• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This describes the calling conventions for the X86-32 and X86-64
11// architectures.
12//
13//===----------------------------------------------------------------------===//
14
15/// CCIfSubtarget - Match if the current subtarget has a feature F.
16class CCIfSubtarget<string F, CCAction A>
17    : CCIf<!strconcat("static_cast<const X86Subtarget&>"
18                       "(State.getMachineFunction().getSubtarget()).", F),
19           A>;
20
21//===----------------------------------------------------------------------===//
22// Return Value Calling Conventions
23//===----------------------------------------------------------------------===//
24
25// Return-value conventions common to all X86 CC's.
26def RetCC_X86Common : CallingConv<[
27  // Scalar values are returned in AX first, then DX.  For i8, the ABI
28  // requires the values to be in AL and AH, however this code uses AL and DL
29  // instead. This is because using AH for the second register conflicts with
30  // the way LLVM does multiple return values -- a return of {i16,i8} would end
31  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
32  // for functions that return two i8 values are currently expected to pack the
33  // values into an i16 (which uses AX, and thus AL:AH).
34  //
35  // For code that doesn't care about the ABI, we allow returning more than two
36  // integer values in registers.
37  CCIfType<[i1],  CCPromoteToType<i8>>,
38  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
39  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
40  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
41  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
42
43  // Boolean vectors of AVX-512 are returned in SIMD registers.
44  // The call from AVX to AVX-512 function should work,
45  // since the boolean types in AVX/AVX2 are promoted by default.
46  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
47  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
48  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
49  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
50  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
51  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
52
53  // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
54  // can only be used by ABI non-compliant code. If the target doesn't have XMM
55  // registers, it won't have vector types.
56  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
57            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
58
59  // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
60  // can only be used by ABI non-compliant code. This vector type is only
61  // supported while using the AVX target feature.
62  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
63            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
64
65  // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
66  // can only be used by ABI non-compliant code. This vector type is only
67  // supported while using the AVX-512 target feature.
68  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
69            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
70
71  // MMX vector types are always returned in MM0. If the target doesn't have
72  // MM0, it doesn't support these vector types.
73  CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
74
75  // Long double types are always returned in FP0 (even with SSE).
76  CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>
77]>;
78
79// X86-32 C return-value convention.
80def RetCC_X86_32_C : CallingConv<[
81  // The X86-32 calling convention returns FP values in FP0, unless marked
82  // with "inreg" (used here to distinguish one kind of reg from another,
83  // weirdly; this is really the sse-regparm calling convention) in which
84  // case they use XMM0, otherwise it is the same as the common X86 calling
85  // conv.
86  CCIfInReg<CCIfSubtarget<"hasSSE2()",
87    CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
88  CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>,
89  CCDelegateTo<RetCC_X86Common>
90]>;
91
92// X86-32 FastCC return-value convention.
93def RetCC_X86_32_Fast : CallingConv<[
94  // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
95  // SSE2.
96  // This can happen when a float, 2 x float, or 3 x float vector is split by
97  // target lowering, and is returned in 1-3 sse regs.
98  CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
99  CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
100
101  // For integers, ECX can be used as an extra return register
102  CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
103  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
104  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
105
106  // Otherwise, it is the same as the common X86 calling convention.
107  CCDelegateTo<RetCC_X86Common>
108]>;
109
110// Intel_OCL_BI return-value convention.
111def RetCC_Intel_OCL_BI : CallingConv<[
112  // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
113  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
114            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
115
116  // 256-bit FP vectors
117  // No more than 4 registers
118  CCIfType<[v8f32, v4f64, v8i32, v4i64],
119            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
120
121  // 512-bit FP vectors
122  CCIfType<[v16f32, v8f64, v16i32, v8i64],
123            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
124
125  // i32, i64 in the standard way
126  CCDelegateTo<RetCC_X86Common>
127]>;
128
129// X86-32 HiPE return-value convention.
130def RetCC_X86_32_HiPE : CallingConv<[
131  // Promote all types to i32
132  CCIfType<[i8, i16], CCPromoteToType<i32>>,
133
134  // Return: HP, P, VAL1, VAL2
135  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
136]>;
137
138// X86-32 HiPE return-value convention.
139def RetCC_X86_32_VectorCall : CallingConv<[
140  // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
141  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
142            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
143
144  // 256-bit FP vectors
145  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
146            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
147
148  // 512-bit FP vectors
149  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
150            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
151
152  // Return integers in the standard way.
153  CCDelegateTo<RetCC_X86Common>
154]>;
155
156// X86-64 C return-value convention.
157def RetCC_X86_64_C : CallingConv<[
158  // The X86-64 calling convention always returns FP values in XMM0.
159  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
160  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
161  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
162
163  // MMX vector types are always returned in XMM0.
164  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
165
166  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
167
168  CCDelegateTo<RetCC_X86Common>
169]>;
170
171// X86-Win64 C return-value convention.
172def RetCC_X86_Win64_C : CallingConv<[
173  // The X86-Win64 calling convention always returns __m64 values in RAX.
174  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
175
176  // Otherwise, everything is the same as 'normal' X86-64 C CC.
177  CCDelegateTo<RetCC_X86_64_C>
178]>;
179
180// X86-64 HiPE return-value convention.
181def RetCC_X86_64_HiPE : CallingConv<[
182  // Promote all types to i64
183  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
184
185  // Return: HP, P, VAL1, VAL2
186  CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
187]>;
188
189// X86-64 WebKit_JS return-value convention.
190def RetCC_X86_64_WebKit_JS : CallingConv<[
191  // Promote all types to i64
192  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
193
194  // Return: RAX
195  CCIfType<[i64], CCAssignToReg<[RAX]>>
196]>;
197
198def RetCC_X86_64_Swift : CallingConv<[
199  // For integers, ECX, R8D can be used as extra return registers.
200  CCIfType<[i1],  CCPromoteToType<i8>>,
201  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
202  CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
203  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
204  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,
205
206  // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
207  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
208  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
209  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
210
211  // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
212  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
213  CCDelegateTo<RetCC_X86Common>
214]>;
215
216// X86-64 AnyReg return-value convention. No explicit register is specified for
217// the return-value. The register allocator is allowed and expected to choose
218// any free register.
219//
220// This calling convention is currently only supported by the stackmap and
221// patchpoint intrinsics. All other uses will result in an assert on Debug
222// builds. On Release builds we fallback to the X86 C calling convention.
223def RetCC_X86_64_AnyReg : CallingConv<[
224  CCCustom<"CC_X86_AnyReg_Error">
225]>;
226
227// X86-64 HHVM return-value convention.
228def RetCC_X86_64_HHVM: CallingConv<[
229  // Promote all types to i64
230  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
231
232  // Return: could return in any GP register save RSP and R12.
233  CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
234                                 RAX, R10, R11, R13, R14, R15]>>
235]>;
236
237// This is the root return-value convention for the X86-32 backend.
238def RetCC_X86_32 : CallingConv<[
239  // If FastCC, use RetCC_X86_32_Fast.
240  CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
241  // If HiPE, use RetCC_X86_32_HiPE.
242  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
243  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
244
245  // Otherwise, use RetCC_X86_32_C.
246  CCDelegateTo<RetCC_X86_32_C>
247]>;
248
249// This is the root return-value convention for the X86-64 backend.
250def RetCC_X86_64 : CallingConv<[
251  // HiPE uses RetCC_X86_64_HiPE
252  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
253
254  // Handle JavaScript calls.
255  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
256  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
257
258  // Handle Swift calls.
259  CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,
260
261  // Handle explicit CC selection
262  CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
263  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
264
265  // Handle HHVM calls.
266  CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,
267
268  // Mingw64 and native Win64 use Win64 CC
269  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
270
271  // Otherwise, drop to normal X86-64 CC
272  CCDelegateTo<RetCC_X86_64_C>
273]>;
274
275// This is the return-value convention used for the entire X86 backend.
276def RetCC_X86 : CallingConv<[
277
278  // Check if this is the Intel OpenCL built-ins calling convention
279  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
280
281  CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
282  CCDelegateTo<RetCC_X86_32>
283]>;
284
285//===----------------------------------------------------------------------===//
286// X86-64 Argument Calling Conventions
287//===----------------------------------------------------------------------===//
288
289def CC_X86_64_C : CallingConv<[
290  // Handles byval parameters.
291  CCIfByVal<CCPassByVal<8, 8>>,
292
293  // Promote i1/i8/i16 arguments to i32.
294  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
295
296  // The 'nest' parameter, if any, is passed in R10.
297  CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
298  CCIfNest<CCAssignToReg<[R10]>>,
299
300  // Pass SwiftSelf in a callee saved register.
301  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
302
303  // A SwiftError is passed in R12.
304  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
305
306  // For Swift Calling Convention, pass sret in %RAX.
307  CCIfCC<"CallingConv::Swift",
308    CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
309
310  // The first 6 integer arguments are passed in integer registers.
311  CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
312  CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
313
314  // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
315  CCIfType<[x86mmx],
316            CCIfSubtarget<"isTargetDarwin()",
317            CCIfSubtarget<"hasSSE2()",
318            CCPromoteToType<v2i64>>>>,
319
320  // Boolean vectors of AVX-512 are passed in SIMD registers.
321  // The call from AVX to AVX-512 function should work,
322  // since the boolean types in AVX/AVX2 are promoted by default.
323  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
324  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
325  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
326  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
327  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
328  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
329
330  // The first 8 FP/Vector arguments are passed in XMM registers.
331  CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
332            CCIfSubtarget<"hasSSE1()",
333            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
334
335  // The first 8 256-bit vector arguments are passed in YMM registers, unless
336  // this is a vararg function.
337  // FIXME: This isn't precisely correct; the x86-64 ABI document says that
338  // fixed arguments to vararg functions are supposed to be passed in
339  // registers.  Actually modeling that would be a lot of work, though.
340  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
341                          CCIfSubtarget<"hasFp256()",
342                          CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
343                                         YMM4, YMM5, YMM6, YMM7]>>>>,
344
345  // The first 8 512-bit vector arguments are passed in ZMM registers.
346  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
347            CCIfSubtarget<"hasAVX512()",
348            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
349
350  // Integer/FP values get stored in stack slots that are 8 bytes in size and
351  // 8-byte aligned if there are no more registers to hold them.
352  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
353
354  // Long doubles get stack slots whose size and alignment depends on the
355  // subtarget.
356  CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
357
358  // Vectors get 16-byte stack slots that are 16-byte aligned.
359  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
360
361  // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
362  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
363           CCAssignToStack<32, 32>>,
364
365  // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
366  CCIfType<[v16i32, v8i64, v16f32, v8f64],
367           CCAssignToStack<64, 64>>
368]>;
369
370// Calling convention for X86-64 HHVM.
371def CC_X86_64_HHVM : CallingConv<[
372  // Use all/any GP registers for args, except RSP.
373  CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
374                                 RDI, RSI, RDX, RCX, R8, R9,
375                                 RAX, R10, R11, R13, R14]>>
376]>;
377
378// Calling convention for helper functions in HHVM.
379def CC_X86_64_HHVM_C : CallingConv<[
380  // Pass the first argument in RBP.
381  CCIfType<[i64], CCAssignToReg<[RBP]>>,
382
383  // Otherwise it's the same as the regular C calling convention.
384  CCDelegateTo<CC_X86_64_C>
385]>;
386
387// Calling convention used on Win64
388def CC_X86_Win64_C : CallingConv<[
389  // FIXME: Handle byval stuff.
390  // FIXME: Handle varargs.
391
392  // Promote i1/i8/i16 arguments to i32.
393  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
394
395  // The 'nest' parameter, if any, is passed in R10.
396  CCIfNest<CCAssignToReg<[R10]>>,
397
398  // 128 bit vectors are passed by pointer
399  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
400
401
402  // 256 bit vectors are passed by pointer
403  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
404
405  // 512 bit vectors are passed by pointer
406  CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
407
408  // The first 4 MMX vector arguments are passed in GPRs.
409  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
410
411  // The first 4 integer arguments are passed in integer registers.
412  CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
413                                          [XMM0, XMM1, XMM2, XMM3]>>,
414
415  // Do not pass the sret argument in RCX, the Win64 thiscall calling
416  // convention requires "this" to be passed in RCX.
417  CCIfCC<"CallingConv::X86_ThisCall",
418    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
419                                                     [XMM1, XMM2, XMM3]>>>>,
420
421  CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
422                                          [XMM0, XMM1, XMM2, XMM3]>>,
423
424  // The first 4 FP/Vector arguments are passed in XMM registers.
425  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
426           CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
427                                   [RCX , RDX , R8  , R9  ]>>,
428
429  // Integer/FP values get stored in stack slots that are 8 bytes in size and
430  // 8-byte aligned if there are no more registers to hold them.
431  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
432
433  // Long doubles get stack slots whose size and alignment depends on the
434  // subtarget.
435  CCIfType<[f80], CCAssignToStack<0, 0>>
436]>;
437
438def CC_X86_Win64_VectorCall : CallingConv<[
439  // The first 6 floating point and vector types of 128 bits or less use
440  // XMM0-XMM5.
441  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
442           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5]>>,
443
444  // 256-bit vectors use YMM registers.
445  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
446           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5]>>,
447
448  // 512-bit vectors use ZMM registers.
449  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
450           CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5]>>,
451
452  // Delegate to fastcall to handle integer types.
453  CCDelegateTo<CC_X86_Win64_C>
454]>;
455
456
457def CC_X86_64_GHC : CallingConv<[
458  // Promote i8/i16/i32 arguments to i64.
459  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
460
461  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
462  CCIfType<[i64],
463            CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
464
465  // Pass in STG registers: F1, F2, F3, F4, D1, D2
466  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
467            CCIfSubtarget<"hasSSE1()",
468            CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>
469]>;
470
471def CC_X86_64_HiPE : CallingConv<[
472  // Promote i8/i16/i32 arguments to i64.
473  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
474
475  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
476  CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
477
478  // Integer/FP values get stored in stack slots that are 8 bytes in size and
479  // 8-byte aligned if there are no more registers to hold them.
480  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
481]>;
482
483def CC_X86_64_WebKit_JS : CallingConv<[
484  // Promote i8/i16 arguments to i32.
485  CCIfType<[i8, i16], CCPromoteToType<i32>>,
486
487  // Only the first integer argument is passed in register.
488  CCIfType<[i32], CCAssignToReg<[EAX]>>,
489  CCIfType<[i64], CCAssignToReg<[RAX]>>,
490
491  // The remaining integer arguments are passed on the stack. 32bit integer and
492  // floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
493  // 64bit integer and floating-point arguments are aligned to 8 byte and stored
494  // in 8 byte stack slots.
495  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
496  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
497]>;
498
499// No explicit register is specified for the AnyReg calling convention. The
500// register allocator may assign the arguments to any free register.
501//
502// This calling convention is currently only supported by the stackmap and
503// patchpoint intrinsics. All other uses will result in an assert on Debug
504// builds. On Release builds we fallback to the X86 C calling convention.
505def CC_X86_64_AnyReg : CallingConv<[
506  CCCustom<"CC_X86_AnyReg_Error">
507]>;
508
509//===----------------------------------------------------------------------===//
510// X86 C Calling Convention
511//===----------------------------------------------------------------------===//
512
513/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
514/// values are spilled on the stack.
515def CC_X86_32_Vector_Common : CallingConv<[
516  // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
517  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
518
519  // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
520  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
521           CCAssignToStack<32, 32>>,
522
523  // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
524  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
525           CCAssignToStack<64, 64>>
526]>;
527
528// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
529// vector registers
530def CC_X86_32_Vector_Standard : CallingConv<[
531  // SSE vector arguments are passed in XMM registers.
532  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
533                CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
534
535  // AVX 256-bit vector arguments are passed in YMM registers.
536  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
537                CCIfSubtarget<"hasFp256()",
538                CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
539
540  // AVX 512-bit vector arguments are passed in ZMM registers.
541  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
542                CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
543
544  CCDelegateTo<CC_X86_32_Vector_Common>
545]>;
546
547// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
548// vector registers.
549def CC_X86_32_Vector_Darwin : CallingConv<[
550  // SSE vector arguments are passed in XMM registers.
551  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
552                CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
553
554  // AVX 256-bit vector arguments are passed in YMM registers.
555  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
556                CCIfSubtarget<"hasFp256()",
557                CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
558
559  // AVX 512-bit vector arguments are passed in ZMM registers.
560  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
561                CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
562
563  CCDelegateTo<CC_X86_32_Vector_Common>
564]>;
565
566/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
567/// values are spilled on the stack.
568def CC_X86_32_Common : CallingConv<[
569  // Handles byval parameters.
570  CCIfByVal<CCPassByVal<4, 4>>,
571
572  // The first 3 float or double arguments, if marked 'inreg' and if the call
573  // is not a vararg call and if SSE2 is available, are passed in SSE registers.
574  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
575                CCIfSubtarget<"hasSSE2()",
576                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
577
578  // The first 3 __m64 vector arguments are passed in mmx registers if the
579  // call is not a vararg call.
580  CCIfNotVarArg<CCIfType<[x86mmx],
581                CCAssignToReg<[MM0, MM1, MM2]>>>,
582
583  // Integer/Float values get stored in stack slots that are 4 bytes in
584  // size and 4-byte aligned.
585  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
586
587  // Doubles get 8-byte slots that are 4-byte aligned.
588  CCIfType<[f64], CCAssignToStack<8, 4>>,
589
590  // Long doubles get slots whose size depends on the subtarget.
591  CCIfType<[f80], CCAssignToStack<0, 4>>,
592
593  // Boolean vectors of AVX-512 are passed in SIMD registers.
594  // The call from AVX to AVX-512 function should work,
595  // since the boolean types in AVX/AVX2 are promoted by default.
596  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
597  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
598  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
599  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
600  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
601  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
602
603  // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
604  // passed in the parameter area.
605  CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
606
607  // Darwin passes vectors in a form that differs from the i386 psABI
608  CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
609
610  // Otherwise, drop to 'normal' X86-32 CC
611  CCDelegateTo<CC_X86_32_Vector_Standard>
612]>;
613
614def CC_X86_32_C : CallingConv<[
615  // Promote i1/i8/i16 arguments to i32.
616  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
617
618  // The 'nest' parameter, if any, is passed in ECX.
619  CCIfNest<CCAssignToReg<[ECX]>>,
620
621  // The first 3 integer arguments, if marked 'inreg' and if the call is not
622  // a vararg call, are passed in integer registers.
623  CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
624
625  // Otherwise, same as everything else.
626  CCDelegateTo<CC_X86_32_Common>
627]>;
628
629def CC_X86_32_MCU : CallingConv<[
630  // Handles byval parameters.  Note that, like FastCC, we can't rely on
631  // the delegation to CC_X86_32_Common because that happens after code that
632  // puts arguments in registers.
633  CCIfByVal<CCPassByVal<4, 4>>,
634
635  // Promote i1/i8/i16 arguments to i32.
636  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
637
638  // If the call is not a vararg call, some arguments may be passed
639  // in integer registers.
640  CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,
641
642  // Otherwise, same as everything else.
643  CCDelegateTo<CC_X86_32_Common>
644]>;
645
646def CC_X86_32_FastCall : CallingConv<[
647  // Promote i1/i8/i16 arguments to i32.
648  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
649
650  // The 'nest' parameter, if any, is passed in EAX.
651  CCIfNest<CCAssignToReg<[EAX]>>,
652
653  // The first 2 integer arguments are passed in ECX/EDX
654  CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
655
656  // Otherwise, same as everything else.
657  CCDelegateTo<CC_X86_32_Common>
658]>;
659
660def CC_X86_32_VectorCall : CallingConv<[
661  // The first 6 floating point and vector types of 128 bits or less use
662  // XMM0-XMM5.
663  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
664           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5]>>,
665
666  // 256-bit vectors use YMM registers.
667  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
668           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5]>>,
669
670  // 512-bit vectors use ZMM registers.
671  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
672           CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5]>>,
673
674  // Otherwise, pass it indirectly.
675  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64,
676            v32i8, v16i16, v8i32, v4i64, v8f32, v4f64,
677            v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
678           CCCustom<"CC_X86_32_VectorCallIndirect">>,
679
680  // Delegate to fastcall to handle integer types.
681  CCDelegateTo<CC_X86_32_FastCall>
682]>;
683
684def CC_X86_32_ThisCall_Common : CallingConv<[
685  // The first integer argument is passed in ECX
686  CCIfType<[i32], CCAssignToReg<[ECX]>>,
687
688  // Otherwise, same as everything else.
689  CCDelegateTo<CC_X86_32_Common>
690]>;
691
692def CC_X86_32_ThisCall_Mingw : CallingConv<[
693  // Promote i1/i8/i16 arguments to i32.
694  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
695
696  CCDelegateTo<CC_X86_32_ThisCall_Common>
697]>;
698
699def CC_X86_32_ThisCall_Win : CallingConv<[
700  // Promote i1/i8/i16 arguments to i32.
701  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
702
703  // Pass sret arguments indirectly through stack.
704  CCIfSRet<CCAssignToStack<4, 4>>,
705
706  CCDelegateTo<CC_X86_32_ThisCall_Common>
707]>;
708
709def CC_X86_32_ThisCall : CallingConv<[
710  CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
711  CCDelegateTo<CC_X86_32_ThisCall_Win>
712]>;
713
714def CC_X86_32_FastCC : CallingConv<[
715  // Handles byval parameters.  Note that we can't rely on the delegation
716  // to CC_X86_32_Common for this because that happens after code that
717  // puts arguments in registers.
718  CCIfByVal<CCPassByVal<4, 4>>,
719
720  // Promote i1/i8/i16 arguments to i32.
721  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
722
723  // The 'nest' parameter, if any, is passed in EAX.
724  CCIfNest<CCAssignToReg<[EAX]>>,
725
726  // The first 2 integer arguments are passed in ECX/EDX
727  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
728
729  // The first 3 float or double arguments, if the call is not a vararg
730  // call and if SSE2 is available, are passed in SSE registers.
731  CCIfNotVarArg<CCIfType<[f32,f64],
732                CCIfSubtarget<"hasSSE2()",
733                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
734
735  // Doubles get 8-byte slots that are 8-byte aligned.
736  CCIfType<[f64], CCAssignToStack<8, 8>>,
737
738  // Otherwise, same as everything else.
739  CCDelegateTo<CC_X86_32_Common>
740]>;
741
742def CC_X86_32_GHC : CallingConv<[
743  // Promote i8/i16 arguments to i32.
744  CCIfType<[i8, i16], CCPromoteToType<i32>>,
745
746  // Pass in STG registers: Base, Sp, Hp, R1
747  CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
748]>;
749
750def CC_X86_32_HiPE : CallingConv<[
751  // Promote i8/i16 arguments to i32.
752  CCIfType<[i8, i16], CCPromoteToType<i32>>,
753
754  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
755  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
756
757  // Integer/Float values get stored in stack slots that are 4 bytes in
758  // size and 4-byte aligned.
759  CCIfType<[i32, f32], CCAssignToStack<4, 4>>
760]>;
761
762// X86-64 Intel OpenCL built-ins calling convention.
763def CC_Intel_OCL_BI : CallingConv<[
764
765  CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
766  CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8,  R9 ]>>>,
767
768  CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
769  CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
770
771  CCIfType<[i32], CCAssignToStack<4, 4>>,
772
773  // The SSE vector arguments are passed in XMM registers.
774  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
775           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
776
777  // The 256-bit vector arguments are passed in YMM registers.
778  CCIfType<[v8f32, v4f64, v8i32, v4i64],
779           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
780
781  // The 512-bit vector arguments are passed in ZMM registers.
782  CCIfType<[v16f32, v8f64, v16i32, v8i64],
783           CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
784
785  // Pass masks in mask registers
786  CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
787
788  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
789  CCIfSubtarget<"is64Bit()",       CCDelegateTo<CC_X86_64_C>>,
790  CCDelegateTo<CC_X86_32_C>
791]>;
792
793def CC_X86_32_Intr : CallingConv<[
794  CCAssignToStack<4, 4>
795]>;
796
797def CC_X86_64_Intr : CallingConv<[
798  CCAssignToStack<8, 8>
799]>;
800
801//===----------------------------------------------------------------------===//
802// X86 Root Argument Calling Conventions
803//===----------------------------------------------------------------------===//
804
805// This is the root argument convention for the X86-32 backend.
806def CC_X86_32 : CallingConv<[
807  // X86_INTR calling convention is valid in MCU target and should override the
808  // MCU calling convention. Thus, this should be checked before isTargetMCU().
809  CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_32_Intr>>,
810  CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
811  CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
812  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_32_VectorCall>>,
813  CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
814  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
815  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
816  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
817
818  // Otherwise, drop to normal X86-32 CC
819  CCDelegateTo<CC_X86_32_C>
820]>;
821
822// This is the root argument convention for the X86-64 backend.
823def CC_X86_64 : CallingConv<[
824  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
825  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
826  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
827  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
828  CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<CC_X86_Win64_C>>,
829  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
830  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
831  CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
832  CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
833  CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_64_Intr>>,
834
835  // Mingw64 and native Win64 use Win64 CC
836  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
837
838  // Otherwise, drop to normal X86-64 CC
839  CCDelegateTo<CC_X86_64_C>
840]>;
841
842// This is the argument convention used for the entire X86 backend.
843def CC_X86 : CallingConv<[
844  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
845  CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
846  CCDelegateTo<CC_X86_32>
847]>;
848
849//===----------------------------------------------------------------------===//
850// Callee-saved Registers.
851//===----------------------------------------------------------------------===//
852
853def CSR_NoRegs : CalleeSavedRegs<(add)>;
854
855def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
856def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
857
858def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;
859
860def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
861def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
862
863def CSR_Win64 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15,
864                                     (sequence "XMM%u", 6, 15))>;
865
866// The function used by Darwin to obtain the address of a thread-local variable
867// uses rdi to pass a single parameter and rax for the return value. All other
868// GPRs are preserved.
869def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
870                                             R8, R9, R10, R11)>;
871
872// CSRs that are handled by prologue, epilogue.
873def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
874
875// CSRs that are handled explicitly via copies.
876def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
877
878// All GPRs - except r11
879def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
880                                              R8, R9, R10, RSP)>;
881
882// All registers - except r11
883def CSR_64_RT_AllRegs     : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
884                                                 (sequence "XMM%u", 0, 15))>;
885def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
886                                                 (sequence "YMM%u", 0, 15))>;
887
888def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
889                                           R11, R12, R13, R14, R15, RBP,
890                                           (sequence "XMM%u", 0, 15))>;
891
892def CSR_32_AllRegs     : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
893                                              EDI)>;
894def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
895                                              (sequence "XMM%u", 0, 7))>;
896def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
897                                              (sequence "YMM%u", 0, 7))>;
898def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
899                                                 (sequence "ZMM%u", 0, 7),
900                                                 (sequence "K%u", 0, 7))>;
901
902def CSR_64_AllRegs     : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
903def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
904                                                   (sequence "YMM%u", 0, 15)),
905                                              (sequence "XMM%u", 0, 15))>;
906def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
907                                                      (sequence "ZMM%u", 0, 31),
908                                                      (sequence "K%u", 0, 7)),
909                                                 (sequence "XMM%u", 0, 15))>;
910
911// Standard C + YMM6-15
912def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
913                                                  R13, R14, R15,
914                                                  (sequence "YMM%u", 6, 15))>;
915
916def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
917                                                     R12, R13, R14, R15,
918                                                     (sequence "ZMM%u", 6, 21),
919                                                     K4, K5, K6, K7)>;
920//Standard C + XMM 8-15
921def CSR_64_Intel_OCL_BI       : CalleeSavedRegs<(add CSR_64,
922                                                 (sequence "XMM%u", 8, 15))>;
923
924//Standard C + YMM 8-15
925def CSR_64_Intel_OCL_BI_AVX    : CalleeSavedRegs<(add CSR_64,
926                                                  (sequence "YMM%u", 8, 15))>;
927
928def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15,
929                                                  (sequence "ZMM%u", 16, 31),
930                                                  K4, K5, K6, K7)>;
931
932// Only R12 is preserved for PHP calls in HHVM.
933def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;
934