• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARM.h"
14 #include "ARMFrameLowering.h"
15 #include "ARMTargetMachine.h"
16 #include "ARMTargetObjectFile.h"
17 #include "ARMTargetTransformInfo.h"
18 #include "llvm/CodeGen/Passes.h"
19 #include "llvm/CodeGen/TargetPassConfig.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/LegacyPassManager.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/FormattedStream.h"
25 #include "llvm/Support/TargetRegistry.h"
26 #include "llvm/Target/TargetOptions.h"
27 #include "llvm/Transforms/Scalar.h"
28 using namespace llvm;
29 
30 static cl::opt<bool>
31 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
32                    cl::desc("Inhibit optimization of S->D register accesses on A15"),
33                    cl::init(false));
34 
35 static cl::opt<bool>
36 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
37                  cl::desc("Run SimplifyCFG after expanding atomic operations"
38                           " to make use of cmpxchg flow-based information"),
39                  cl::init(true));
40 
41 static cl::opt<bool>
42 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
43                       cl::desc("Enable ARM load/store optimization pass"),
44                       cl::init(true));
45 
46 // FIXME: Unify control over GlobalMerge.
47 static cl::opt<cl::boolOrDefault>
48 EnableGlobalMerge("arm-global-merge", cl::Hidden,
49                   cl::desc("Enable the global merge pass"));
50 
LLVMInitializeARMTarget()51 extern "C" void LLVMInitializeARMTarget() {
52   // Register the target.
53   RegisterTargetMachine<ARMLETargetMachine> X(TheARMLETarget);
54   RegisterTargetMachine<ARMBETargetMachine> Y(TheARMBETarget);
55   RegisterTargetMachine<ThumbLETargetMachine> A(TheThumbLETarget);
56   RegisterTargetMachine<ThumbBETargetMachine> B(TheThumbBETarget);
57 }
58 
createTLOF(const Triple & TT)59 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
60   if (TT.isOSBinFormatMachO())
61     return make_unique<TargetLoweringObjectFileMachO>();
62   if (TT.isOSWindows())
63     return make_unique<TargetLoweringObjectFileCOFF>();
64   return make_unique<ARMElfTargetObjectFile>();
65 }
66 
67 static ARMBaseTargetMachine::ARMABI
computeTargetABI(const Triple & TT,StringRef CPU,const TargetOptions & Options)68 computeTargetABI(const Triple &TT, StringRef CPU,
69                  const TargetOptions &Options) {
70   if (Options.MCOptions.getABIName() == "aapcs16")
71     return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
72   else if (Options.MCOptions.getABIName().startswith("aapcs"))
73     return ARMBaseTargetMachine::ARM_ABI_AAPCS;
74   else if (Options.MCOptions.getABIName().startswith("apcs"))
75     return ARMBaseTargetMachine::ARM_ABI_APCS;
76 
77   assert(Options.MCOptions.getABIName().empty() &&
78          "Unknown target-abi option!");
79 
80   ARMBaseTargetMachine::ARMABI TargetABI =
81       ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
82 
83   // FIXME: This is duplicated code from the front end and should be unified.
84   if (TT.isOSBinFormatMachO()) {
85     if (TT.getEnvironment() == llvm::Triple::EABI ||
86         (TT.getOS() == llvm::Triple::UnknownOS && TT.isOSBinFormatMachO()) ||
87         CPU.startswith("cortex-m")) {
88       TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
89     } else if (TT.isWatchABI()) {
90       TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS16;
91     } else {
92       TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
93     }
94   } else if (TT.isOSWindows()) {
95     // FIXME: this is invalid for WindowsCE
96     TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
97   } else {
98     // Select the default based on the platform.
99     switch (TT.getEnvironment()) {
100     case llvm::Triple::Android:
101     case llvm::Triple::GNUEABI:
102     case llvm::Triple::GNUEABIHF:
103     case llvm::Triple::MuslEABI:
104     case llvm::Triple::MuslEABIHF:
105     case llvm::Triple::EABIHF:
106     case llvm::Triple::EABI:
107       TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
108       break;
109     case llvm::Triple::GNU:
110       TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
111       break;
112     default:
113       if (TT.isOSNetBSD())
114         TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
115       else
116         TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
117       break;
118     }
119   }
120 
121   return TargetABI;
122 }
123 
computeDataLayout(const Triple & TT,StringRef CPU,const TargetOptions & Options,bool isLittle)124 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
125                                      const TargetOptions &Options,
126                                      bool isLittle) {
127   auto ABI = computeTargetABI(TT, CPU, Options);
128   std::string Ret = "";
129 
130   if (isLittle)
131     // Little endian.
132     Ret += "e";
133   else
134     // Big endian.
135     Ret += "E";
136 
137   Ret += DataLayout::getManglingComponent(TT);
138 
139   // Pointers are 32 bits and aligned to 32 bits.
140   Ret += "-p:32:32";
141 
142   // ABIs other than APCS have 64 bit integers with natural alignment.
143   if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
144     Ret += "-i64:64";
145 
146   // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
147   // bits, others to 64 bits. We always try to align to 64 bits.
148   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
149     Ret += "-f64:32:64";
150 
151   // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
152   // to 64. We always ty to give them natural alignment.
153   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
154     Ret += "-v64:32:64-v128:32:128";
155   else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
156     Ret += "-v128:64:128";
157 
158   // Try to align aggregates to 32 bits (the default is 64 bits, which has no
159   // particular hardware support on 32-bit ARM).
160   Ret += "-a:0:32";
161 
162   // Integer registers are 32 bits.
163   Ret += "-n32";
164 
165   // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
166   // aligned everywhere else.
167   if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
168     Ret += "-S128";
169   else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
170     Ret += "-S64";
171   else
172     Ret += "-S32";
173 
174   return Ret;
175 }
176 
getEffectiveRelocModel(const Triple & TT,Optional<Reloc::Model> RM)177 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
178                                            Optional<Reloc::Model> RM) {
179   if (!RM.hasValue())
180     // Default relocation model on Darwin is PIC.
181     return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
182 
183   // DynamicNoPIC is only used on darwin.
184   if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
185     return Reloc::Static;
186 
187   return *RM;
188 }
189 
190 /// Create an ARM architecture model.
191 ///
ARMBaseTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,CodeModel::Model CM,CodeGenOpt::Level OL,bool isLittle)192 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
193                                            StringRef CPU, StringRef FS,
194                                            const TargetOptions &Options,
195                                            Optional<Reloc::Model> RM,
196                                            CodeModel::Model CM,
197                                            CodeGenOpt::Level OL, bool isLittle)
198     : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
199                         CPU, FS, Options, getEffectiveRelocModel(TT, RM), CM,
200                         OL),
201       TargetABI(computeTargetABI(TT, CPU, Options)),
202       TLOF(createTLOF(getTargetTriple())),
203       Subtarget(TT, CPU, FS, *this, isLittle), isLittle(isLittle) {
204 
205   // Default to triple-appropriate float ABI
206   if (Options.FloatABIType == FloatABI::Default)
207     this->Options.FloatABIType =
208         Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft;
209 
210   // Default to triple-appropriate EABI
211   if (Options.EABIVersion == EABI::Default ||
212       Options.EABIVersion == EABI::Unknown) {
213     // musl is compatible with glibc with regard to EABI version
214     if (Subtarget.isTargetGNUAEABI() || Subtarget.isTargetMuslAEABI())
215       this->Options.EABIVersion = EABI::GNU;
216     else
217       this->Options.EABIVersion = EABI::EABI5;
218   }
219 }
220 
~ARMBaseTargetMachine()221 ARMBaseTargetMachine::~ARMBaseTargetMachine() {}
222 
223 const ARMSubtarget *
getSubtargetImpl(const Function & F) const224 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
225   Attribute CPUAttr = F.getFnAttribute("target-cpu");
226   Attribute FSAttr = F.getFnAttribute("target-features");
227 
228   std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
229                         ? CPUAttr.getValueAsString().str()
230                         : TargetCPU;
231   std::string FS = !FSAttr.hasAttribute(Attribute::None)
232                        ? FSAttr.getValueAsString().str()
233                        : TargetFS;
234 
235   // FIXME: This is related to the code below to reset the target options,
236   // we need to know whether or not the soft float flag is set on the
237   // function before we can generate a subtarget. We also need to use
238   // it as a key for the subtarget since that can be the only difference
239   // between two functions.
240   bool SoftFloat =
241       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
242   // If the soft float attribute is set on the function turn on the soft float
243   // subtarget feature.
244   if (SoftFloat)
245     FS += FS.empty() ? "+soft-float" : ",+soft-float";
246 
247   auto &I = SubtargetMap[CPU + FS];
248   if (!I) {
249     // This needs to be done before we create a new subtarget since any
250     // creation will depend on the TM and the code generation flags on the
251     // function that reside in TargetOptions.
252     resetTargetOptions(F);
253     I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle);
254   }
255   return I.get();
256 }
257 
getTargetIRAnalysis()258 TargetIRAnalysis ARMBaseTargetMachine::getTargetIRAnalysis() {
259   return TargetIRAnalysis([this](const Function &F) {
260     return TargetTransformInfo(ARMTTIImpl(this, F));
261   });
262 }
263 
anchor()264 void ARMTargetMachine::anchor() {}
265 
ARMTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,CodeModel::Model CM,CodeGenOpt::Level OL,bool isLittle)266 ARMTargetMachine::ARMTargetMachine(const Target &T, const Triple &TT,
267                                    StringRef CPU, StringRef FS,
268                                    const TargetOptions &Options,
269                                    Optional<Reloc::Model> RM,
270                                    CodeModel::Model CM, CodeGenOpt::Level OL,
271                                    bool isLittle)
272     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) {
273   initAsmInfo();
274   if (!Subtarget.hasARMOps())
275     report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not "
276                        "support ARM mode execution!");
277 }
278 
anchor()279 void ARMLETargetMachine::anchor() {}
280 
ARMLETargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,CodeModel::Model CM,CodeGenOpt::Level OL)281 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
282                                        StringRef CPU, StringRef FS,
283                                        const TargetOptions &Options,
284                                        Optional<Reloc::Model> RM,
285                                        CodeModel::Model CM,
286                                        CodeGenOpt::Level OL)
287     : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
288 
anchor()289 void ARMBETargetMachine::anchor() {}
290 
ARMBETargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,CodeModel::Model CM,CodeGenOpt::Level OL)291 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
292                                        StringRef CPU, StringRef FS,
293                                        const TargetOptions &Options,
294                                        Optional<Reloc::Model> RM,
295                                        CodeModel::Model CM,
296                                        CodeGenOpt::Level OL)
297     : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
298 
anchor()299 void ThumbTargetMachine::anchor() {}
300 
ThumbTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,CodeModel::Model CM,CodeGenOpt::Level OL,bool isLittle)301 ThumbTargetMachine::ThumbTargetMachine(const Target &T, const Triple &TT,
302                                        StringRef CPU, StringRef FS,
303                                        const TargetOptions &Options,
304                                        Optional<Reloc::Model> RM,
305                                        CodeModel::Model CM,
306                                        CodeGenOpt::Level OL, bool isLittle)
307     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) {
308   initAsmInfo();
309 }
310 
anchor()311 void ThumbLETargetMachine::anchor() {}
312 
ThumbLETargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,CodeModel::Model CM,CodeGenOpt::Level OL)313 ThumbLETargetMachine::ThumbLETargetMachine(const Target &T, const Triple &TT,
314                                            StringRef CPU, StringRef FS,
315                                            const TargetOptions &Options,
316                                            Optional<Reloc::Model> RM,
317                                            CodeModel::Model CM,
318                                            CodeGenOpt::Level OL)
319     : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
320 
anchor()321 void ThumbBETargetMachine::anchor() {}
322 
ThumbBETargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,CodeModel::Model CM,CodeGenOpt::Level OL)323 ThumbBETargetMachine::ThumbBETargetMachine(const Target &T, const Triple &TT,
324                                            StringRef CPU, StringRef FS,
325                                            const TargetOptions &Options,
326                                            Optional<Reloc::Model> RM,
327                                            CodeModel::Model CM,
328                                            CodeGenOpt::Level OL)
329     : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
330 
331 namespace {
332 /// ARM Code Generator Pass Configuration Options.
333 class ARMPassConfig : public TargetPassConfig {
334 public:
ARMPassConfig(ARMBaseTargetMachine * TM,PassManagerBase & PM)335   ARMPassConfig(ARMBaseTargetMachine *TM, PassManagerBase &PM)
336     : TargetPassConfig(TM, PM) {}
337 
getARMTargetMachine() const338   ARMBaseTargetMachine &getARMTargetMachine() const {
339     return getTM<ARMBaseTargetMachine>();
340   }
341 
342   void addIRPasses() override;
343   bool addPreISel() override;
344   bool addInstSelector() override;
345   void addPreRegAlloc() override;
346   void addPreSched2() override;
347   void addPreEmitPass() override;
348 };
349 } // namespace
350 
createPassConfig(PassManagerBase & PM)351 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
352   return new ARMPassConfig(this, PM);
353 }
354 
addIRPasses()355 void ARMPassConfig::addIRPasses() {
356   if (TM->Options.ThreadModel == ThreadModel::Single)
357     addPass(createLowerAtomicPass());
358   else
359     addPass(createAtomicExpandPass(TM));
360 
361   // Cmpxchg instructions are often used with a subsequent comparison to
362   // determine whether it succeeded. We can exploit existing control-flow in
363   // ldrex/strex loops to simplify this, but it needs tidying up.
364   if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
365     addPass(createCFGSimplificationPass(-1, [this](const Function &F) {
366       const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
367       return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
368     }));
369 
370   TargetPassConfig::addIRPasses();
371 
372   // Match interleaved memory accesses to ldN/stN intrinsics.
373   if (TM->getOptLevel() != CodeGenOpt::None)
374     addPass(createInterleavedAccessPass(TM));
375 }
376 
addPreISel()377 bool ARMPassConfig::addPreISel() {
378   if ((TM->getOptLevel() != CodeGenOpt::None &&
379        EnableGlobalMerge == cl::BOU_UNSET) ||
380       EnableGlobalMerge == cl::BOU_TRUE) {
381     // FIXME: This is using the thumb1 only constant value for
382     // maximal global offset for merging globals. We may want
383     // to look into using the old value for non-thumb1 code of
384     // 4095 based on the TargetMachine, but this starts to become
385     // tricky when doing code gen per function.
386     bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
387                                (EnableGlobalMerge == cl::BOU_UNSET);
388     // Merging of extern globals is enabled by default on non-Mach-O as we
389     // expect it to be generally either beneficial or harmless. On Mach-O it
390     // is disabled as we emit the .subsections_via_symbols directive which
391     // means that merging extern globals is not safe.
392     bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
393     addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
394                                   MergeExternalByDefault));
395   }
396 
397   return false;
398 }
399 
addInstSelector()400 bool ARMPassConfig::addInstSelector() {
401   addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
402   return false;
403 }
404 
addPreRegAlloc()405 void ARMPassConfig::addPreRegAlloc() {
406   if (getOptLevel() != CodeGenOpt::None) {
407     addPass(createMLxExpansionPass());
408 
409     if (EnableARMLoadStoreOpt)
410       addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
411 
412     if (!DisableA15SDOptimization)
413       addPass(createA15SDOptimizerPass());
414   }
415 }
416 
addPreSched2()417 void ARMPassConfig::addPreSched2() {
418   if (getOptLevel() != CodeGenOpt::None) {
419     if (EnableARMLoadStoreOpt)
420       addPass(createARMLoadStoreOptimizationPass());
421 
422     addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass));
423   }
424 
425   // Expand some pseudo instructions into multiple instructions to allow
426   // proper scheduling.
427   addPass(createARMExpandPseudoPass());
428 
429   if (getOptLevel() != CodeGenOpt::None) {
430     // in v8, IfConversion depends on Thumb instruction widths
431     addPass(createThumb2SizeReductionPass([this](const Function &F) {
432       return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
433     }));
434 
435     addPass(createIfConverter([this](const Function &F) {
436       return !this->TM->getSubtarget<ARMSubtarget>(F).isThumb1Only();
437     }));
438   }
439   addPass(createThumb2ITBlockPass());
440 }
441 
addPreEmitPass()442 void ARMPassConfig::addPreEmitPass() {
443   addPass(createThumb2SizeReductionPass());
444 
445   // Constant island pass work on unbundled instructions.
446   addPass(createUnpackMachineBundles([this](const Function &F) {
447     return this->TM->getSubtarget<ARMSubtarget>(F).isThumb2();
448   }));
449 
450   // Don't optimize barriers at -O0.
451   if (getOptLevel() != CodeGenOpt::None)
452     addPass(createARMOptimizeBarriersPass());
453 
454   addPass(createARMConstantIslandPass());
455 }
456