1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===---------------------------------------------------------------------===//
9 //
10 // This pass performs peephole optimizations to clean up ugly code
11 // sequences at the MachineInstruction layer. It runs at the end of
12 // the SSA phases, following VSX swap removal. A pass of dead code
13 // elimination follows this one for quick clean-up of any dead
14 // instructions introduced here. Although we could do this as callbacks
15 // from the generic peephole pass, this would have a couple of bad
16 // effects: it might remove optimization opportunities for VSX swap
17 // removal, and it would miss cleanups made possible following VSX
18 // swap removal.
19 //
20 //===---------------------------------------------------------------------===//
21
22 #include "PPCInstrInfo.h"
23 #include "PPC.h"
24 #include "PPCInstrBuilder.h"
25 #include "PPCTargetMachine.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/Support/Debug.h"
30
31 using namespace llvm;
32
33 #define DEBUG_TYPE "ppc-mi-peepholes"
34
35 namespace llvm {
36 void initializePPCMIPeepholePass(PassRegistry&);
37 }
38
39 namespace {
40
41 struct PPCMIPeephole : public MachineFunctionPass {
42
43 static char ID;
44 const PPCInstrInfo *TII;
45 MachineFunction *MF;
46 MachineRegisterInfo *MRI;
47
PPCMIPeephole__anonc89f5f010111::PPCMIPeephole48 PPCMIPeephole() : MachineFunctionPass(ID) {
49 initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
50 }
51
52 private:
53 // Initialize class variables.
54 void initialize(MachineFunction &MFParm);
55
56 // Perform peepholes.
57 bool simplifyCode(void);
58
59 // Find the "true" register represented by SrcReg (following chains
60 // of copies and subreg_to_reg operations).
61 unsigned lookThruCopyLike(unsigned SrcReg);
62
63 public:
64 // Main entry point for this pass.
runOnMachineFunction__anonc89f5f010111::PPCMIPeephole65 bool runOnMachineFunction(MachineFunction &MF) override {
66 if (skipFunction(*MF.getFunction()))
67 return false;
68 initialize(MF);
69 return simplifyCode();
70 }
71 };
72
73 // Initialize class variables.
initialize(MachineFunction & MFParm)74 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
75 MF = &MFParm;
76 MRI = &MF->getRegInfo();
77 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
78 DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
79 DEBUG(MF->dump());
80 }
81
82 // Perform peephole optimizations.
simplifyCode(void)83 bool PPCMIPeephole::simplifyCode(void) {
84 bool Simplified = false;
85 MachineInstr* ToErase = nullptr;
86
87 for (MachineBasicBlock &MBB : *MF) {
88 for (MachineInstr &MI : MBB) {
89
90 // If the previous instruction was marked for elimination,
91 // remove it now.
92 if (ToErase) {
93 ToErase->eraseFromParent();
94 ToErase = nullptr;
95 }
96
97 // Ignore debug instructions.
98 if (MI.isDebugValue())
99 continue;
100
101 // Per-opcode peepholes.
102 switch (MI.getOpcode()) {
103
104 default:
105 break;
106
107 case PPC::XXPERMDI: {
108 // Perform simplifications of 2x64 vector swaps and splats.
109 // A swap is identified by an immediate value of 2, and a splat
110 // is identified by an immediate value of 0 or 3.
111 int Immed = MI.getOperand(3).getImm();
112
113 if (Immed != 1) {
114
115 // For each of these simplifications, we need the two source
116 // regs to match. Unfortunately, MachineCSE ignores COPY and
117 // SUBREG_TO_REG, so for example we can see
118 // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
119 // We have to look through chains of COPY and SUBREG_TO_REG
120 // to find the real source values for comparison.
121 unsigned TrueReg1 = lookThruCopyLike(MI.getOperand(1).getReg());
122 unsigned TrueReg2 = lookThruCopyLike(MI.getOperand(2).getReg());
123
124 if (TrueReg1 == TrueReg2
125 && TargetRegisterInfo::isVirtualRegister(TrueReg1)) {
126 MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
127
128 // If this is a splat or a swap fed by another splat, we
129 // can replace it with a copy.
130 if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
131 unsigned FeedImmed = DefMI->getOperand(3).getImm();
132 unsigned FeedReg1
133 = lookThruCopyLike(DefMI->getOperand(1).getReg());
134 unsigned FeedReg2
135 = lookThruCopyLike(DefMI->getOperand(2).getReg());
136
137 if ((FeedImmed == 0 || FeedImmed == 3) && FeedReg1 == FeedReg2) {
138 DEBUG(dbgs()
139 << "Optimizing splat/swap or splat/splat "
140 "to splat/copy: ");
141 DEBUG(MI.dump());
142 BuildMI(MBB, &MI, MI.getDebugLoc(),
143 TII->get(PPC::COPY), MI.getOperand(0).getReg())
144 .addOperand(MI.getOperand(1));
145 ToErase = &MI;
146 Simplified = true;
147 }
148
149 // If this is a splat fed by a swap, we can simplify modify
150 // the splat to splat the other value from the swap's input
151 // parameter.
152 else if ((Immed == 0 || Immed == 3)
153 && FeedImmed == 2 && FeedReg1 == FeedReg2) {
154 DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
155 DEBUG(MI.dump());
156 MI.getOperand(1).setReg(DefMI->getOperand(1).getReg());
157 MI.getOperand(2).setReg(DefMI->getOperand(2).getReg());
158 MI.getOperand(3).setImm(3 - Immed);
159 Simplified = true;
160 }
161
162 // If this is a swap fed by a swap, we can replace it
163 // with a copy from the first swap's input.
164 else if (Immed == 2 && FeedImmed == 2 && FeedReg1 == FeedReg2) {
165 DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
166 DEBUG(MI.dump());
167 BuildMI(MBB, &MI, MI.getDebugLoc(),
168 TII->get(PPC::COPY), MI.getOperand(0).getReg())
169 .addOperand(DefMI->getOperand(1));
170 ToErase = &MI;
171 Simplified = true;
172 }
173 }
174 }
175 }
176 break;
177 }
178 }
179 }
180
181 // If the last instruction was marked for elimination,
182 // remove it now.
183 if (ToErase) {
184 ToErase->eraseFromParent();
185 ToErase = nullptr;
186 }
187 }
188
189 return Simplified;
190 }
191
192 // This is used to find the "true" source register for an
193 // XXPERMDI instruction, since MachineCSE does not handle the
194 // "copy-like" operations (Copy and SubregToReg). Returns
195 // the original SrcReg unless it is the target of a copy-like
196 // operation, in which case we chain backwards through all
197 // such operations to the ultimate source register. If a
198 // physical register is encountered, we stop the search.
lookThruCopyLike(unsigned SrcReg)199 unsigned PPCMIPeephole::lookThruCopyLike(unsigned SrcReg) {
200
201 while (true) {
202
203 MachineInstr *MI = MRI->getVRegDef(SrcReg);
204 if (!MI->isCopyLike())
205 return SrcReg;
206
207 unsigned CopySrcReg;
208 if (MI->isCopy())
209 CopySrcReg = MI->getOperand(1).getReg();
210 else {
211 assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike");
212 CopySrcReg = MI->getOperand(2).getReg();
213 }
214
215 if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg))
216 return CopySrcReg;
217
218 SrcReg = CopySrcReg;
219 }
220 }
221
222 } // end default namespace
223
224 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
225 "PowerPC MI Peephole Optimization", false, false)
226 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
227 "PowerPC MI Peephole Optimization", false, false)
228
229 char PPCMIPeephole::ID = 0;
230 FunctionPass*
createPPCMIPeepholePass()231 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
232
233