1//==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9 10//===----------------------------------------------------------------------===// 11// Class definitions. 12//===----------------------------------------------------------------------===// 13 14class SystemZReg<string n> : Register<n> { 15 let Namespace = "SystemZ"; 16} 17 18class SystemZRegWithSubregs<string n, list<Register> subregs> 19 : RegisterWithSubRegs<n, subregs> { 20 let Namespace = "SystemZ"; 21} 22 23let Namespace = "SystemZ" in { 24def subreg_l32 : SubRegIndex<32, 0>; // Also acts as subreg_ll32. 25def subreg_h32 : SubRegIndex<32, 32>; // Also acts as subreg_lh32. 26def subreg_l64 : SubRegIndex<64, 0>; 27def subreg_h64 : SubRegIndex<64, 64>; 28def subreg_r32 : SubRegIndex<32, 32>; // Reinterpret a wider reg as 32 bits. 29def subreg_r64 : SubRegIndex<64, 64>; // Reinterpret a wider reg as 64 bits. 30def subreg_hh32 : ComposedSubRegIndex<subreg_h64, subreg_h32>; 31def subreg_hl32 : ComposedSubRegIndex<subreg_h64, subreg_l32>; 32def subreg_hr32 : ComposedSubRegIndex<subreg_h64, subreg_r32>; 33} 34 35// Define a register class that contains values of types TYPES and an 36// associated operand called NAME. SIZE is the size and alignment 37// of the registers and REGLIST is the list of individual registers. 38multiclass SystemZRegClass<string name, list<ValueType> types, int size, 39 dag regList> { 40 def AsmOperand : AsmOperandClass { 41 let Name = name; 42 let ParserMethod = "parse"##name; 43 let RenderMethod = "addRegOperands"; 44 } 45 def Bit : RegisterClass<"SystemZ", types, size, regList> { 46 let Size = size; 47 } 48 def "" : RegisterOperand<!cast<RegisterClass>(name##"Bit")> { 49 let ParserMatchClass = !cast<AsmOperandClass>(name##"AsmOperand"); 50 } 51} 52 53//===----------------------------------------------------------------------===// 54// General-purpose registers 55//===----------------------------------------------------------------------===// 56 57// Lower 32 bits of one of the 16 64-bit general-purpose registers 58class GPR32<bits<16> num, string n> : SystemZReg<n> { 59 let HWEncoding = num; 60} 61 62// One of the 16 64-bit general-purpose registers. 63class GPR64<bits<16> num, string n, GPR32 low, GPR32 high> 64 : SystemZRegWithSubregs<n, [low, high]> { 65 let HWEncoding = num; 66 let SubRegIndices = [subreg_l32, subreg_h32]; 67} 68 69// 8 even-odd pairs of GPR64s. 70class GPR128<bits<16> num, string n, GPR64 low, GPR64 high> 71 : SystemZRegWithSubregs<n, [low, high]> { 72 let HWEncoding = num; 73 let SubRegIndices = [subreg_l64, subreg_h64]; 74} 75 76// General-purpose registers 77foreach I = 0-15 in { 78 def R#I#L : GPR32<I, "r"#I>; 79 def R#I#H : GPR32<I, "r"#I>; 80 def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"L"), !cast<GPR32>("R"#I#"H")>, 81 DwarfRegNum<[I]>; 82} 83 84foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in { 85 def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#!add(I, 1)#"D"), 86 !cast<GPR64>("R"#I#"D")>; 87} 88 89/// Allocate the callee-saved R6-R13 backwards. That way they can be saved 90/// together with R14 and R15 in one prolog instruction. 91defm GR32 : SystemZRegClass<"GR32", [i32], 32, 92 (add (sequence "R%uL", 0, 5), 93 (sequence "R%uL", 15, 6))>; 94defm GRH32 : SystemZRegClass<"GRH32", [i32], 32, 95 (add (sequence "R%uH", 0, 5), 96 (sequence "R%uH", 15, 6))>; 97defm GR64 : SystemZRegClass<"GR64", [i64], 64, 98 (add (sequence "R%uD", 0, 5), 99 (sequence "R%uD", 15, 6))>; 100 101// Combine the low and high GR32s into a single class. This can only be 102// used for virtual registers if the high-word facility is available. 103defm GRX32 : SystemZRegClass<"GRX32", [i32], 32, 104 (add (sequence "R%uL", 0, 5), 105 (sequence "R%uH", 0, 5), 106 R15L, R15H, R14L, R14H, R13L, R13H, 107 R12L, R12H, R11L, R11H, R10L, R10H, 108 R9L, R9H, R8L, R8H, R7L, R7H, R6L, R6H)>; 109 110// The architecture doesn't really have any i128 support, so model the 111// register pairs as untyped instead. 112defm GR128 : SystemZRegClass<"GR128", [untyped], 128, 113 (add R0Q, R2Q, R4Q, R12Q, R10Q, R8Q, R6Q, R14Q)>; 114 115// Base and index registers. Everything except R0, which in an address 116// context evaluates as 0. 117defm ADDR32 : SystemZRegClass<"ADDR32", [i32], 32, (sub GR32Bit, R0L)>; 118defm ADDR64 : SystemZRegClass<"ADDR64", [i64], 64, (sub GR64Bit, R0D)>; 119 120// Not used directly, but needs to exist for ADDR32 and ADDR64 subregs 121// of a GR128. 122defm ADDR128 : SystemZRegClass<"ADDR128", [untyped], 128, (sub GR128Bit, R0Q)>; 123 124//===----------------------------------------------------------------------===// 125// Floating-point registers 126//===----------------------------------------------------------------------===// 127 128// Maps FPR register numbers to their DWARF encoding. 129class DwarfMapping<int id> { int Id = id; } 130 131def F0Dwarf : DwarfMapping<16>; 132def F2Dwarf : DwarfMapping<17>; 133def F4Dwarf : DwarfMapping<18>; 134def F6Dwarf : DwarfMapping<19>; 135 136def F1Dwarf : DwarfMapping<20>; 137def F3Dwarf : DwarfMapping<21>; 138def F5Dwarf : DwarfMapping<22>; 139def F7Dwarf : DwarfMapping<23>; 140 141def F8Dwarf : DwarfMapping<24>; 142def F10Dwarf : DwarfMapping<25>; 143def F12Dwarf : DwarfMapping<26>; 144def F14Dwarf : DwarfMapping<27>; 145 146def F9Dwarf : DwarfMapping<28>; 147def F11Dwarf : DwarfMapping<29>; 148def F13Dwarf : DwarfMapping<30>; 149def F15Dwarf : DwarfMapping<31>; 150 151def F16Dwarf : DwarfMapping<68>; 152def F18Dwarf : DwarfMapping<69>; 153def F20Dwarf : DwarfMapping<70>; 154def F22Dwarf : DwarfMapping<71>; 155 156def F17Dwarf : DwarfMapping<72>; 157def F19Dwarf : DwarfMapping<73>; 158def F21Dwarf : DwarfMapping<74>; 159def F23Dwarf : DwarfMapping<75>; 160 161def F24Dwarf : DwarfMapping<76>; 162def F26Dwarf : DwarfMapping<77>; 163def F28Dwarf : DwarfMapping<78>; 164def F30Dwarf : DwarfMapping<79>; 165 166def F25Dwarf : DwarfMapping<80>; 167def F27Dwarf : DwarfMapping<81>; 168def F29Dwarf : DwarfMapping<82>; 169def F31Dwarf : DwarfMapping<83>; 170 171// Upper 32 bits of one of the floating-point registers 172class FPR32<bits<16> num, string n> : SystemZReg<n> { 173 let HWEncoding = num; 174} 175 176// One of the floating-point registers. 177class FPR64<bits<16> num, string n, FPR32 high> 178 : SystemZRegWithSubregs<n, [high]> { 179 let HWEncoding = num; 180 let SubRegIndices = [subreg_r32]; 181} 182 183// 8 pairs of FPR64s, with a one-register gap inbetween. 184class FPR128<bits<16> num, string n, FPR64 low, FPR64 high> 185 : SystemZRegWithSubregs<n, [low, high]> { 186 let HWEncoding = num; 187 let SubRegIndices = [subreg_l64, subreg_h64]; 188} 189 190// Floating-point registers. Registers 16-31 require the vector facility. 191foreach I = 0-15 in { 192 def F#I#S : FPR32<I, "f"#I>; 193 def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>, 194 DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>; 195} 196foreach I = 16-31 in { 197 def F#I#S : FPR32<I, "v"#I>; 198 def F#I#D : FPR64<I, "v"#I, !cast<FPR32>("F"#I#"S")>, 199 DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>; 200} 201 202foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in { 203 def F#I#Q : FPR128<I, "f"#I, !cast<FPR64>("F"#!add(I, 2)#"D"), 204 !cast<FPR64>("F"#I#"D")>; 205} 206 207// There's no store-multiple instruction for FPRs, so we're not fussy 208// about the order in which call-saved registers are allocated. 209defm FP32 : SystemZRegClass<"FP32", [f32], 32, (sequence "F%uS", 0, 15)>; 210defm FP64 : SystemZRegClass<"FP64", [f64], 64, (sequence "F%uD", 0, 15)>; 211defm FP128 : SystemZRegClass<"FP128", [f128], 128, 212 (add F0Q, F1Q, F4Q, F5Q, F8Q, F9Q, F12Q, F13Q)>; 213 214//===----------------------------------------------------------------------===// 215// Vector registers 216//===----------------------------------------------------------------------===// 217 218// A full 128-bit vector register, with an FPR64 as its high part. 219class VR128<bits<16> num, string n, FPR64 high> 220 : SystemZRegWithSubregs<n, [high]> { 221 let HWEncoding = num; 222 let SubRegIndices = [subreg_r64]; 223} 224 225// Full vector registers. 226foreach I = 0-31 in { 227 def V#I : VR128<I, "v"#I, !cast<FPR64>("F"#I#"D")>, 228 DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>; 229} 230 231// Class used to store 32-bit values in the first element of a vector 232// register. f32 scalars are used for the WLEDB and WLDEB instructions. 233defm VR32 : SystemZRegClass<"VR32", [f32, v4i8, v2i16], 32, 234 (add (sequence "F%uS", 0, 7), 235 (sequence "F%uS", 16, 31), 236 (sequence "F%uS", 8, 15))>; 237 238// Class used to store 64-bit values in the upper half of a vector register. 239// The vector facility also includes scalar f64 instructions that operate 240// on the full vector register set. 241defm VR64 : SystemZRegClass<"VR64", [f64, v8i8, v4i16, v2i32, v2f32], 64, 242 (add (sequence "F%uD", 0, 7), 243 (sequence "F%uD", 16, 31), 244 (sequence "F%uD", 8, 15))>; 245 246// The subset of vector registers that can be used for floating-point 247// operations too. 248defm VF128 : SystemZRegClass<"VF128", 249 [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128, 250 (sequence "V%u", 0, 15)>; 251 252// All vector registers. 253defm VR128 : SystemZRegClass<"VR128", 254 [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128, 255 (add (sequence "V%u", 0, 7), 256 (sequence "V%u", 16, 31), 257 (sequence "V%u", 8, 15))>; 258 259// Attaches a ValueType to a register operand, to make the instruction 260// definitions easier. 261class TypedReg<ValueType vtin, RegisterOperand opin> { 262 ValueType vt = vtin; 263 RegisterOperand op = opin; 264} 265 266def v32eb : TypedReg<f32, VR32>; 267def v64g : TypedReg<i64, VR64>; 268def v64db : TypedReg<f64, VR64>; 269def v128b : TypedReg<v16i8, VR128>; 270def v128h : TypedReg<v8i16, VR128>; 271def v128f : TypedReg<v4i32, VR128>; 272def v128g : TypedReg<v2i64, VR128>; 273def v128q : TypedReg<v16i8, VR128>; 274def v128eb : TypedReg<v4f32, VR128>; 275def v128db : TypedReg<v2f64, VR128>; 276def v128any : TypedReg<untyped, VR128>; 277 278//===----------------------------------------------------------------------===// 279// Other registers 280//===----------------------------------------------------------------------===// 281 282// The 2-bit condition code field of the PSW. Every register named in an 283// inline asm needs a class associated with it. 284def CC : SystemZReg<"cc">; 285let isAllocatable = 0 in 286 def CCRegs : RegisterClass<"SystemZ", [i32], 32, (add CC)>; 287