1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "ARM.h"
14 #include "ARMFrameLowering.h"
15 #include "ARMTargetMachine.h"
16 #include "ARMTargetObjectFile.h"
17 #include "ARMTargetTransformInfo.h"
18 #include "llvm/CodeGen/Passes.h"
19 #include "llvm/CodeGen/TargetPassConfig.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/LegacyPassManager.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/FormattedStream.h"
25 #include "llvm/Support/TargetRegistry.h"
26 #include "llvm/Target/TargetOptions.h"
27 #include "llvm/Transforms/Scalar.h"
28 using namespace llvm;
29
30 static cl::opt<bool>
31 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
32 cl::desc("Inhibit optimization of S->D register accesses on A15"),
33 cl::init(false));
34
35 static cl::opt<bool>
36 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
37 cl::desc("Run SimplifyCFG after expanding atomic operations"
38 " to make use of cmpxchg flow-based information"),
39 cl::init(true));
40
41 static cl::opt<bool>
42 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
43 cl::desc("Enable ARM load/store optimization pass"),
44 cl::init(true));
45
46 // FIXME: Unify control over GlobalMerge.
47 static cl::opt<cl::boolOrDefault>
48 EnableGlobalMerge("arm-global-merge", cl::Hidden,
49 cl::desc("Enable the global merge pass"));
50
LLVMInitializeARMTarget()51 extern "C" void LLVMInitializeARMTarget() {
52 // Register the target.
53 RegisterTargetMachine<ARMLETargetMachine> X(TheARMLETarget);
54 RegisterTargetMachine<ARMBETargetMachine> Y(TheARMBETarget);
55 RegisterTargetMachine<ThumbLETargetMachine> A(TheThumbLETarget);
56 RegisterTargetMachine<ThumbBETargetMachine> B(TheThumbBETarget);
57 }
58
createTLOF(const Triple & TT)59 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
60 if (TT.isOSBinFormatMachO())
61 return make_unique<TargetLoweringObjectFileMachO>();
62 if (TT.isOSWindows())
63 return make_unique<TargetLoweringObjectFileCOFF>();
64 return make_unique<ARMElfTargetObjectFile>();
65 }
66
67 static ARMBaseTargetMachine::ARMABI
computeTargetABI(const Triple & TT,StringRef CPU,const TargetOptions & Options)68 computeTargetABI(const Triple &TT, StringRef CPU,
69 const TargetOptions &Options) {
70 if (Options.MCOptions.getABIName() == "aapcs16")
71 return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
72 else if (Options.MCOptions.getABIName().startswith("aapcs"))
73 return ARMBaseTargetMachine::ARM_ABI_AAPCS;
74 else if (Options.MCOptions.getABIName().startswith("apcs"))
75 return ARMBaseTargetMachine::ARM_ABI_APCS;
76
77 assert(Options.MCOptions.getABIName().empty() &&
78 "Unknown target-abi option!");
79
80 ARMBaseTargetMachine::ARMABI TargetABI =
81 ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
82
83 // FIXME: This is duplicated code from the front end and should be unified.
84 if (TT.isOSBinFormatMachO()) {
85 if (TT.getEnvironment() == llvm::Triple::EABI ||
86 (TT.getOS() == llvm::Triple::UnknownOS && TT.isOSBinFormatMachO()) ||
87 CPU.startswith("cortex-m")) {
88 TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
89 } else if (TT.isWatchABI()) {
90 TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS16;
91 } else {
92 TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
93 }
94 } else if (TT.isOSWindows()) {
95 // FIXME: this is invalid for WindowsCE
96 TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
97 } else {
98 // Select the default based on the platform.
99 switch (TT.getEnvironment()) {
100 case llvm::Triple::Android:
101 case llvm::Triple::GNUEABI:
102 case llvm::Triple::GNUEABIHF:
103 case llvm::Triple::MuslEABI:
104 case llvm::Triple::MuslEABIHF:
105 case llvm::Triple::EABIHF:
106 case llvm::Triple::EABI:
107 TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
108 break;
109 case llvm::Triple::GNU:
110 TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
111 break;
112 default:
113 if (TT.isOSNetBSD())
114 TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
115 else
116 TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
117 break;
118 }
119 }
120
121 return TargetABI;
122 }
123
computeDataLayout(const Triple & TT,StringRef CPU,const TargetOptions & Options,bool isLittle)124 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
125 const TargetOptions &Options,
126 bool isLittle) {
127 auto ABI = computeTargetABI(TT, CPU, Options);
128 std::string Ret = "";
129
130 if (isLittle)
131 // Little endian.
132 Ret += "e";
133 else
134 // Big endian.
135 Ret += "E";
136
137 Ret += DataLayout::getManglingComponent(TT);
138
139 // Pointers are 32 bits and aligned to 32 bits.
140 Ret += "-p:32:32";
141
142 // ABIs other than APCS have 64 bit integers with natural alignment.
143 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
144 Ret += "-i64:64";
145
146 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
147 // bits, others to 64 bits. We always try to align to 64 bits.
148 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
149 Ret += "-f64:32:64";
150
151 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
152 // to 64. We always ty to give them natural alignment.
153 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
154 Ret += "-v64:32:64-v128:32:128";
155 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
156 Ret += "-v128:64:128";
157
158 // Try to align aggregates to 32 bits (the default is 64 bits, which has no
159 // particular hardware support on 32-bit ARM).
160 Ret += "-a:0:32";
161
162 // Integer registers are 32 bits.
163 Ret += "-n32";
164
165 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
166 // aligned everywhere else.
167 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
168 Ret += "-S128";
169 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
170 Ret += "-S64";
171 else
172 Ret += "-S32";
173
174 return Ret;
175 }
176
getEffectiveRelocModel(const Triple & TT,Optional<Reloc::Model> RM)177 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
178 Optional<Reloc::Model> RM) {
179 if (!RM.hasValue())
180 // Default relocation model on Darwin is PIC.
181 return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
182
183 // DynamicNoPIC is only used on darwin.
184 if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
185 return Reloc::Static;
186
187 return *RM;
188 }
189
190 /// Create an ARM architecture model.
191 ///
ARMBaseTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,CodeModel::Model CM,CodeGenOpt::Level OL,bool isLittle)192 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
193 StringRef CPU, StringRef FS,
194 const TargetOptions &Options,
195 Optional<Reloc::Model> RM,
196 CodeModel::Model CM,
197 CodeGenOpt::Level OL, bool isLittle)
198 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
199 CPU, FS, Options, getEffectiveRelocModel(TT, RM), CM,
200 OL),
201 TargetABI(computeTargetABI(TT, CPU, Options)),
202 TLOF(createTLOF(getTargetTriple())),
203 Subtarget(TT, CPU, FS, *this, isLittle), isLittle(isLittle) {
204
205 // Default to triple-appropriate float ABI
206 if (Options.FloatABIType == FloatABI::Default)
207 this->Options.FloatABIType =
208 Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft;
209
210 // Default to triple-appropriate EABI
211 if (Options.EABIVersion == EABI::Default ||
212 Options.EABIVersion == EABI::Unknown) {
213 // musl is compatible with glibc with regard to EABI version
214 if (Subtarget.isTargetGNUAEABI() || Subtarget.isTargetMuslAEABI())
215 this->Options.EABIVersion = EABI::GNU;
216 else
217 this->Options.EABIVersion = EABI::EABI5;
218 }
219 }
220
~ARMBaseTargetMachine()221 ARMBaseTargetMachine::~ARMBaseTargetMachine() {}
222
223 const ARMSubtarget *
getSubtargetImpl(const Function & F) const224 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
225 Attribute CPUAttr = F.getFnAttribute("target-cpu");
226 Attribute FSAttr = F.getFnAttribute("target-features");
227
228 std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
229 ? CPUAttr.getValueAsString().str()
230 : TargetCPU;
231 std::string FS = !FSAttr.hasAttribute(Attribute::None)
232 ? FSAttr.getValueAsString().str()
233 : TargetFS;
234
235 // FIXME: This is related to the code below to reset the target options,
236 // we need to know whether or not the soft float flag is set on the
237 // function before we can generate a subtarget. We also need to use
238 // it as a key for the subtarget since that can be the only difference
239 // between two functions.
240 bool SoftFloat =
241 F.getFnAttribute("use-soft-float").getValueAsString() == "true";
242 // If the soft float attribute is set on the function turn on the soft float
243 // subtarget feature.
244 if (SoftFloat)
245 FS += FS.empty() ? "+soft-float" : ",+soft-float";
246
247 auto &I = SubtargetMap[CPU + FS];
248 if (!I) {
249 // This needs to be done before we create a new subtarget since any
250 // creation will depend on the TM and the code generation flags on the
251 // function that reside in TargetOptions.
252 resetTargetOptions(F);
253 I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle);
254 }
255 return I.get();
256 }
257
getTargetIRAnalysis()258 TargetIRAnalysis ARMBaseTargetMachine::getTargetIRAnalysis() {
259 return TargetIRAnalysis([this](const Function &F) {
260 return TargetTransformInfo(ARMTTIImpl(this, F));
261 });
262 }
263
anchor()264 void ARMTargetMachine::anchor() {}
265
ARMTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,CodeModel::Model CM,CodeGenOpt::Level OL,bool isLittle)266 ARMTargetMachine::ARMTargetMachine(const Target &T, const Triple &TT,
267 StringRef CPU, StringRef FS,
268 const TargetOptions &Options,
269 Optional<Reloc::Model> RM,
270 CodeModel::Model CM, CodeGenOpt::Level OL,
271 bool isLittle)
272 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) {
273 initAsmInfo();
274 if (!Subtarget.hasARMOps())
275 report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not "
276 "support ARM mode execution!");
277 }
278
anchor()279 void ARMLETargetMachine::anchor() {}
280
ARMLETargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,CodeModel::Model CM,CodeGenOpt::Level OL)281 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
282 StringRef CPU, StringRef FS,
283 const TargetOptions &Options,
284 Optional<Reloc::Model> RM,
285 CodeModel::Model CM,
286 CodeGenOpt::Level OL)
287 : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
288
anchor()289 void ARMBETargetMachine::anchor() {}
290
ARMBETargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,CodeModel::Model CM,CodeGenOpt::Level OL)291 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
292 StringRef CPU, StringRef FS,
293 const TargetOptions &Options,
294 Optional<Reloc::Model> RM,
295 CodeModel::Model CM,
296 CodeGenOpt::Level OL)
297 : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
298
anchor()299 void ThumbTargetMachine::anchor() {}
300
ThumbTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,CodeModel::Model CM,CodeGenOpt::Level OL,bool isLittle)301 ThumbTargetMachine::ThumbTargetMachine(const Target &T, const Triple &TT,
302 StringRef CPU, StringRef FS,
303 const TargetOptions &Options,
304 Optional<Reloc::Model> RM,
305 CodeModel::Model CM,
306 CodeGenOpt::Level OL, bool isLittle)
307 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) {
308 initAsmInfo();
309 }
310
anchor()311 void ThumbLETargetMachine::anchor() {}
312
ThumbLETargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,CodeModel::Model CM,CodeGenOpt::Level OL)313 ThumbLETargetMachine::ThumbLETargetMachine(const Target &T, const Triple &TT,
314 StringRef CPU, StringRef FS,
315 const TargetOptions &Options,
316 Optional<Reloc::Model> RM,
317 CodeModel::Model CM,
318 CodeGenOpt::Level OL)
319 : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
320
anchor()321 void ThumbBETargetMachine::anchor() {}
322
ThumbBETargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,CodeModel::Model CM,CodeGenOpt::Level OL)323 ThumbBETargetMachine::ThumbBETargetMachine(const Target &T, const Triple &TT,
324 StringRef CPU, StringRef FS,
325 const TargetOptions &Options,
326 Optional<Reloc::Model> RM,
327 CodeModel::Model CM,
328 CodeGenOpt::Level OL)
329 : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
330
331 namespace {
332 /// ARM Code Generator Pass Configuration Options.
333 class ARMPassConfig : public TargetPassConfig {
334 public:
ARMPassConfig(ARMBaseTargetMachine * TM,PassManagerBase & PM)335 ARMPassConfig(ARMBaseTargetMachine *TM, PassManagerBase &PM)
336 : TargetPassConfig(TM, PM) {}
337
getARMTargetMachine() const338 ARMBaseTargetMachine &getARMTargetMachine() const {
339 return getTM<ARMBaseTargetMachine>();
340 }
341
342 void addIRPasses() override;
343 bool addPreISel() override;
344 bool addInstSelector() override;
345 void addPreRegAlloc() override;
346 void addPreSched2() override;
347 void addPreEmitPass() override;
348 };
349 } // namespace
350
createPassConfig(PassManagerBase & PM)351 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
352 return new ARMPassConfig(this, PM);
353 }
354
addIRPasses()355 void ARMPassConfig::addIRPasses() {
356 if (TM->Options.ThreadModel == ThreadModel::Single)
357 addPass(createLowerAtomicPass());
358 else
359 addPass(createAtomicExpandPass(TM));
360
361 // Cmpxchg instructions are often used with a subsequent comparison to
362 // determine whether it succeeded. We can exploit existing control-flow in
363 // ldrex/strex loops to simplify this, but it needs tidying up.
364 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
365 addPass(createCFGSimplificationPass(-1, [this](const Function &F) {
366 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
367 return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
368 }));
369
370 TargetPassConfig::addIRPasses();
371
372 // Match interleaved memory accesses to ldN/stN intrinsics.
373 if (TM->getOptLevel() != CodeGenOpt::None)
374 addPass(createInterleavedAccessPass(TM));
375 }
376
addPreISel()377 bool ARMPassConfig::addPreISel() {
378 if ((TM->getOptLevel() != CodeGenOpt::None &&
379 EnableGlobalMerge == cl::BOU_UNSET) ||
380 EnableGlobalMerge == cl::BOU_TRUE) {
381 // FIXME: This is using the thumb1 only constant value for
382 // maximal global offset for merging globals. We may want
383 // to look into using the old value for non-thumb1 code of
384 // 4095 based on the TargetMachine, but this starts to become
385 // tricky when doing code gen per function.
386 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
387 (EnableGlobalMerge == cl::BOU_UNSET);
388 // Merging of extern globals is enabled by default on non-Mach-O as we
389 // expect it to be generally either beneficial or harmless. On Mach-O it
390 // is disabled as we emit the .subsections_via_symbols directive which
391 // means that merging extern globals is not safe.
392 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
393 addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
394 MergeExternalByDefault));
395 }
396
397 return false;
398 }
399
addInstSelector()400 bool ARMPassConfig::addInstSelector() {
401 addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
402 return false;
403 }
404
addPreRegAlloc()405 void ARMPassConfig::addPreRegAlloc() {
406 if (getOptLevel() != CodeGenOpt::None) {
407 addPass(createMLxExpansionPass());
408
409 if (EnableARMLoadStoreOpt)
410 addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
411
412 if (!DisableA15SDOptimization)
413 addPass(createA15SDOptimizerPass());
414 }
415 }
416
addPreSched2()417 void ARMPassConfig::addPreSched2() {
418 if (getOptLevel() != CodeGenOpt::None) {
419 if (EnableARMLoadStoreOpt)
420 addPass(createARMLoadStoreOptimizationPass());
421
422 addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass));
423 }
424
425 // Expand some pseudo instructions into multiple instructions to allow
426 // proper scheduling.
427 addPass(createARMExpandPseudoPass());
428
429 if (getOptLevel() != CodeGenOpt::None) {
430 // in v8, IfConversion depends on Thumb instruction widths
431 addPass(createThumb2SizeReductionPass([this](const Function &F) {
432 return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
433 }));
434
435 addPass(createIfConverter([this](const Function &F) {
436 return !this->TM->getSubtarget<ARMSubtarget>(F).isThumb1Only();
437 }));
438 }
439 addPass(createThumb2ITBlockPass());
440 }
441
addPreEmitPass()442 void ARMPassConfig::addPreEmitPass() {
443 addPass(createThumb2SizeReductionPass());
444
445 // Constant island pass work on unbundled instructions.
446 addPass(createUnpackMachineBundles([this](const Function &F) {
447 return this->TM->getSubtarget<ARMSubtarget>(F).isThumb2();
448 }));
449
450 // Don't optimize barriers at -O0.
451 if (getOptLevel() != CodeGenOpt::None)
452 addPass(createARMOptimizeBarriersPass());
453
454 addPass(createARMConstantIslandPass());
455 }
456