MI->getOperand(OpNum).getImm();
338
339 // Later code expects OpNum to be pointing at the register rather than
340 // the flags.
341 OpNum += 1;
342 }
343
344 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
345 unsigned RC;
346 InlineAsm::hasRegClassConstraint(Flags, RC);
347 if (RC == ARM::GPRPairRegClassID) {
348 if (NumVals != 1)
349 return true;
350 const MachineOperand &MO = MI->getOperand(OpNum);
351 if (!MO.isReg())
352 return true;
353 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
354 unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
355 ARM::gsub_0 : ARM::gsub_1);
356 O << ARMInstPrinter::getRegisterName(Reg);
357 return false;
358 }
359 if (NumVals != 2)
360 return true;
361 unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
362 if (RegOp >= MI->getNumOperands())
363 return true;
364 const MachineOperand &MO = MI->getOperand(RegOp);
365 if (!MO.isReg())
366 return true;
367 unsigned Reg = MO.getReg();
368 O << ARMInstPrinter::getRegisterName(Reg);
369 return false;
370 }
371
372 case 'e': // The low doubleword register of a NEON quad register.
373 case 'f': { // The high doubleword register of a NEON quad register.
374 if (!MI->getOperand(OpNum).isReg())
375 return true;
376 unsigned Reg = MI->getOperand(OpNum).getReg();
377 if (!ARM::QPRRegClass.contains(Reg))
378 return true;
379 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
380 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
381 ARM::dsub_0 : ARM::dsub_1);
382 O << ARMInstPrinter::getRegisterName(SubReg);
383 return false;
384 }
385
386 // This modifier is not yet supported.
387 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
388 return true;
389 case 'H': { // The highest-numbered register of a pair.
390 const MachineOperand &MO = MI->getOperand(OpNum);
391 if (!MO.isReg())
392 return true;
393 const MachineFunction &MF = *MI->getParent()->getParent();
394 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
395 unsigned Reg = MO.getReg();
396 if(!ARM::GPRPairRegClass.contains(Reg))
397 return false;
398 Reg = TRI->getSubReg(Reg, ARM::gsub_1);
399 O << ARMInstPrinter::getRegisterName(Reg);
400 return false;
401 }
402 }
403 }
404
405 printOperand(MI, OpNum, O);
406 return false;
407 }
408
PrintAsmMemoryOperand(const MachineInstr * MI,unsigned OpNum,unsigned AsmVariant,const char * ExtraCode,raw_ostream & O)409 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
410 unsigned OpNum, unsigned AsmVariant,
411 const char *ExtraCode,
412 raw_ostream &O) {
413 // Does this asm operand have a single letter operand modifier?
414 if (ExtraCode && ExtraCode[0]) {
415 if (ExtraCode[1] != 0) return true; // Unknown modifier.
416
417 switch (ExtraCode[0]) {
418 case 'A': // A memory operand for a VLD1/VST1 instruction.
419 default: return true; // Unknown modifier.
420 case 'm': // The base register of a memory operand.
421 if (!MI->getOperand(OpNum).isReg())
422 return true;
423 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
424 return false;
425 }
426 }
427
428 const MachineOperand &MO = MI->getOperand(OpNum);
429 assert(MO.isReg() && "unexpected inline asm memory operand");
430 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
431 return false;
432 }
433
isThumb(const MCSubtargetInfo & STI)434 static bool isThumb(const MCSubtargetInfo& STI) {
435 return STI.getFeatureBits()[ARM::ModeThumb];
436 }
437
emitInlineAsmEnd(const MCSubtargetInfo & StartInfo,const MCSubtargetInfo * EndInfo) const438 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
439 const MCSubtargetInfo *EndInfo) const {
440 // If either end mode is unknown (EndInfo == NULL) or different than
441 // the start mode, then restore the start mode.
442 const bool WasThumb = isThumb(StartInfo);
443 if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
444 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
445 }
446 }
447
EmitStartOfAsmFile(Module & M)448 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
449 const Triple &TT = TM.getTargetTriple();
450 // Use unified assembler syntax.
451 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified);
452
453 // Emit ARM Build Attributes
454 if (TT.isOSBinFormatELF())
455 emitAttributes();
456
457 // Use the triple's architecture and subarchitecture to determine
458 // if we're thumb for the purposes of the top level code16 assembler
459 // flag.
460 bool isThumb = TT.getArch() == Triple::thumb ||
461 TT.getArch() == Triple::thumbeb ||
462 TT.getSubArch() == Triple::ARMSubArch_v7m ||
463 TT.getSubArch() == Triple::ARMSubArch_v6m;
464 if (!M.getModuleInlineAsm().empty() && isThumb)
465 OutStreamer->EmitAssemblerFlag(MCAF_Code16);
466 }
467
468 static void
emitNonLazySymbolPointer(MCStreamer & OutStreamer,MCSymbol * StubLabel,MachineModuleInfoImpl::StubValueTy & MCSym)469 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
470 MachineModuleInfoImpl::StubValueTy &MCSym) {
471 // L_foo$stub:
472 OutStreamer.EmitLabel(StubLabel);
473 // .indirect_symbol _foo
474 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
475
476 if (MCSym.getInt())
477 // External to current translation unit.
478 OutStreamer.EmitIntValue(0, 4/*size*/);
479 else
480 // Internal to current translation unit.
481 //
482 // When we place the LSDA into the TEXT section, the type info
483 // pointers need to be indirect and pc-rel. We accomplish this by
484 // using NLPs; however, sometimes the types are local to the file.
485 // We need to fill in the value for the NLP in those cases.
486 OutStreamer.EmitValue(
487 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
488 4 /*size*/);
489 }
490
491
EmitEndOfAsmFile(Module & M)492 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
493 const Triple &TT = TM.getTargetTriple();
494 if (TT.isOSBinFormatMachO()) {
495 // All darwin targets use mach-o.
496 const TargetLoweringObjectFileMachO &TLOFMacho =
497 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
498 MachineModuleInfoMachO &MMIMacho =
499 MMI->getObjFileInfo<MachineModuleInfoMachO>();
500
501 // Output non-lazy-pointers for external and common global variables.
502 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
503
504 if (!Stubs.empty()) {
505 // Switch with ".non_lazy_symbol_pointer" directive.
506 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
507 EmitAlignment(2);
508
509 for (auto &Stub : Stubs)
510 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
511
512 Stubs.clear();
513 OutStreamer->AddBlankLine();
514 }
515
516 Stubs = MMIMacho.GetThreadLocalGVStubList();
517 if (!Stubs.empty()) {
518 // Switch with ".non_lazy_symbol_pointer" directive.
519 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection());
520 EmitAlignment(2);
521
522 for (auto &Stub : Stubs)
523 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
524
525 Stubs.clear();
526 OutStreamer->AddBlankLine();
527 }
528
529 // Funny Darwin hack: This flag tells the linker that no global symbols
530 // contain code that falls through to other global symbols (e.g. the obvious
531 // implementation of multiple entry points). If this doesn't occur, the
532 // linker can safely perform dead code stripping. Since LLVM never
533 // generates code that does this, it is always safe to set.
534 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
535 }
536
537 if (TT.isOSBinFormatCOFF()) {
538 const auto &TLOF =
539 static_cast<const TargetLoweringObjectFileCOFF &>(getObjFileLowering());
540
541 std::string Flags;
542 raw_string_ostream OS(Flags);
543
544 for (const auto &Function : M)
545 TLOF.emitLinkerFlagsForGlobal(OS, &Function, *Mang);
546 for (const auto &Global : M.globals())
547 TLOF.emitLinkerFlagsForGlobal(OS, &Global, *Mang);
548 for (const auto &Alias : M.aliases())
549 TLOF.emitLinkerFlagsForGlobal(OS, &Alias, *Mang);
550
551 OS.flush();
552
553 // Output collected flags
554 if (!Flags.empty()) {
555 OutStreamer->SwitchSection(TLOF.getDrectveSection());
556 OutStreamer->EmitBytes(Flags);
557 }
558 }
559
560 // The last attribute to be emitted is ABI_optimization_goals
561 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
562 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
563
564 if (OptimizationGoals > 0 &&
565 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
566 Subtarget->isTargetMuslAEABI()))
567 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
568 OptimizationGoals = -1;
569
570 ATS.finishAttributeSection();
571 }
572
isV8M(const ARMSubtarget * Subtarget)573 static bool isV8M(const ARMSubtarget *Subtarget) {
574 // Note that v8M Baseline is a subset of v6T2!
575 return (Subtarget->hasV8MBaselineOps() && !Subtarget->hasV6T2Ops()) ||
576 Subtarget->hasV8MMainlineOps();
577 }
578
579 //===----------------------------------------------------------------------===//
580 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
581 // FIXME:
582 // The following seem like one-off assembler flags, but they actually need
583 // to appear in the .ARM.attributes section in ELF.
584 // Instead of subclassing the MCELFStreamer, we do the work here.
585
getArchForCPU(StringRef CPU,const ARMSubtarget * Subtarget)586 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU,
587 const ARMSubtarget *Subtarget) {
588 if (CPU == "xscale")
589 return ARMBuildAttrs::v5TEJ;
590
591 if (Subtarget->hasV8Ops())
592 return ARMBuildAttrs::v8_A;
593 else if (Subtarget->hasV8MMainlineOps())
594 return ARMBuildAttrs::v8_M_Main;
595 else if (Subtarget->hasV7Ops()) {
596 if (Subtarget->isMClass() && Subtarget->hasDSP())
597 return ARMBuildAttrs::v7E_M;
598 return ARMBuildAttrs::v7;
599 } else if (Subtarget->hasV6T2Ops())
600 return ARMBuildAttrs::v6T2;
601 else if (Subtarget->hasV8MBaselineOps())
602 return ARMBuildAttrs::v8_M_Base;
603 else if (Subtarget->hasV6MOps())
604 return ARMBuildAttrs::v6S_M;
605 else if (Subtarget->hasV6Ops())
606 return ARMBuildAttrs::v6;
607 else if (Subtarget->hasV5TEOps())
608 return ARMBuildAttrs::v5TE;
609 else if (Subtarget->hasV5TOps())
610 return ARMBuildAttrs::v5T;
611 else if (Subtarget->hasV4TOps())
612 return ARMBuildAttrs::v4T;
613 else
614 return ARMBuildAttrs::v4;
615 }
616
emitAttributes()617 void ARMAsmPrinter::emitAttributes() {
618 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
619 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
620
621 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
622
623 ATS.switchVendor("aeabi");
624
625 // Compute ARM ELF Attributes based on the default subtarget that
626 // we'd have constructed. The existing ARM behavior isn't LTO clean
627 // anyhow.
628 // FIXME: For ifunc related functions we could iterate over and look
629 // for a feature string that doesn't match the default one.
630 const Triple &TT = TM.getTargetTriple();
631 StringRef CPU = TM.getTargetCPU();
632 StringRef FS = TM.getTargetFeatureString();
633 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
634 if (!FS.empty()) {
635 if (!ArchFS.empty())
636 ArchFS = (Twine(ArchFS) + "," + FS).str();
637 else
638 ArchFS = FS;
639 }
640 const ARMBaseTargetMachine &ATM =
641 static_cast<const ARMBaseTargetMachine &>(TM);
642 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());
643
644 const std::string &CPUString = STI.getCPUString();
645
646 if (!StringRef(CPUString).startswith("generic")) {
647 // FIXME: remove krait check when GNU tools support krait cpu
648 if (STI.isKrait()) {
649 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9");
650 // We consider krait as a "cortex-a9" + hwdiv CPU
651 // Enable hwdiv through ".arch_extension idiv"
652 if (STI.hasDivide() || STI.hasDivideInARMMode())
653 ATS.emitArchExtension(ARM::AEK_HWDIV | ARM::AEK_HWDIVARM);
654 } else
655 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
656 }
657
658 ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI));
659
660 // Tag_CPU_arch_profile must have the default value of 0 when "Architecture
661 // profile is not applicable (e.g. pre v7, or cross-profile code)".
662 if (STI.hasV7Ops() || isV8M(&STI)) {
663 if (STI.isAClass()) {
664 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
665 ARMBuildAttrs::ApplicationProfile);
666 } else if (STI.isRClass()) {
667 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
668 ARMBuildAttrs::RealTimeProfile);
669 } else if (STI.isMClass()) {
670 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
671 ARMBuildAttrs::MicroControllerProfile);
672 }
673 }
674
675 ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use,
676 STI.hasARMOps() ? ARMBuildAttrs::Allowed
677 : ARMBuildAttrs::Not_Allowed);
678 if (isV8M(&STI)) {
679 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
680 ARMBuildAttrs::AllowThumbDerived);
681 } else if (STI.isThumb1Only()) {
682 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed);
683 } else if (STI.hasThumb2()) {
684 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
685 ARMBuildAttrs::AllowThumb32);
686 }
687
688 if (STI.hasNEON()) {
689 /* NEON is not exactly a VFP architecture, but GAS emit one of
690 * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
691 if (STI.hasFPARMv8()) {
692 if (STI.hasCrypto())
693 ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8);
694 else
695 ATS.emitFPU(ARM::FK_NEON_FP_ARMV8);
696 } else if (STI.hasVFP4())
697 ATS.emitFPU(ARM::FK_NEON_VFPV4);
698 else
699 ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON);
700 // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
701 if (STI.hasV8Ops())
702 ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
703 STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a:
704 ARMBuildAttrs::AllowNeonARMv8);
705 } else {
706 if (STI.hasFPARMv8())
707 // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one
708 // FPU, but there are two different names for it depending on the CPU.
709 ATS.emitFPU(STI.hasD16()
710 ? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16)
711 : ARM::FK_FP_ARMV8);
712 else if (STI.hasVFP4())
713 ATS.emitFPU(STI.hasD16()
714 ? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16)
715 : ARM::FK_VFPV4);
716 else if (STI.hasVFP3())
717 ATS.emitFPU(STI.hasD16()
718 // +d16
719 ? (STI.isFPOnlySP()
720 ? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD)
721 : (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16))
722 // -d16
723 : (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3));
724 else if (STI.hasVFP2())
725 ATS.emitFPU(ARM::FK_VFPV2);
726 }
727
728 if (isPositionIndependent()) {
729 // PIC specific attributes.
730 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
731 ARMBuildAttrs::AddressRWPCRel);
732 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
733 ARMBuildAttrs::AddressROPCRel);
734 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
735 ARMBuildAttrs::AddressGOT);
736 } else {
737 // Allow direct addressing of imported data for all other relocation models.
738 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
739 ARMBuildAttrs::AddressDirect);
740 }
741
742 // Signal various FP modes.
743 if (!TM.Options.UnsafeFPMath) {
744 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
745 ARMBuildAttrs::IEEEDenormals);
746 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
747
748 // If the user has permitted this code to choose the IEEE 754
749 // rounding at run-time, emit the rounding attribute.
750 if (TM.Options.HonorSignDependentRoundingFPMathOption)
751 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
752 } else {
753 if (!STI.hasVFP2()) {
754 // When the target doesn't have an FPU (by design or
755 // intention), the assumptions made on the software support
756 // mirror that of the equivalent hardware support *if it
757 // existed*. For v7 and better we indicate that denormals are
758 // flushed preserving sign, and for V6 we indicate that
759 // denormals are flushed to positive zero.
760 if (STI.hasV7Ops())
761 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
762 ARMBuildAttrs::PreserveFPSign);
763 } else if (STI.hasVFP3()) {
764 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
765 // the sign bit of the zero matches the sign bit of the input or
766 // result that is being flushed to zero.
767 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
768 ARMBuildAttrs::PreserveFPSign);
769 }
770 // For VFPv2 implementations it is implementation defined as
771 // to whether denormals are flushed to positive zero or to
772 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
773 // LLVM has chosen to flush this to positive zero (most likely for
774 // GCC compatibility), so that's the chosen value here (the
775 // absence of its emission implies zero).
776 }
777
778 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
779 // equivalent of GCC's -ffinite-math-only flag.
780 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
781 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
782 ARMBuildAttrs::Allowed);
783 else
784 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
785 ARMBuildAttrs::AllowIEE754);
786
787 if (STI.allowsUnalignedMem())
788 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
789 ARMBuildAttrs::Allowed);
790 else
791 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
792 ARMBuildAttrs::Not_Allowed);
793
794 // FIXME: add more flags to ARMBuildAttributes.h
795 // 8-bytes alignment stuff.
796 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
797 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
798
799 // ABI_HardFP_use attribute to indicate single precision FP.
800 if (STI.isFPOnlySP())
801 ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
802 ARMBuildAttrs::HardFPSinglePrecision);
803
804 // Hard float. Use both S and D registers and conform to AAPCS-VFP.
805 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
806 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
807
808 // FIXME: Should we signal R9 usage?
809
810 if (STI.hasFP16())
811 ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
812
813 // FIXME: To support emitting this build attribute as GCC does, the
814 // -mfp16-format option and associated plumbing must be
815 // supported. For now the __fp16 type is exposed by default, so this
816 // attribute should be emitted with value 1.
817 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
818 ARMBuildAttrs::FP16FormatIEEE);
819
820 if (STI.hasMPExtension())
821 ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
822
823 // Hardware divide in ARM mode is part of base arch, starting from ARMv8.
824 // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
825 // It is not possible to produce DisallowDIV: if hwdiv is present in the base
826 // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
827 // AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
828 // otherwise, the default value (AllowDIVIfExists) applies.
829 if (STI.hasDivideInARMMode() && !STI.hasV8Ops())
830 ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
831
832 if (STI.hasDSP() && isV8M(&STI))
833 ATS.emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed);
834
835 if (MMI) {
836 if (const Module *SourceModule = MMI->getModule()) {
837 // ABI_PCS_wchar_t to indicate wchar_t width
838 // FIXME: There is no way to emit value 0 (wchar_t prohibited).
839 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
840 SourceModule->getModuleFlag("wchar_size"))) {
841 int WCharWidth = WCharWidthValue->getZExtValue();
842 assert((WCharWidth == 2 || WCharWidth == 4) &&
843 "wchar_t width must be 2 or 4 bytes");
844 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
845 }
846
847 // ABI_enum_size to indicate enum width
848 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
849 // (all enums contain a value needing 32 bits to encode).
850 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
851 SourceModule->getModuleFlag("min_enum_size"))) {
852 int EnumWidth = EnumWidthValue->getZExtValue();
853 assert((EnumWidth == 1 || EnumWidth == 4) &&
854 "Minimum enum width must be 1 or 4 bytes");
855 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
856 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
857 }
858 }
859 }
860
861 // TODO: We currently only support either reserving the register, or treating
862 // it as another callee-saved register, but not as SB or a TLS pointer; It
863 // would instead be nicer to push this from the frontend as metadata, as we do
864 // for the wchar and enum size tags
865 if (STI.isR9Reserved())
866 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9Reserved);
867 else
868 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9IsGPR);
869
870 if (STI.hasTrustZone() && STI.hasVirtualization())
871 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
872 ARMBuildAttrs::AllowTZVirtualization);
873 else if (STI.hasTrustZone())
874 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
875 ARMBuildAttrs::AllowTZ);
876 else if (STI.hasVirtualization())
877 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
878 ARMBuildAttrs::AllowVirtualization);
879 }
880
881 //===----------------------------------------------------------------------===//
882
getPICLabel(const char * Prefix,unsigned FunctionNumber,unsigned LabelId,MCContext & Ctx)883 static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
884 unsigned LabelId, MCContext &Ctx) {
885
886 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
887 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
888 return Label;
889 }
890
891 static MCSymbolRefExpr::VariantKind
getModifierVariantKind(ARMCP::ARMCPModifier Modifier)892 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
893 switch (Modifier) {
894 case ARMCP::no_modifier:
895 return MCSymbolRefExpr::VK_None;
896 case ARMCP::TLSGD:
897 return MCSymbolRefExpr::VK_TLSGD;
898 case ARMCP::TPOFF:
899 return MCSymbolRefExpr::VK_TPOFF;
900 case ARMCP::GOTTPOFF:
901 return MCSymbolRefExpr::VK_GOTTPOFF;
902 case ARMCP::GOT_PREL:
903 return MCSymbolRefExpr::VK_ARM_GOT_PREL;
904 case ARMCP::SECREL:
905 return MCSymbolRefExpr::VK_SECREL;
906 }
907 llvm_unreachable("Invalid ARMCPModifier!");
908 }
909
GetARMGVSymbol(const GlobalValue * GV,unsigned char TargetFlags)910 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
911 unsigned char TargetFlags) {
912 if (Subtarget->isTargetMachO()) {
913 bool IsIndirect =
914 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV);
915
916 if (!IsIndirect)
917 return getSymbol(GV);
918
919 // FIXME: Remove this when Darwin transition to @GOT like syntax.
920 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
921 MachineModuleInfoMachO &MMIMachO =
922 MMI->getObjFileInfo<MachineModuleInfoMachO>();
923 MachineModuleInfoImpl::StubValueTy &StubSym =
924 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym)
925 : MMIMachO.getGVStubEntry(MCSym);
926
927 if (!StubSym.getPointer())
928 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
929 !GV->hasInternalLinkage());
930 return MCSym;
931 } else if (Subtarget->isTargetCOFF()) {
932 assert(Subtarget->isTargetWindows() &&
933 "Windows is the only supported COFF target");
934
935 bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT);
936 if (!IsIndirect)
937 return getSymbol(GV);
938
939 SmallString<128> Name;
940 Name = "__imp_";
941 getNameWithPrefix(Name, GV);
942
943 return OutContext.getOrCreateSymbol(Name);
944 } else if (Subtarget->isTargetELF()) {
945 return getSymbol(GV);
946 }
947 llvm_unreachable("unexpected target");
948 }
949
950 void ARMAsmPrinter::
EmitMachineConstantPoolValue(MachineConstantPoolValue * MCPV)951 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
952 const DataLayout &DL = getDataLayout();
953 int Size = DL.getTypeAllocSize(MCPV->getType());
954
955 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
956
957 MCSymbol *MCSym;
958 if (ACPV->isLSDA()) {
959 MCSym = getCurExceptionSym();
960 } else if (ACPV->isBlockAddress()) {
961 const BlockAddress *BA =
962 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
963 MCSym = GetBlockAddressSymbol(BA);
964 } else if (ACPV->isGlobalValue()) {
965 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
966
967 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
968 // flag the global as MO_NONLAZY.
969 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
970 MCSym = GetARMGVSymbol(GV, TF);
971 } else if (ACPV->isMachineBasicBlock()) {
972 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
973 MCSym = MBB->getSymbol();
974 } else {
975 assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
976 const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
977 MCSym = GetExternalSymbolSymbol(Sym);
978 }
979
980 // Create an MCSymbol for the reference.
981 const MCExpr *Expr =
982 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
983 OutContext);
984
985 if (ACPV->getPCAdjustment()) {
986 MCSymbol *PCLabel =
987 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
988 ACPV->getLabelId(), OutContext);
989 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
990 PCRelExpr =
991 MCBinaryExpr::createAdd(PCRelExpr,
992 MCConstantExpr::create(ACPV->getPCAdjustment(),
993 OutContext),
994 OutContext);
995 if (ACPV->mustAddCurrentAddress()) {
996 // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
997 // label, so just emit a local label end reference that instead.
998 MCSymbol *DotSym = OutContext.createTempSymbol();
999 OutStreamer->EmitLabel(DotSym);
1000 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
1001 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
1002 }
1003 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
1004 }
1005 OutStreamer->EmitValue(Expr, Size);
1006 }
1007
EmitJumpTableAddrs(const MachineInstr * MI)1008 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) {
1009 const MachineOperand &MO1 = MI->getOperand(1);
1010 unsigned JTI = MO1.getIndex();
1011
1012 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
1013 // ARM mode tables.
1014 EmitAlignment(2);
1015
1016 // Emit a label for the jump table.
1017 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1018 OutStreamer->EmitLabel(JTISymbol);
1019
1020 // Mark the jump table as data-in-code.
1021 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1022
1023 // Emit each entry of the table.
1024 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1025 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1026 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1027
1028 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
1029 MachineBasicBlock *MBB = JTBBs[i];
1030 // Construct an MCExpr for the entry. We want a value of the form:
1031 // (BasicBlockAddr - TableBeginAddr)
1032 //
1033 // For example, a table with entries jumping to basic blocks BB0 and BB1
1034 // would look like:
1035 // LJTI_0_0:
1036 // .word (LBB0 - LJTI_0_0)
1037 // .word (LBB1 - LJTI_0_0)
1038 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1039
1040 if (isPositionIndependent())
1041 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
1042 OutContext),
1043 OutContext);
1044 // If we're generating a table of Thumb addresses in static relocation
1045 // model, we need to add one to keep interworking correctly.
1046 else if (AFI->isThumbFunction())
1047 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
1048 OutContext);
1049 OutStreamer->EmitValue(Expr, 4);
1050 }
1051 // Mark the end of jump table data-in-code region.
1052 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1053 }
1054
EmitJumpTableInsts(const MachineInstr * MI)1055 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) {
1056 const MachineOperand &MO1 = MI->getOperand(1);
1057 unsigned JTI = MO1.getIndex();
1058
1059 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1060 OutStreamer->EmitLabel(JTISymbol);
1061
1062 // Emit each entry of the table.
1063 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1064 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1065 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1066
1067 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
1068 MachineBasicBlock *MBB = JTBBs[i];
1069 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1070 OutContext);
1071 // If this isn't a TBB or TBH, the entries are direct branch instructions.
1072 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
1073 .addExpr(MBBSymbolExpr)
1074 .addImm(ARMCC::AL)
1075 .addReg(0));
1076 }
1077 }
1078
EmitJumpTableTBInst(const MachineInstr * MI,unsigned OffsetWidth)1079 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI,
1080 unsigned OffsetWidth) {
1081 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
1082 const MachineOperand &MO1 = MI->getOperand(1);
1083 unsigned JTI = MO1.getIndex();
1084
1085 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1086 OutStreamer->EmitLabel(JTISymbol);
1087
1088 // Emit each entry of the table.
1089 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1090 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1091 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1092
1093 // Mark the jump table as data-in-code.
1094 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
1095 : MCDR_DataRegionJT16);
1096
1097 for (auto MBB : JTBBs) {
1098 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1099 OutContext);
1100 // Otherwise it's an offset from the dispatch instruction. Construct an
1101 // MCExpr for the entry. We want a value of the form:
1102 // (BasicBlockAddr - TBBInstAddr + 4) / 2
1103 //
1104 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
1105 // would look like:
1106 // LJTI_0_0:
1107 // .byte (LBB0 - (LCPI0_0 + 4)) / 2
1108 // .byte (LBB1 - (LCPI0_0 + 4)) / 2
1109 // where LCPI0_0 is a label defined just before the TBB instruction using
1110 // this table.
1111 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
1112 const MCExpr *Expr = MCBinaryExpr::createAdd(
1113 MCSymbolRefExpr::create(TBInstPC, OutContext),
1114 MCConstantExpr::create(4, OutContext), OutContext);
1115 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
1116 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
1117 OutContext);
1118 OutStreamer->EmitValue(Expr, OffsetWidth);
1119 }
1120 // Mark the end of jump table data-in-code region. 32-bit offsets use
1121 // actual branch instructions here, so we don't mark those as a data-region
1122 // at all.
1123 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1124
1125 // Make sure the next instruction is 2-byte aligned.
1126 EmitAlignment(1);
1127 }
1128
EmitUnwindingInstruction(const MachineInstr * MI)1129 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1130 assert(MI->getFlag(MachineInstr::FrameSetup) &&
1131 "Only instruction which are involved into frame setup code are allowed");
1132
1133 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1134 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1135 const MachineFunction &MF = *MI->getParent()->getParent();
1136 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1137 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
1138
1139 unsigned FramePtr = RegInfo->getFrameRegister(MF);
1140 unsigned Opc = MI->getOpcode();
1141 unsigned SrcReg, DstReg;
1142
1143 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
1144 // Two special cases:
1145 // 1) tPUSH does not have src/dst regs.
1146 // 2) for Thumb1 code we sometimes materialize the constant via constpool
1147 // load. Yes, this is pretty fragile, but for now I don't see better
1148 // way... :(
1149 SrcReg = DstReg = ARM::SP;
1150 } else {
1151 SrcReg = MI->getOperand(1).getReg();
1152 DstReg = MI->getOperand(0).getReg();
1153 }
1154
1155 // Try to figure out the unwinding opcode out of src / dst regs.
1156 if (MI->mayStore()) {
1157 // Register saves.
1158 assert(DstReg == ARM::SP &&
1159 "Only stack pointer as a destination reg is supported");
1160
1161 SmallVector<unsigned, 4> RegList;
1162 // Skip src & dst reg, and pred ops.
1163 unsigned StartOp = 2 + 2;
1164 // Use all the operands.
1165 unsigned NumOffset = 0;
1166
1167 switch (Opc) {
1168 default:
1169 MI->dump();
1170 llvm_unreachable("Unsupported opcode for unwinding information");
1171 case ARM::tPUSH:
1172 // Special case here: no src & dst reg, but two extra imp ops.
1173 StartOp = 2; NumOffset = 2;
1174 case ARM::STMDB_UPD:
1175 case ARM::t2STMDB_UPD:
1176 case ARM::VSTMDDB_UPD:
1177 assert(SrcReg == ARM::SP &&
1178 "Only stack pointer as a source reg is supported");
1179 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1180 i != NumOps; ++i) {
1181 const MachineOperand &MO = MI->getOperand(i);
1182 // Actually, there should never be any impdef stuff here. Skip it
1183 // temporary to workaround PR11902.
1184 if (MO.isImplicit())
1185 continue;
1186 RegList.push_back(MO.getReg());
1187 }
1188 break;
1189 case ARM::STR_PRE_IMM:
1190 case ARM::STR_PRE_REG:
1191 case ARM::t2STR_PRE:
1192 assert(MI->getOperand(2).getReg() == ARM::SP &&
1193 "Only stack pointer as a source reg is supported");
1194 RegList.push_back(SrcReg);
1195 break;
1196 }
1197 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM)
1198 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1199 } else {
1200 // Changes of stack / frame pointer.
1201 if (SrcReg == ARM::SP) {
1202 int64_t Offset = 0;
1203 switch (Opc) {
1204 default:
1205 MI->dump();
1206 llvm_unreachable("Unsupported opcode for unwinding information");
1207 case ARM::MOVr:
1208 case ARM::tMOVr:
1209 Offset = 0;
1210 break;
1211 case ARM::ADDri:
1212 case ARM::t2ADDri:
1213 Offset = -MI->getOperand(2).getImm();
1214 break;
1215 case ARM::SUBri:
1216 case ARM::t2SUBri:
1217 Offset = MI->getOperand(2).getImm();
1218 break;
1219 case ARM::tSUBspi:
1220 Offset = MI->getOperand(2).getImm()*4;
1221 break;
1222 case ARM::tADDspi:
1223 case ARM::tADDrSPi:
1224 Offset = -MI->getOperand(2).getImm()*4;
1225 break;
1226 case ARM::tLDRpci: {
1227 // Grab the constpool index and check, whether it corresponds to
1228 // original or cloned constpool entry.
1229 unsigned CPI = MI->getOperand(1).getIndex();
1230 const MachineConstantPool *MCP = MF.getConstantPool();
1231 if (CPI >= MCP->getConstants().size())
1232 CPI = AFI.getOriginalCPIdx(CPI);
1233 assert(CPI != -1U && "Invalid constpool index");
1234
1235 // Derive the actual offset.
1236 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1237 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1238 // FIXME: Check for user, it should be "add" instruction!
1239 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1240 break;
1241 }
1242 }
1243
1244 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1245 if (DstReg == FramePtr && FramePtr != ARM::SP)
1246 // Set-up of the frame pointer. Positive values correspond to "add"
1247 // instruction.
1248 ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
1249 else if (DstReg == ARM::SP) {
1250 // Change of SP by an offset. Positive values correspond to "sub"
1251 // instruction.
1252 ATS.emitPad(Offset);
1253 } else {
1254 // Move of SP to a register. Positive values correspond to an "add"
1255 // instruction.
1256 ATS.emitMovSP(DstReg, -Offset);
1257 }
1258 }
1259 } else if (DstReg == ARM::SP) {
1260 MI->dump();
1261 llvm_unreachable("Unsupported opcode for unwinding information");
1262 }
1263 else {
1264 MI->dump();
1265 llvm_unreachable("Unsupported opcode for unwinding information");
1266 }
1267 }
1268 }
1269
1270 // Simple pseudo-instructions have their lowering (with expansion to real
1271 // instructions) auto-generated.
1272 #include "ARMGenMCPseudoLowering.inc"
1273
EmitInstruction(const MachineInstr * MI)1274 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
1275 const DataLayout &DL = getDataLayout();
1276 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1277 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1278
1279 // If we just ended a constant pool, mark it as such.
1280 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1281 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1282 InConstantPool = false;
1283 }
1284
1285 // Emit unwinding stuff for frame-related instructions
1286 if (Subtarget->isTargetEHABICompatible() &&
1287 MI->getFlag(MachineInstr::FrameSetup))
1288 EmitUnwindingInstruction(MI);
1289
1290 // Do any auto-generated pseudo lowerings.
1291 if (emitPseudoExpansionLowering(*OutStreamer, MI))
1292 return;
1293
1294 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
1295 "Pseudo flag setting opcode should be expanded early");
1296
1297 // Check for manual lowerings.
1298 unsigned Opc = MI->getOpcode();
1299 switch (Opc) {
1300 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1301 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
1302 case ARM::LEApcrel:
1303 case ARM::tLEApcrel:
1304 case ARM::t2LEApcrel: {
1305 // FIXME: Need to also handle globals and externals
1306 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1307 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1308 ARM::t2LEApcrel ? ARM::t2ADR
1309 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1310 : ARM::ADR))
1311 .addReg(MI->getOperand(0).getReg())
1312 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
1313 // Add predicate operands.
1314 .addImm(MI->getOperand(2).getImm())
1315 .addReg(MI->getOperand(3).getReg()));
1316 return;
1317 }
1318 case ARM::LEApcrelJT:
1319 case ARM::tLEApcrelJT:
1320 case ARM::t2LEApcrelJT: {
1321 MCSymbol *JTIPICSymbol =
1322 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
1323 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1324 ARM::t2LEApcrelJT ? ARM::t2ADR
1325 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1326 : ARM::ADR))
1327 .addReg(MI->getOperand(0).getReg())
1328 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
1329 // Add predicate operands.
1330 .addImm(MI->getOperand(2).getImm())
1331 .addReg(MI->getOperand(3).getReg()));
1332 return;
1333 }
1334 // Darwin call instructions are just normal call instructions with different
1335 // clobber semantics (they clobber R9).
1336 case ARM::BX_CALL: {
1337 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1338 .addReg(ARM::LR)
1339 .addReg(ARM::PC)
1340 // Add predicate operands.
1341 .addImm(ARMCC::AL)
1342 .addReg(0)
1343 // Add 's' bit operand (always reg0 for this)
1344 .addReg(0));
1345
1346 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1347 .addReg(MI->getOperand(0).getReg()));
1348 return;
1349 }
1350 case ARM::tBX_CALL: {
1351 if (Subtarget->hasV5TOps())
1352 llvm_unreachable("Expected BLX to be selected for v5t+");
1353
1354 // On ARM v4t, when doing a call from thumb mode, we need to ensure
1355 // that the saved lr has its LSB set correctly (the arch doesn't
1356 // have blx).
1357 // So here we generate a bl to a small jump pad that does bx rN.
1358 // The jump pads are emitted after the function body.
1359
1360 unsigned TReg = MI->getOperand(0).getReg();
1361 MCSymbol *TRegSym = nullptr;
1362 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
1363 if (ThumbIndirectPads[i].first == TReg) {
1364 TRegSym = ThumbIndirectPads[i].second;
1365 break;
1366 }
1367 }
1368
1369 if (!TRegSym) {
1370 TRegSym = OutContext.createTempSymbol();
1371 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
1372 }
1373
1374 // Create a link-saving branch to the Reg Indirect Jump Pad.
1375 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
1376 // Predicate comes first here.
1377 .addImm(ARMCC::AL).addReg(0)
1378 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
1379 return;
1380 }
1381 case ARM::BMOVPCRX_CALL: {
1382 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1383 .addReg(ARM::LR)
1384 .addReg(ARM::PC)
1385 // Add predicate operands.
1386 .addImm(ARMCC::AL)
1387 .addReg(0)
1388 // Add 's' bit operand (always reg0 for this)
1389 .addReg(0));
1390
1391 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1392 .addReg(ARM::PC)
1393 .addReg(MI->getOperand(0).getReg())
1394 // Add predicate operands.
1395 .addImm(ARMCC::AL)
1396 .addReg(0)
1397 // Add 's' bit operand (always reg0 for this)
1398 .addReg(0));
1399 return;
1400 }
1401 case ARM::BMOVPCB_CALL: {
1402 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1403 .addReg(ARM::LR)
1404 .addReg(ARM::PC)
1405 // Add predicate operands.
1406 .addImm(ARMCC::AL)
1407 .addReg(0)
1408 // Add 's' bit operand (always reg0 for this)
1409 .addReg(0));
1410
1411 const MachineOperand &Op = MI->getOperand(0);
1412 const GlobalValue *GV = Op.getGlobal();
1413 const unsigned TF = Op.getTargetFlags();
1414 MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1415 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1416 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
1417 .addExpr(GVSymExpr)
1418 // Add predicate operands.
1419 .addImm(ARMCC::AL)
1420 .addReg(0));
1421 return;
1422 }
1423 case ARM::MOVi16_ga_pcrel:
1424 case ARM::t2MOVi16_ga_pcrel: {
1425 MCInst TmpInst;
1426 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1427 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1428
1429 unsigned TF = MI->getOperand(1).getTargetFlags();
1430 const GlobalValue *GV = MI->getOperand(1).getGlobal();
1431 MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1432 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1433
1434 MCSymbol *LabelSym =
1435 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1436 MI->getOperand(2).getImm(), OutContext);
1437 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1438 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1439 const MCExpr *PCRelExpr =
1440 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
1441 MCBinaryExpr::createAdd(LabelSymExpr,
1442 MCConstantExpr::create(PCAdj, OutContext),
1443 OutContext), OutContext), OutContext);
1444 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1445
1446 // Add predicate operands.
1447 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1448 TmpInst.addOperand(MCOperand::createReg(0));
1449 // Add 's' bit operand (always reg0 for this)
1450 TmpInst.addOperand(MCOperand::createReg(0));
1451 EmitToStreamer(*OutStreamer, TmpInst);
1452 return;
1453 }
1454 case ARM::MOVTi16_ga_pcrel:
1455 case ARM::t2MOVTi16_ga_pcrel: {
1456 MCInst TmpInst;
1457 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1458 ? ARM::MOVTi16 : ARM::t2MOVTi16);
1459 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1460 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1461
1462 unsigned TF = MI->getOperand(2).getTargetFlags();
1463 const GlobalValue *GV = MI->getOperand(2).getGlobal();
1464 MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1465 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1466
1467 MCSymbol *LabelSym =
1468 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1469 MI->getOperand(3).getImm(), OutContext);
1470 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1471 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1472 const MCExpr *PCRelExpr =
1473 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
1474 MCBinaryExpr::createAdd(LabelSymExpr,
1475 MCConstantExpr::create(PCAdj, OutContext),
1476 OutContext), OutContext), OutContext);
1477 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1478 // Add predicate operands.
1479 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1480 TmpInst.addOperand(MCOperand::createReg(0));
1481 // Add 's' bit operand (always reg0 for this)
1482 TmpInst.addOperand(MCOperand::createReg(0));
1483 EmitToStreamer(*OutStreamer, TmpInst);
1484 return;
1485 }
1486 case ARM::tPICADD: {
1487 // This is a pseudo op for a label + instruction sequence, which looks like:
1488 // LPC0:
1489 // add r0, pc
1490 // This adds the address of LPC0 to r0.
1491
1492 // Emit the label.
1493 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1494 getFunctionNumber(),
1495 MI->getOperand(2).getImm(), OutContext));
1496
1497 // Form and emit the add.
1498 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1499 .addReg(MI->getOperand(0).getReg())
1500 .addReg(MI->getOperand(0).getReg())
1501 .addReg(ARM::PC)
1502 // Add predicate operands.
1503 .addImm(ARMCC::AL)
1504 .addReg(0));
1505 return;
1506 }
1507 case ARM::PICADD: {
1508 // This is a pseudo op for a label + instruction sequence, which looks like:
1509 // LPC0:
1510 // add r0, pc, r0
1511 // This adds the address of LPC0 to r0.
1512
1513 // Emit the label.
1514 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1515 getFunctionNumber(),
1516 MI->getOperand(2).getImm(), OutContext));
1517
1518 // Form and emit the add.
1519 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1520 .addReg(MI->getOperand(0).getReg())
1521 .addReg(ARM::PC)
1522 .addReg(MI->getOperand(1).getReg())
1523 // Add predicate operands.
1524 .addImm(MI->getOperand(3).getImm())
1525 .addReg(MI->getOperand(4).getReg())
1526 // Add 's' bit operand (always reg0 for this)
1527 .addReg(0));
1528 return;
1529 }
1530 case ARM::PICSTR:
1531 case ARM::PICSTRB:
1532 case ARM::PICSTRH:
1533 case ARM::PICLDR:
1534 case ARM::PICLDRB:
1535 case ARM::PICLDRH:
1536 case ARM::PICLDRSB:
1537 case ARM::PICLDRSH: {
1538 // This is a pseudo op for a label + instruction sequence, which looks like:
1539 // LPC0:
1540 // OP r0, [pc, r0]
1541 // The LCP0 label is referenced by a constant pool entry in order to get
1542 // a PC-relative address at the ldr instruction.
1543
1544 // Emit the label.
1545 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1546 getFunctionNumber(),
1547 MI->getOperand(2).getImm(), OutContext));
1548
1549 // Form and emit the load
1550 unsigned Opcode;
1551 switch (MI->getOpcode()) {
1552 default:
1553 llvm_unreachable("Unexpected opcode!");
1554 case ARM::PICSTR: Opcode = ARM::STRrs; break;
1555 case ARM::PICSTRB: Opcode = ARM::STRBrs; break;
1556 case ARM::PICSTRH: Opcode = ARM::STRH; break;
1557 case ARM::PICLDR: Opcode = ARM::LDRrs; break;
1558 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break;
1559 case ARM::PICLDRH: Opcode = ARM::LDRH; break;
1560 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1561 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1562 }
1563 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
1564 .addReg(MI->getOperand(0).getReg())
1565 .addReg(ARM::PC)
1566 .addReg(MI->getOperand(1).getReg())
1567 .addImm(0)
1568 // Add predicate operands.
1569 .addImm(MI->getOperand(3).getImm())
1570 .addReg(MI->getOperand(4).getReg()));
1571
1572 return;
1573 }
1574 case ARM::CONSTPOOL_ENTRY: {
1575 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1576 /// in the function. The first operand is the ID# for this instruction, the
1577 /// second is the index into the MachineConstantPool that this is, the third
1578 /// is the size in bytes of this constant pool entry.
1579 /// The required alignment is specified on the basic block holding this MI.
1580 unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1581 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
1582
1583 // If this is the first entry of the pool, mark it.
1584 if (!InConstantPool) {
1585 OutStreamer->EmitDataRegion(MCDR_DataRegion);
1586 InConstantPool = true;
1587 }
1588
1589 OutStreamer->EmitLabel(GetCPISymbol(LabelId));
1590
1591 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1592 if (MCPE.isMachineConstantPoolEntry())
1593 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1594 else
1595 EmitGlobalConstant(DL, MCPE.Val.ConstVal);
1596 return;
1597 }
1598 case ARM::JUMPTABLE_ADDRS:
1599 EmitJumpTableAddrs(MI);
1600 return;
1601 case ARM::JUMPTABLE_INSTS:
1602 EmitJumpTableInsts(MI);
1603 return;
1604 case ARM::JUMPTABLE_TBB:
1605 case ARM::JUMPTABLE_TBH:
1606 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
1607 return;
1608 case ARM::t2BR_JT: {
1609 // Lower and emit the instruction itself, then the jump table following it.
1610 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1611 .addReg(ARM::PC)
1612 .addReg(MI->getOperand(0).getReg())
1613 // Add predicate operands.
1614 .addImm(ARMCC::AL)
1615 .addReg(0));
1616 return;
1617 }
1618 case ARM::t2TBB_JT:
1619 case ARM::t2TBH_JT: {
1620 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
1621 // Lower and emit the PC label, then the instruction itself.
1622 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1623 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1624 .addReg(MI->getOperand(0).getReg())
1625 .addReg(MI->getOperand(1).getReg())
1626 // Add predicate operands.
1627 .addImm(ARMCC::AL)
1628 .addReg(0));
1629 return;
1630 }
1631 case ARM::tBR_JTr:
1632 case ARM::BR_JTr: {
1633 // Lower and emit the instruction itself, then the jump table following it.
1634 // mov pc, target
1635 MCInst TmpInst;
1636 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1637 ARM::MOVr : ARM::tMOVr;
1638 TmpInst.setOpcode(Opc);
1639 TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1640 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1641 // Add predicate operands.
1642 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1643 TmpInst.addOperand(MCOperand::createReg(0));
1644 // Add 's' bit operand (always reg0 for this)
1645 if (Opc == ARM::MOVr)
1646 TmpInst.addOperand(MCOperand::createReg(0));
1647 EmitToStreamer(*OutStreamer, TmpInst);
1648 return;
1649 }
1650 case ARM::BR_JTm: {
1651 // Lower and emit the instruction itself, then the jump table following it.
1652 // ldr pc, target
1653 MCInst TmpInst;
1654 if (MI->getOperand(1).getReg() == 0) {
1655 // literal offset
1656 TmpInst.setOpcode(ARM::LDRi12);
1657 TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1658 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1659 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1660 } else {
1661 TmpInst.setOpcode(ARM::LDRrs);
1662 TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1663 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1664 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1665 TmpInst.addOperand(MCOperand::createImm(0));
1666 }
1667 // Add predicate operands.
1668 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1669 TmpInst.addOperand(MCOperand::createReg(0));
1670 EmitToStreamer(*OutStreamer, TmpInst);
1671 return;
1672 }
1673 case ARM::BR_JTadd: {
1674 // Lower and emit the instruction itself, then the jump table following it.
1675 // add pc, target, idx
1676 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1677 .addReg(ARM::PC)
1678 .addReg(MI->getOperand(0).getReg())
1679 .addReg(MI->getOperand(1).getReg())
1680 // Add predicate operands.
1681 .addImm(ARMCC::AL)
1682 .addReg(0)
1683 // Add 's' bit operand (always reg0 for this)
1684 .addReg(0));
1685 return;
1686 }
1687 case ARM::SPACE:
1688 OutStreamer->EmitZeros(MI->getOperand(1).getImm());
1689 return;
1690 case ARM::TRAP: {
1691 // Non-Darwin binutils don't yet support the "trap" mnemonic.
1692 // FIXME: Remove this special case when they do.
1693 if (!Subtarget->isTargetMachO()) {
1694 uint32_t Val = 0xe7ffdefeUL;
1695 OutStreamer->AddComment("trap");
1696 ATS.emitInst(Val);
1697 return;
1698 }
1699 break;
1700 }
1701 case ARM::TRAPNaCl: {
1702 uint32_t Val = 0xe7fedef0UL;
1703 OutStreamer->AddComment("trap");
1704 ATS.emitInst(Val);
1705 return;
1706 }
1707 case ARM::tTRAP: {
1708 // Non-Darwin binutils don't yet support the "trap" mnemonic.
1709 // FIXME: Remove this special case when they do.
1710 if (!Subtarget->isTargetMachO()) {
1711 uint16_t Val = 0xdefe;
1712 OutStreamer->AddComment("trap");
1713 ATS.emitInst(Val, 'n');
1714 return;
1715 }
1716 break;
1717 }
1718 case ARM::t2Int_eh_sjlj_setjmp:
1719 case ARM::t2Int_eh_sjlj_setjmp_nofp:
1720 case ARM::tInt_eh_sjlj_setjmp: {
1721 // Two incoming args: GPR:$src, GPR:$val
1722 // mov $val, pc
1723 // adds $val, #7
1724 // str $val, [$src, #4]
1725 // movs r0, #0
1726 // b LSJLJEH
1727 // movs r0, #1
1728 // LSJLJEH:
1729 unsigned SrcReg = MI->getOperand(0).getReg();
1730 unsigned ValReg = MI->getOperand(1).getReg();
1731 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
1732 OutStreamer->AddComment("eh_setjmp begin");
1733 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1734 .addReg(ValReg)
1735 .addReg(ARM::PC)
1736 // Predicate.
1737 .addImm(ARMCC::AL)
1738 .addReg(0));
1739
1740 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
1741 .addReg(ValReg)
1742 // 's' bit operand
1743 .addReg(ARM::CPSR)
1744 .addReg(ValReg)
1745 .addImm(7)
1746 // Predicate.
1747 .addImm(ARMCC::AL)
1748 .addReg(0));
1749
1750 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
1751 .addReg(ValReg)
1752 .addReg(SrcReg)
1753 // The offset immediate is #4. The operand value is scaled by 4 for the
1754 // tSTR instruction.
1755 .addImm(1)
1756 // Predicate.
1757 .addImm(ARMCC::AL)
1758 .addReg(0));
1759
1760 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1761 .addReg(ARM::R0)
1762 .addReg(ARM::CPSR)
1763 .addImm(0)
1764 // Predicate.
1765 .addImm(ARMCC::AL)
1766 .addReg(0));
1767
1768 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
1769 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
1770 .addExpr(SymbolExpr)
1771 .addImm(ARMCC::AL)
1772 .addReg(0));
1773
1774 OutStreamer->AddComment("eh_setjmp end");
1775 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1776 .addReg(ARM::R0)
1777 .addReg(ARM::CPSR)
1778 .addImm(1)
1779 // Predicate.
1780 .addImm(ARMCC::AL)
1781 .addReg(0));
1782
1783 OutStreamer->EmitLabel(Label);
1784 return;
1785 }
1786
1787 case ARM::Int_eh_sjlj_setjmp_nofp:
1788 case ARM::Int_eh_sjlj_setjmp: {
1789 // Two incoming args: GPR:$src, GPR:$val
1790 // add $val, pc, #8
1791 // str $val, [$src, #+4]
1792 // mov r0, #0
1793 // add pc, pc, #0
1794 // mov r0, #1
1795 unsigned SrcReg = MI->getOperand(0).getReg();
1796 unsigned ValReg = MI->getOperand(1).getReg();
1797
1798 OutStreamer->AddComment("eh_setjmp begin");
1799 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1800 .addReg(ValReg)
1801 .addReg(ARM::PC)
1802 .addImm(8)
1803 // Predicate.
1804 .addImm(ARMCC::AL)
1805 .addReg(0)
1806 // 's' bit operand (always reg0 for this).
1807 .addReg(0));
1808
1809 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
1810 .addReg(ValReg)
1811 .addReg(SrcReg)
1812 .addImm(4)
1813 // Predicate.
1814 .addImm(ARMCC::AL)
1815 .addReg(0));
1816
1817 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1818 .addReg(ARM::R0)
1819 .addImm(0)
1820 // Predicate.
1821 .addImm(ARMCC::AL)
1822 .addReg(0)
1823 // 's' bit operand (always reg0 for this).
1824 .addReg(0));
1825
1826 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1827 .addReg(ARM::PC)
1828 .addReg(ARM::PC)
1829 .addImm(0)
1830 // Predicate.
1831 .addImm(ARMCC::AL)
1832 .addReg(0)
1833 // 's' bit operand (always reg0 for this).
1834 .addReg(0));
1835
1836 OutStreamer->AddComment("eh_setjmp end");
1837 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1838 .addReg(ARM::R0)
1839 .addImm(1)
1840 // Predicate.
1841 .addImm(ARMCC::AL)
1842 .addReg(0)
1843 // 's' bit operand (always reg0 for this).
1844 .addReg(0));
1845 return;
1846 }
1847 case ARM::Int_eh_sjlj_longjmp: {
1848 // ldr sp, [$src, #8]
1849 // ldr $scratch, [$src, #4]
1850 // ldr r7, [$src]
1851 // bx $scratch
1852 unsigned SrcReg = MI->getOperand(0).getReg();
1853 unsigned ScratchReg = MI->getOperand(1).getReg();
1854 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1855 .addReg(ARM::SP)
1856 .addReg(SrcReg)
1857 .addImm(8)
1858 // Predicate.
1859 .addImm(ARMCC::AL)
1860 .addReg(0));
1861
1862 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1863 .addReg(ScratchReg)
1864 .addReg(SrcReg)
1865 .addImm(4)
1866 // Predicate.
1867 .addImm(ARMCC::AL)
1868 .addReg(0));
1869
1870 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1871 .addReg(ARM::R7)
1872 .addReg(SrcReg)
1873 .addImm(0)
1874 // Predicate.
1875 .addImm(ARMCC::AL)
1876 .addReg(0));
1877
1878 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1879 .addReg(ScratchReg)
1880 // Predicate.
1881 .addImm(ARMCC::AL)
1882 .addReg(0));
1883 return;
1884 }
1885 case ARM::tInt_eh_sjlj_longjmp: {
1886 // ldr $scratch, [$src, #8]
1887 // mov sp, $scratch
1888 // ldr $scratch, [$src, #4]
1889 // ldr r7, [$src]
1890 // bx $scratch
1891 unsigned SrcReg = MI->getOperand(0).getReg();
1892 unsigned ScratchReg = MI->getOperand(1).getReg();
1893
1894 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1895 .addReg(ScratchReg)
1896 .addReg(SrcReg)
1897 // The offset immediate is #8. The operand value is scaled by 4 for the
1898 // tLDR instruction.
1899 .addImm(2)
1900 // Predicate.
1901 .addImm(ARMCC::AL)
1902 .addReg(0));
1903
1904 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1905 .addReg(ARM::SP)
1906 .addReg(ScratchReg)
1907 // Predicate.
1908 .addImm(ARMCC::AL)
1909 .addReg(0));
1910
1911 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1912 .addReg(ScratchReg)
1913 .addReg(SrcReg)
1914 .addImm(1)
1915 // Predicate.
1916 .addImm(ARMCC::AL)
1917 .addReg(0));
1918
1919 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1920 .addReg(ARM::R7)
1921 .addReg(SrcReg)
1922 .addImm(0)
1923 // Predicate.
1924 .addImm(ARMCC::AL)
1925 .addReg(0));
1926
1927 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
1928 .addReg(ScratchReg)
1929 // Predicate.
1930 .addImm(ARMCC::AL)
1931 .addReg(0));
1932 return;
1933 }
1934 case ARM::tInt_WIN_eh_sjlj_longjmp: {
1935 // ldr.w r11, [$src, #0]
1936 // ldr.w sp, [$src, #8]
1937 // ldr.w pc, [$src, #4]
1938
1939 unsigned SrcReg = MI->getOperand(0).getReg();
1940
1941 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
1942 .addReg(ARM::R11)
1943 .addReg(SrcReg)
1944 .addImm(0)
1945 // Predicate
1946 .addImm(ARMCC::AL)
1947 .addReg(0));
1948 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
1949 .addReg(ARM::SP)
1950 .addReg(SrcReg)
1951 .addImm(8)
1952 // Predicate
1953 .addImm(ARMCC::AL)
1954 .addReg(0));
1955 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
1956 .addReg(ARM::PC)
1957 .addReg(SrcReg)
1958 .addImm(4)
1959 // Predicate
1960 .addImm(ARMCC::AL)
1961 .addReg(0));
1962 return;
1963 }
1964 }
1965
1966 MCInst TmpInst;
1967 LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
1968
1969 EmitToStreamer(*OutStreamer, TmpInst);
1970 }
1971
1972 //===----------------------------------------------------------------------===//
1973 // Target Registry Stuff
1974 //===----------------------------------------------------------------------===//
1975
1976 // Force static initialization.
LLVMInitializeARMAsmPrinter()1977 extern "C" void LLVMInitializeARMAsmPrinter() {
1978 RegisterAsmPrinter<ARMAsmPrinter> X(TheARMLETarget);
1979 RegisterAsmPrinter<ARMAsmPrinter> Y(TheARMBETarget);
1980 RegisterAsmPrinter<ARMAsmPrinter> A(TheThumbLETarget);
1981 RegisterAsmPrinter<ARMAsmPrinter> B(TheThumbBETarget);
1982 }
1983