• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitCall and visitInvoke functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Analysis/MemoryBuiltins.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/PatternMatch.h"
22 #include "llvm/IR/Statepoint.h"
23 #include "llvm/Transforms/Utils/BuildLibCalls.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
26 using namespace llvm;
27 using namespace PatternMatch;
28 
29 #define DEBUG_TYPE "instcombine"
30 
31 STATISTIC(NumSimplified, "Number of library calls simplified");
32 
33 /// Return the specified type promoted as it would be to pass though a va_arg
34 /// area.
getPromotedType(Type * Ty)35 static Type *getPromotedType(Type *Ty) {
36   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
37     if (ITy->getBitWidth() < 32)
38       return Type::getInt32Ty(Ty->getContext());
39   }
40   return Ty;
41 }
42 
43 /// Given an aggregate type which ultimately holds a single scalar element,
44 /// like {{{type}}} or [1 x type], return type.
reduceToSingleValueType(Type * T)45 static Type *reduceToSingleValueType(Type *T) {
46   while (!T->isSingleValueType()) {
47     if (StructType *STy = dyn_cast<StructType>(T)) {
48       if (STy->getNumElements() == 1)
49         T = STy->getElementType(0);
50       else
51         break;
52     } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
53       if (ATy->getNumElements() == 1)
54         T = ATy->getElementType();
55       else
56         break;
57     } else
58       break;
59   }
60 
61   return T;
62 }
63 
64 /// Return a constant boolean vector that has true elements in all positions
65 /// where the input constant data vector has an element with the sign bit set.
getNegativeIsTrueBoolVec(ConstantDataVector * V)66 static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
67   SmallVector<Constant *, 32> BoolVec;
68   IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
69   for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
70     Constant *Elt = V->getElementAsConstant(I);
71     assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
72            "Unexpected constant data vector element type");
73     bool Sign = V->getElementType()->isIntegerTy()
74                     ? cast<ConstantInt>(Elt)->isNegative()
75                     : cast<ConstantFP>(Elt)->isNegative();
76     BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
77   }
78   return ConstantVector::get(BoolVec);
79 }
80 
SimplifyMemTransfer(MemIntrinsic * MI)81 Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
82   unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, AC, DT);
83   unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, AC, DT);
84   unsigned MinAlign = std::min(DstAlign, SrcAlign);
85   unsigned CopyAlign = MI->getAlignment();
86 
87   if (CopyAlign < MinAlign) {
88     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), MinAlign, false));
89     return MI;
90   }
91 
92   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
93   // load/store.
94   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
95   if (!MemOpLength) return nullptr;
96 
97   // Source and destination pointer types are always "i8*" for intrinsic.  See
98   // if the size is something we can handle with a single primitive load/store.
99   // A single load+store correctly handles overlapping memory in the memmove
100   // case.
101   uint64_t Size = MemOpLength->getLimitedValue();
102   assert(Size && "0-sized memory transferring should be removed already.");
103 
104   if (Size > 8 || (Size&(Size-1)))
105     return nullptr;  // If not 1/2/4/8 bytes, exit.
106 
107   // Use an integer load+store unless we can find something better.
108   unsigned SrcAddrSp =
109     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
110   unsigned DstAddrSp =
111     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
112 
113   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
114   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
115   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
116 
117   // Memcpy forces the use of i8* for the source and destination.  That means
118   // that if you're using memcpy to move one double around, you'll get a cast
119   // from double* to i8*.  We'd much rather use a double load+store rather than
120   // an i64 load+store, here because this improves the odds that the source or
121   // dest address will be promotable.  See if we can find a better type than the
122   // integer datatype.
123   Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
124   MDNode *CopyMD = nullptr;
125   if (StrippedDest != MI->getArgOperand(0)) {
126     Type *SrcETy = cast<PointerType>(StrippedDest->getType())
127                                     ->getElementType();
128     if (SrcETy->isSized() && DL.getTypeStoreSize(SrcETy) == Size) {
129       // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
130       // down through these levels if so.
131       SrcETy = reduceToSingleValueType(SrcETy);
132 
133       if (SrcETy->isSingleValueType()) {
134         NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
135         NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
136 
137         // If the memcpy has metadata describing the members, see if we can
138         // get the TBAA tag describing our copy.
139         if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
140           if (M->getNumOperands() == 3 && M->getOperand(0) &&
141               mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
142               mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() &&
143               M->getOperand(1) &&
144               mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
145               mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
146                   Size &&
147               M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
148             CopyMD = cast<MDNode>(M->getOperand(2));
149         }
150       }
151     }
152   }
153 
154   // If the memcpy/memmove provides better alignment info than we can
155   // infer, use it.
156   SrcAlign = std::max(SrcAlign, CopyAlign);
157   DstAlign = std::max(DstAlign, CopyAlign);
158 
159   Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
160   Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
161   LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
162   L->setAlignment(SrcAlign);
163   if (CopyMD)
164     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
165   StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
166   S->setAlignment(DstAlign);
167   if (CopyMD)
168     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
169 
170   // Set the size of the copy to 0, it will be deleted on the next iteration.
171   MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
172   return MI;
173 }
174 
SimplifyMemSet(MemSetInst * MI)175 Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
176   unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, AC, DT);
177   if (MI->getAlignment() < Alignment) {
178     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
179                                              Alignment, false));
180     return MI;
181   }
182 
183   // Extract the length and alignment and fill if they are constant.
184   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
185   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
186   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
187     return nullptr;
188   uint64_t Len = LenC->getLimitedValue();
189   Alignment = MI->getAlignment();
190   assert(Len && "0-sized memory setting should be removed already.");
191 
192   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
193   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
194     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
195 
196     Value *Dest = MI->getDest();
197     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
198     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
199     Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
200 
201     // Alignment 0 is identity for alignment 1 for memset, but not store.
202     if (Alignment == 0) Alignment = 1;
203 
204     // Extract the fill value and store.
205     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
206     StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
207                                         MI->isVolatile());
208     S->setAlignment(Alignment);
209 
210     // Set the size of the copy to 0, it will be deleted on the next iteration.
211     MI->setLength(Constant::getNullValue(LenC->getType()));
212     return MI;
213   }
214 
215   return nullptr;
216 }
217 
simplifyX86immShift(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)218 static Value *simplifyX86immShift(const IntrinsicInst &II,
219                                   InstCombiner::BuilderTy &Builder) {
220   bool LogicalShift = false;
221   bool ShiftLeft = false;
222 
223   switch (II.getIntrinsicID()) {
224   default:
225     return nullptr;
226   case Intrinsic::x86_sse2_psra_d:
227   case Intrinsic::x86_sse2_psra_w:
228   case Intrinsic::x86_sse2_psrai_d:
229   case Intrinsic::x86_sse2_psrai_w:
230   case Intrinsic::x86_avx2_psra_d:
231   case Intrinsic::x86_avx2_psra_w:
232   case Intrinsic::x86_avx2_psrai_d:
233   case Intrinsic::x86_avx2_psrai_w:
234     LogicalShift = false; ShiftLeft = false;
235     break;
236   case Intrinsic::x86_sse2_psrl_d:
237   case Intrinsic::x86_sse2_psrl_q:
238   case Intrinsic::x86_sse2_psrl_w:
239   case Intrinsic::x86_sse2_psrli_d:
240   case Intrinsic::x86_sse2_psrli_q:
241   case Intrinsic::x86_sse2_psrli_w:
242   case Intrinsic::x86_avx2_psrl_d:
243   case Intrinsic::x86_avx2_psrl_q:
244   case Intrinsic::x86_avx2_psrl_w:
245   case Intrinsic::x86_avx2_psrli_d:
246   case Intrinsic::x86_avx2_psrli_q:
247   case Intrinsic::x86_avx2_psrli_w:
248     LogicalShift = true; ShiftLeft = false;
249     break;
250   case Intrinsic::x86_sse2_psll_d:
251   case Intrinsic::x86_sse2_psll_q:
252   case Intrinsic::x86_sse2_psll_w:
253   case Intrinsic::x86_sse2_pslli_d:
254   case Intrinsic::x86_sse2_pslli_q:
255   case Intrinsic::x86_sse2_pslli_w:
256   case Intrinsic::x86_avx2_psll_d:
257   case Intrinsic::x86_avx2_psll_q:
258   case Intrinsic::x86_avx2_psll_w:
259   case Intrinsic::x86_avx2_pslli_d:
260   case Intrinsic::x86_avx2_pslli_q:
261   case Intrinsic::x86_avx2_pslli_w:
262     LogicalShift = true; ShiftLeft = true;
263     break;
264   }
265   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
266 
267   // Simplify if count is constant.
268   auto Arg1 = II.getArgOperand(1);
269   auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
270   auto CDV = dyn_cast<ConstantDataVector>(Arg1);
271   auto CInt = dyn_cast<ConstantInt>(Arg1);
272   if (!CAZ && !CDV && !CInt)
273     return nullptr;
274 
275   APInt Count(64, 0);
276   if (CDV) {
277     // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
278     // operand to compute the shift amount.
279     auto VT = cast<VectorType>(CDV->getType());
280     unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
281     assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
282     unsigned NumSubElts = 64 / BitWidth;
283 
284     // Concatenate the sub-elements to create the 64-bit value.
285     for (unsigned i = 0; i != NumSubElts; ++i) {
286       unsigned SubEltIdx = (NumSubElts - 1) - i;
287       auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
288       Count = Count.shl(BitWidth);
289       Count |= SubElt->getValue().zextOrTrunc(64);
290     }
291   }
292   else if (CInt)
293     Count = CInt->getValue();
294 
295   auto Vec = II.getArgOperand(0);
296   auto VT = cast<VectorType>(Vec->getType());
297   auto SVT = VT->getElementType();
298   unsigned VWidth = VT->getNumElements();
299   unsigned BitWidth = SVT->getPrimitiveSizeInBits();
300 
301   // If shift-by-zero then just return the original value.
302   if (Count == 0)
303     return Vec;
304 
305   // Handle cases when Shift >= BitWidth.
306   if (Count.uge(BitWidth)) {
307     // If LogicalShift - just return zero.
308     if (LogicalShift)
309       return ConstantAggregateZero::get(VT);
310 
311     // If ArithmeticShift - clamp Shift to (BitWidth - 1).
312     Count = APInt(64, BitWidth - 1);
313   }
314 
315   // Get a constant vector of the same type as the first operand.
316   auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
317   auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
318 
319   if (ShiftLeft)
320     return Builder.CreateShl(Vec, ShiftVec);
321 
322   if (LogicalShift)
323     return Builder.CreateLShr(Vec, ShiftVec);
324 
325   return Builder.CreateAShr(Vec, ShiftVec);
326 }
327 
328 // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
329 // Unlike the generic IR shifts, the intrinsics have defined behaviour for out
330 // of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
simplifyX86varShift(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)331 static Value *simplifyX86varShift(const IntrinsicInst &II,
332                                   InstCombiner::BuilderTy &Builder) {
333   bool LogicalShift = false;
334   bool ShiftLeft = false;
335 
336   switch (II.getIntrinsicID()) {
337   default:
338     return nullptr;
339   case Intrinsic::x86_avx2_psrav_d:
340   case Intrinsic::x86_avx2_psrav_d_256:
341     LogicalShift = false;
342     ShiftLeft = false;
343     break;
344   case Intrinsic::x86_avx2_psrlv_d:
345   case Intrinsic::x86_avx2_psrlv_d_256:
346   case Intrinsic::x86_avx2_psrlv_q:
347   case Intrinsic::x86_avx2_psrlv_q_256:
348     LogicalShift = true;
349     ShiftLeft = false;
350     break;
351   case Intrinsic::x86_avx2_psllv_d:
352   case Intrinsic::x86_avx2_psllv_d_256:
353   case Intrinsic::x86_avx2_psllv_q:
354   case Intrinsic::x86_avx2_psllv_q_256:
355     LogicalShift = true;
356     ShiftLeft = true;
357     break;
358   }
359   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
360 
361   // Simplify if all shift amounts are constant/undef.
362   auto *CShift = dyn_cast<Constant>(II.getArgOperand(1));
363   if (!CShift)
364     return nullptr;
365 
366   auto Vec = II.getArgOperand(0);
367   auto VT = cast<VectorType>(II.getType());
368   auto SVT = VT->getVectorElementType();
369   int NumElts = VT->getNumElements();
370   int BitWidth = SVT->getIntegerBitWidth();
371 
372   // Collect each element's shift amount.
373   // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
374   bool AnyOutOfRange = false;
375   SmallVector<int, 8> ShiftAmts;
376   for (int I = 0; I < NumElts; ++I) {
377     auto *CElt = CShift->getAggregateElement(I);
378     if (CElt && isa<UndefValue>(CElt)) {
379       ShiftAmts.push_back(-1);
380       continue;
381     }
382 
383     auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
384     if (!COp)
385       return nullptr;
386 
387     // Handle out of range shifts.
388     // If LogicalShift - set to BitWidth (special case).
389     // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
390     APInt ShiftVal = COp->getValue();
391     if (ShiftVal.uge(BitWidth)) {
392       AnyOutOfRange = LogicalShift;
393       ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
394       continue;
395     }
396 
397     ShiftAmts.push_back((int)ShiftVal.getZExtValue());
398   }
399 
400   // If all elements out of range or UNDEF, return vector of zeros/undefs.
401   // ArithmeticShift should only hit this if they are all UNDEF.
402   auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
403   if (llvm::all_of(ShiftAmts, OutOfRange)) {
404     SmallVector<Constant *, 8> ConstantVec;
405     for (int Idx : ShiftAmts) {
406       if (Idx < 0) {
407         ConstantVec.push_back(UndefValue::get(SVT));
408       } else {
409         assert(LogicalShift && "Logical shift expected");
410         ConstantVec.push_back(ConstantInt::getNullValue(SVT));
411       }
412     }
413     return ConstantVector::get(ConstantVec);
414   }
415 
416   // We can't handle only some out of range values with generic logical shifts.
417   if (AnyOutOfRange)
418     return nullptr;
419 
420   // Build the shift amount constant vector.
421   SmallVector<Constant *, 8> ShiftVecAmts;
422   for (int Idx : ShiftAmts) {
423     if (Idx < 0)
424       ShiftVecAmts.push_back(UndefValue::get(SVT));
425     else
426       ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
427   }
428   auto ShiftVec = ConstantVector::get(ShiftVecAmts);
429 
430   if (ShiftLeft)
431     return Builder.CreateShl(Vec, ShiftVec);
432 
433   if (LogicalShift)
434     return Builder.CreateLShr(Vec, ShiftVec);
435 
436   return Builder.CreateAShr(Vec, ShiftVec);
437 }
438 
simplifyX86movmsk(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)439 static Value *simplifyX86movmsk(const IntrinsicInst &II,
440                                 InstCombiner::BuilderTy &Builder) {
441   Value *Arg = II.getArgOperand(0);
442   Type *ResTy = II.getType();
443   Type *ArgTy = Arg->getType();
444 
445   // movmsk(undef) -> zero as we must ensure the upper bits are zero.
446   if (isa<UndefValue>(Arg))
447     return Constant::getNullValue(ResTy);
448 
449   // We can't easily peek through x86_mmx types.
450   if (!ArgTy->isVectorTy())
451     return nullptr;
452 
453   auto *C = dyn_cast<Constant>(Arg);
454   if (!C)
455     return nullptr;
456 
457   // Extract signbits of the vector input and pack into integer result.
458   APInt Result(ResTy->getPrimitiveSizeInBits(), 0);
459   for (unsigned I = 0, E = ArgTy->getVectorNumElements(); I != E; ++I) {
460     auto *COp = C->getAggregateElement(I);
461     if (!COp)
462       return nullptr;
463     if (isa<UndefValue>(COp))
464       continue;
465 
466     auto *CInt = dyn_cast<ConstantInt>(COp);
467     auto *CFp = dyn_cast<ConstantFP>(COp);
468     if (!CInt && !CFp)
469       return nullptr;
470 
471     if ((CInt && CInt->isNegative()) || (CFp && CFp->isNegative()))
472       Result.setBit(I);
473   }
474 
475   return Constant::getIntegerValue(ResTy, Result);
476 }
477 
simplifyX86insertps(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)478 static Value *simplifyX86insertps(const IntrinsicInst &II,
479                                   InstCombiner::BuilderTy &Builder) {
480   auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
481   if (!CInt)
482     return nullptr;
483 
484   VectorType *VecTy = cast<VectorType>(II.getType());
485   assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
486 
487   // The immediate permute control byte looks like this:
488   //    [3:0] - zero mask for each 32-bit lane
489   //    [5:4] - select one 32-bit destination lane
490   //    [7:6] - select one 32-bit source lane
491 
492   uint8_t Imm = CInt->getZExtValue();
493   uint8_t ZMask = Imm & 0xf;
494   uint8_t DestLane = (Imm >> 4) & 0x3;
495   uint8_t SourceLane = (Imm >> 6) & 0x3;
496 
497   ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
498 
499   // If all zero mask bits are set, this was just a weird way to
500   // generate a zero vector.
501   if (ZMask == 0xf)
502     return ZeroVector;
503 
504   // Initialize by passing all of the first source bits through.
505   uint32_t ShuffleMask[4] = { 0, 1, 2, 3 };
506 
507   // We may replace the second operand with the zero vector.
508   Value *V1 = II.getArgOperand(1);
509 
510   if (ZMask) {
511     // If the zero mask is being used with a single input or the zero mask
512     // overrides the destination lane, this is a shuffle with the zero vector.
513     if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
514         (ZMask & (1 << DestLane))) {
515       V1 = ZeroVector;
516       // We may still move 32-bits of the first source vector from one lane
517       // to another.
518       ShuffleMask[DestLane] = SourceLane;
519       // The zero mask may override the previous insert operation.
520       for (unsigned i = 0; i < 4; ++i)
521         if ((ZMask >> i) & 0x1)
522           ShuffleMask[i] = i + 4;
523     } else {
524       // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
525       return nullptr;
526     }
527   } else {
528     // Replace the selected destination lane with the selected source lane.
529     ShuffleMask[DestLane] = SourceLane + 4;
530   }
531 
532   return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
533 }
534 
535 /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
536 /// or conversion to a shuffle vector.
simplifyX86extrq(IntrinsicInst & II,Value * Op0,ConstantInt * CILength,ConstantInt * CIIndex,InstCombiner::BuilderTy & Builder)537 static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
538                                ConstantInt *CILength, ConstantInt *CIIndex,
539                                InstCombiner::BuilderTy &Builder) {
540   auto LowConstantHighUndef = [&](uint64_t Val) {
541     Type *IntTy64 = Type::getInt64Ty(II.getContext());
542     Constant *Args[] = {ConstantInt::get(IntTy64, Val),
543                         UndefValue::get(IntTy64)};
544     return ConstantVector::get(Args);
545   };
546 
547   // See if we're dealing with constant values.
548   Constant *C0 = dyn_cast<Constant>(Op0);
549   ConstantInt *CI0 =
550       C0 ? dyn_cast<ConstantInt>(C0->getAggregateElement((unsigned)0))
551          : nullptr;
552 
553   // Attempt to constant fold.
554   if (CILength && CIIndex) {
555     // From AMD documentation: "The bit index and field length are each six
556     // bits in length other bits of the field are ignored."
557     APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
558     APInt APLength = CILength->getValue().zextOrTrunc(6);
559 
560     unsigned Index = APIndex.getZExtValue();
561 
562     // From AMD documentation: "a value of zero in the field length is
563     // defined as length of 64".
564     unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
565 
566     // From AMD documentation: "If the sum of the bit index + length field
567     // is greater than 64, the results are undefined".
568     unsigned End = Index + Length;
569 
570     // Note that both field index and field length are 8-bit quantities.
571     // Since variables 'Index' and 'Length' are unsigned values
572     // obtained from zero-extending field index and field length
573     // respectively, their sum should never wrap around.
574     if (End > 64)
575       return UndefValue::get(II.getType());
576 
577     // If we are inserting whole bytes, we can convert this to a shuffle.
578     // Lowering can recognize EXTRQI shuffle masks.
579     if ((Length % 8) == 0 && (Index % 8) == 0) {
580       // Convert bit indices to byte indices.
581       Length /= 8;
582       Index /= 8;
583 
584       Type *IntTy8 = Type::getInt8Ty(II.getContext());
585       Type *IntTy32 = Type::getInt32Ty(II.getContext());
586       VectorType *ShufTy = VectorType::get(IntTy8, 16);
587 
588       SmallVector<Constant *, 16> ShuffleMask;
589       for (int i = 0; i != (int)Length; ++i)
590         ShuffleMask.push_back(
591             Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
592       for (int i = Length; i != 8; ++i)
593         ShuffleMask.push_back(
594             Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
595       for (int i = 8; i != 16; ++i)
596         ShuffleMask.push_back(UndefValue::get(IntTy32));
597 
598       Value *SV = Builder.CreateShuffleVector(
599           Builder.CreateBitCast(Op0, ShufTy),
600           ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
601       return Builder.CreateBitCast(SV, II.getType());
602     }
603 
604     // Constant Fold - shift Index'th bit to lowest position and mask off
605     // Length bits.
606     if (CI0) {
607       APInt Elt = CI0->getValue();
608       Elt = Elt.lshr(Index).zextOrTrunc(Length);
609       return LowConstantHighUndef(Elt.getZExtValue());
610     }
611 
612     // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
613     if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
614       Value *Args[] = {Op0, CILength, CIIndex};
615       Module *M = II.getModule();
616       Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
617       return Builder.CreateCall(F, Args);
618     }
619   }
620 
621   // Constant Fold - extraction from zero is always {zero, undef}.
622   if (CI0 && CI0->equalsInt(0))
623     return LowConstantHighUndef(0);
624 
625   return nullptr;
626 }
627 
628 /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
629 /// folding or conversion to a shuffle vector.
simplifyX86insertq(IntrinsicInst & II,Value * Op0,Value * Op1,APInt APLength,APInt APIndex,InstCombiner::BuilderTy & Builder)630 static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
631                                  APInt APLength, APInt APIndex,
632                                  InstCombiner::BuilderTy &Builder) {
633 
634   // From AMD documentation: "The bit index and field length are each six bits
635   // in length other bits of the field are ignored."
636   APIndex = APIndex.zextOrTrunc(6);
637   APLength = APLength.zextOrTrunc(6);
638 
639   // Attempt to constant fold.
640   unsigned Index = APIndex.getZExtValue();
641 
642   // From AMD documentation: "a value of zero in the field length is
643   // defined as length of 64".
644   unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
645 
646   // From AMD documentation: "If the sum of the bit index + length field
647   // is greater than 64, the results are undefined".
648   unsigned End = Index + Length;
649 
650   // Note that both field index and field length are 8-bit quantities.
651   // Since variables 'Index' and 'Length' are unsigned values
652   // obtained from zero-extending field index and field length
653   // respectively, their sum should never wrap around.
654   if (End > 64)
655     return UndefValue::get(II.getType());
656 
657   // If we are inserting whole bytes, we can convert this to a shuffle.
658   // Lowering can recognize INSERTQI shuffle masks.
659   if ((Length % 8) == 0 && (Index % 8) == 0) {
660     // Convert bit indices to byte indices.
661     Length /= 8;
662     Index /= 8;
663 
664     Type *IntTy8 = Type::getInt8Ty(II.getContext());
665     Type *IntTy32 = Type::getInt32Ty(II.getContext());
666     VectorType *ShufTy = VectorType::get(IntTy8, 16);
667 
668     SmallVector<Constant *, 16> ShuffleMask;
669     for (int i = 0; i != (int)Index; ++i)
670       ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
671     for (int i = 0; i != (int)Length; ++i)
672       ShuffleMask.push_back(
673           Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
674     for (int i = Index + Length; i != 8; ++i)
675       ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
676     for (int i = 8; i != 16; ++i)
677       ShuffleMask.push_back(UndefValue::get(IntTy32));
678 
679     Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
680                                             Builder.CreateBitCast(Op1, ShufTy),
681                                             ConstantVector::get(ShuffleMask));
682     return Builder.CreateBitCast(SV, II.getType());
683   }
684 
685   // See if we're dealing with constant values.
686   Constant *C0 = dyn_cast<Constant>(Op0);
687   Constant *C1 = dyn_cast<Constant>(Op1);
688   ConstantInt *CI00 =
689       C0 ? dyn_cast<ConstantInt>(C0->getAggregateElement((unsigned)0))
690          : nullptr;
691   ConstantInt *CI10 =
692       C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)0))
693          : nullptr;
694 
695   // Constant Fold - insert bottom Length bits starting at the Index'th bit.
696   if (CI00 && CI10) {
697     APInt V00 = CI00->getValue();
698     APInt V10 = CI10->getValue();
699     APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
700     V00 = V00 & ~Mask;
701     V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
702     APInt Val = V00 | V10;
703     Type *IntTy64 = Type::getInt64Ty(II.getContext());
704     Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
705                         UndefValue::get(IntTy64)};
706     return ConstantVector::get(Args);
707   }
708 
709   // If we were an INSERTQ call, we'll save demanded elements if we convert to
710   // INSERTQI.
711   if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
712     Type *IntTy8 = Type::getInt8Ty(II.getContext());
713     Constant *CILength = ConstantInt::get(IntTy8, Length, false);
714     Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
715 
716     Value *Args[] = {Op0, Op1, CILength, CIIndex};
717     Module *M = II.getModule();
718     Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
719     return Builder.CreateCall(F, Args);
720   }
721 
722   return nullptr;
723 }
724 
725 /// Attempt to convert pshufb* to shufflevector if the mask is constant.
simplifyX86pshufb(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)726 static Value *simplifyX86pshufb(const IntrinsicInst &II,
727                                 InstCombiner::BuilderTy &Builder) {
728   Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
729   if (!V)
730     return nullptr;
731 
732   auto *VecTy = cast<VectorType>(II.getType());
733   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
734   unsigned NumElts = VecTy->getNumElements();
735   assert((NumElts == 16 || NumElts == 32) &&
736          "Unexpected number of elements in shuffle mask!");
737 
738   // Construct a shuffle mask from constant integers or UNDEFs.
739   Constant *Indexes[32] = {NULL};
740 
741   // Each byte in the shuffle control mask forms an index to permute the
742   // corresponding byte in the destination operand.
743   for (unsigned I = 0; I < NumElts; ++I) {
744     Constant *COp = V->getAggregateElement(I);
745     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
746       return nullptr;
747 
748     if (isa<UndefValue>(COp)) {
749       Indexes[I] = UndefValue::get(MaskEltTy);
750       continue;
751     }
752 
753     int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
754 
755     // If the most significant bit (bit[7]) of each byte of the shuffle
756     // control mask is set, then zero is written in the result byte.
757     // The zero vector is in the right-hand side of the resulting
758     // shufflevector.
759 
760     // The value of each index for the high 128-bit lane is the least
761     // significant 4 bits of the respective shuffle control byte.
762     Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
763     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
764   }
765 
766   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
767   auto V1 = II.getArgOperand(0);
768   auto V2 = Constant::getNullValue(VecTy);
769   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
770 }
771 
772 /// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
simplifyX86vpermilvar(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)773 static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
774                                     InstCombiner::BuilderTy &Builder) {
775   Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
776   if (!V)
777     return nullptr;
778 
779   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
780   unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
781   assert(NumElts == 8 || NumElts == 4 || NumElts == 2);
782 
783   // Construct a shuffle mask from constant integers or UNDEFs.
784   Constant *Indexes[8] = {NULL};
785 
786   // The intrinsics only read one or two bits, clear the rest.
787   for (unsigned I = 0; I < NumElts; ++I) {
788     Constant *COp = V->getAggregateElement(I);
789     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
790       return nullptr;
791 
792     if (isa<UndefValue>(COp)) {
793       Indexes[I] = UndefValue::get(MaskEltTy);
794       continue;
795     }
796 
797     APInt Index = cast<ConstantInt>(COp)->getValue();
798     Index = Index.zextOrTrunc(32).getLoBits(2);
799 
800     // The PD variants uses bit 1 to select per-lane element index, so
801     // shift down to convert to generic shuffle mask index.
802     if (II.getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd ||
803         II.getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256)
804       Index = Index.lshr(1);
805 
806     // The _256 variants are a bit trickier since the mask bits always index
807     // into the corresponding 128 half. In order to convert to a generic
808     // shuffle, we have to make that explicit.
809     if ((II.getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 ||
810          II.getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) &&
811         ((NumElts / 2) <= I)) {
812       Index += APInt(32, NumElts / 2);
813     }
814 
815     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
816   }
817 
818   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
819   auto V1 = II.getArgOperand(0);
820   auto V2 = UndefValue::get(V1->getType());
821   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
822 }
823 
824 /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
simplifyX86vpermv(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)825 static Value *simplifyX86vpermv(const IntrinsicInst &II,
826                                 InstCombiner::BuilderTy &Builder) {
827   auto *V = dyn_cast<Constant>(II.getArgOperand(1));
828   if (!V)
829     return nullptr;
830 
831   auto *VecTy = cast<VectorType>(II.getType());
832   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
833   unsigned Size = VecTy->getNumElements();
834   assert(Size == 8 && "Unexpected shuffle mask size");
835 
836   // Construct a shuffle mask from constant integers or UNDEFs.
837   Constant *Indexes[8] = {NULL};
838 
839   for (unsigned I = 0; I < Size; ++I) {
840     Constant *COp = V->getAggregateElement(I);
841     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
842       return nullptr;
843 
844     if (isa<UndefValue>(COp)) {
845       Indexes[I] = UndefValue::get(MaskEltTy);
846       continue;
847     }
848 
849     APInt Index = cast<ConstantInt>(COp)->getValue();
850     Index = Index.zextOrTrunc(32).getLoBits(3);
851     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
852   }
853 
854   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size));
855   auto V1 = II.getArgOperand(0);
856   auto V2 = UndefValue::get(VecTy);
857   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
858 }
859 
860 /// The shuffle mask for a perm2*128 selects any two halves of two 256-bit
861 /// source vectors, unless a zero bit is set. If a zero bit is set,
862 /// then ignore that half of the mask and clear that half of the vector.
simplifyX86vperm2(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)863 static Value *simplifyX86vperm2(const IntrinsicInst &II,
864                                 InstCombiner::BuilderTy &Builder) {
865   auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
866   if (!CInt)
867     return nullptr;
868 
869   VectorType *VecTy = cast<VectorType>(II.getType());
870   ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
871 
872   // The immediate permute control byte looks like this:
873   //    [1:0] - select 128 bits from sources for low half of destination
874   //    [2]   - ignore
875   //    [3]   - zero low half of destination
876   //    [5:4] - select 128 bits from sources for high half of destination
877   //    [6]   - ignore
878   //    [7]   - zero high half of destination
879 
880   uint8_t Imm = CInt->getZExtValue();
881 
882   bool LowHalfZero = Imm & 0x08;
883   bool HighHalfZero = Imm & 0x80;
884 
885   // If both zero mask bits are set, this was just a weird way to
886   // generate a zero vector.
887   if (LowHalfZero && HighHalfZero)
888     return ZeroVector;
889 
890   // If 0 or 1 zero mask bits are set, this is a simple shuffle.
891   unsigned NumElts = VecTy->getNumElements();
892   unsigned HalfSize = NumElts / 2;
893   SmallVector<uint32_t, 8> ShuffleMask(NumElts);
894 
895   // The high bit of the selection field chooses the 1st or 2nd operand.
896   bool LowInputSelect = Imm & 0x02;
897   bool HighInputSelect = Imm & 0x20;
898 
899   // The low bit of the selection field chooses the low or high half
900   // of the selected operand.
901   bool LowHalfSelect = Imm & 0x01;
902   bool HighHalfSelect = Imm & 0x10;
903 
904   // Determine which operand(s) are actually in use for this instruction.
905   Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
906   Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
907 
908   // If needed, replace operands based on zero mask.
909   V0 = LowHalfZero ? ZeroVector : V0;
910   V1 = HighHalfZero ? ZeroVector : V1;
911 
912   // Permute low half of result.
913   unsigned StartIndex = LowHalfSelect ? HalfSize : 0;
914   for (unsigned i = 0; i < HalfSize; ++i)
915     ShuffleMask[i] = StartIndex + i;
916 
917   // Permute high half of result.
918   StartIndex = HighHalfSelect ? HalfSize : 0;
919   StartIndex += NumElts;
920   for (unsigned i = 0; i < HalfSize; ++i)
921     ShuffleMask[i + HalfSize] = StartIndex + i;
922 
923   return Builder.CreateShuffleVector(V0, V1, ShuffleMask);
924 }
925 
926 /// Decode XOP integer vector comparison intrinsics.
simplifyX86vpcom(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder,bool IsSigned)927 static Value *simplifyX86vpcom(const IntrinsicInst &II,
928                                InstCombiner::BuilderTy &Builder,
929                                bool IsSigned) {
930   if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
931     uint64_t Imm = CInt->getZExtValue() & 0x7;
932     VectorType *VecTy = cast<VectorType>(II.getType());
933     CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
934 
935     switch (Imm) {
936     case 0x0:
937       Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
938       break;
939     case 0x1:
940       Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
941       break;
942     case 0x2:
943       Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
944       break;
945     case 0x3:
946       Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
947       break;
948     case 0x4:
949       Pred = ICmpInst::ICMP_EQ; break;
950     case 0x5:
951       Pred = ICmpInst::ICMP_NE; break;
952     case 0x6:
953       return ConstantInt::getSigned(VecTy, 0); // FALSE
954     case 0x7:
955       return ConstantInt::getSigned(VecTy, -1); // TRUE
956     }
957 
958     if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0),
959                                         II.getArgOperand(1)))
960       return Builder.CreateSExtOrTrunc(Cmp, VecTy);
961   }
962   return nullptr;
963 }
964 
simplifyMinnumMaxnum(const IntrinsicInst & II)965 static Value *simplifyMinnumMaxnum(const IntrinsicInst &II) {
966   Value *Arg0 = II.getArgOperand(0);
967   Value *Arg1 = II.getArgOperand(1);
968 
969   // fmin(x, x) -> x
970   if (Arg0 == Arg1)
971     return Arg0;
972 
973   const auto *C1 = dyn_cast<ConstantFP>(Arg1);
974 
975   // fmin(x, nan) -> x
976   if (C1 && C1->isNaN())
977     return Arg0;
978 
979   // This is the value because if undef were NaN, we would return the other
980   // value and cannot return a NaN unless both operands are.
981   //
982   // fmin(undef, x) -> x
983   if (isa<UndefValue>(Arg0))
984     return Arg1;
985 
986   // fmin(x, undef) -> x
987   if (isa<UndefValue>(Arg1))
988     return Arg0;
989 
990   Value *X = nullptr;
991   Value *Y = nullptr;
992   if (II.getIntrinsicID() == Intrinsic::minnum) {
993     // fmin(x, fmin(x, y)) -> fmin(x, y)
994     // fmin(y, fmin(x, y)) -> fmin(x, y)
995     if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
996       if (Arg0 == X || Arg0 == Y)
997         return Arg1;
998     }
999 
1000     // fmin(fmin(x, y), x) -> fmin(x, y)
1001     // fmin(fmin(x, y), y) -> fmin(x, y)
1002     if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
1003       if (Arg1 == X || Arg1 == Y)
1004         return Arg0;
1005     }
1006 
1007     // TODO: fmin(nnan x, inf) -> x
1008     // TODO: fmin(nnan ninf x, flt_max) -> x
1009     if (C1 && C1->isInfinity()) {
1010       // fmin(x, -inf) -> -inf
1011       if (C1->isNegative())
1012         return Arg1;
1013     }
1014   } else {
1015     assert(II.getIntrinsicID() == Intrinsic::maxnum);
1016     // fmax(x, fmax(x, y)) -> fmax(x, y)
1017     // fmax(y, fmax(x, y)) -> fmax(x, y)
1018     if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
1019       if (Arg0 == X || Arg0 == Y)
1020         return Arg1;
1021     }
1022 
1023     // fmax(fmax(x, y), x) -> fmax(x, y)
1024     // fmax(fmax(x, y), y) -> fmax(x, y)
1025     if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
1026       if (Arg1 == X || Arg1 == Y)
1027         return Arg0;
1028     }
1029 
1030     // TODO: fmax(nnan x, -inf) -> x
1031     // TODO: fmax(nnan ninf x, -flt_max) -> x
1032     if (C1 && C1->isInfinity()) {
1033       // fmax(x, inf) -> inf
1034       if (!C1->isNegative())
1035         return Arg1;
1036     }
1037   }
1038   return nullptr;
1039 }
1040 
maskIsAllOneOrUndef(Value * Mask)1041 static bool maskIsAllOneOrUndef(Value *Mask) {
1042   auto *ConstMask = dyn_cast<Constant>(Mask);
1043   if (!ConstMask)
1044     return false;
1045   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1046     return true;
1047   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
1048        ++I) {
1049     if (auto *MaskElt = ConstMask->getAggregateElement(I))
1050       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1051         continue;
1052     return false;
1053   }
1054   return true;
1055 }
1056 
simplifyMaskedLoad(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)1057 static Value *simplifyMaskedLoad(const IntrinsicInst &II,
1058                                  InstCombiner::BuilderTy &Builder) {
1059   // If the mask is all ones or undefs, this is a plain vector load of the 1st
1060   // argument.
1061   if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
1062     Value *LoadPtr = II.getArgOperand(0);
1063     unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue();
1064     return Builder.CreateAlignedLoad(LoadPtr, Alignment, "unmaskedload");
1065   }
1066 
1067   return nullptr;
1068 }
1069 
simplifyMaskedStore(IntrinsicInst & II,InstCombiner & IC)1070 static Instruction *simplifyMaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1071   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1072   if (!ConstMask)
1073     return nullptr;
1074 
1075   // If the mask is all zeros, this instruction does nothing.
1076   if (ConstMask->isNullValue())
1077     return IC.eraseInstFromFunction(II);
1078 
1079   // If the mask is all ones, this is a plain vector store of the 1st argument.
1080   if (ConstMask->isAllOnesValue()) {
1081     Value *StorePtr = II.getArgOperand(1);
1082     unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue();
1083     return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
1084   }
1085 
1086   return nullptr;
1087 }
1088 
simplifyMaskedGather(IntrinsicInst & II,InstCombiner & IC)1089 static Instruction *simplifyMaskedGather(IntrinsicInst &II, InstCombiner &IC) {
1090   // If the mask is all zeros, return the "passthru" argument of the gather.
1091   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
1092   if (ConstMask && ConstMask->isNullValue())
1093     return IC.replaceInstUsesWith(II, II.getArgOperand(3));
1094 
1095   return nullptr;
1096 }
1097 
simplifyMaskedScatter(IntrinsicInst & II,InstCombiner & IC)1098 static Instruction *simplifyMaskedScatter(IntrinsicInst &II, InstCombiner &IC) {
1099   // If the mask is all zeros, a scatter does nothing.
1100   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1101   if (ConstMask && ConstMask->isNullValue())
1102     return IC.eraseInstFromFunction(II);
1103 
1104   return nullptr;
1105 }
1106 
1107 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1108 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1109 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
simplifyX86MaskedLoad(IntrinsicInst & II,InstCombiner & IC)1110 static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
1111   Value *Ptr = II.getOperand(0);
1112   Value *Mask = II.getOperand(1);
1113   Constant *ZeroVec = Constant::getNullValue(II.getType());
1114 
1115   // Special case a zero mask since that's not a ConstantDataVector.
1116   // This masked load instruction creates a zero vector.
1117   if (isa<ConstantAggregateZero>(Mask))
1118     return IC.replaceInstUsesWith(II, ZeroVec);
1119 
1120   auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1121   if (!ConstMask)
1122     return nullptr;
1123 
1124   // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1125   // to allow target-independent optimizations.
1126 
1127   // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1128   // the LLVM intrinsic definition for the pointer argument.
1129   unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1130   PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
1131   Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec");
1132 
1133   // Second, convert the x86 XMM integer vector mask to a vector of bools based
1134   // on each element's most significant bit (the sign bit).
1135   Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1136 
1137   // The pass-through vector for an x86 masked load is a zero vector.
1138   CallInst *NewMaskedLoad =
1139       IC.Builder->CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec);
1140   return IC.replaceInstUsesWith(II, NewMaskedLoad);
1141 }
1142 
1143 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1144 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1145 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
simplifyX86MaskedStore(IntrinsicInst & II,InstCombiner & IC)1146 static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1147   Value *Ptr = II.getOperand(0);
1148   Value *Mask = II.getOperand(1);
1149   Value *Vec = II.getOperand(2);
1150 
1151   // Special case a zero mask since that's not a ConstantDataVector:
1152   // this masked store instruction does nothing.
1153   if (isa<ConstantAggregateZero>(Mask)) {
1154     IC.eraseInstFromFunction(II);
1155     return true;
1156   }
1157 
1158   // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
1159   // anything else at this level.
1160   if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
1161     return false;
1162 
1163   auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1164   if (!ConstMask)
1165     return false;
1166 
1167   // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1168   // to allow target-independent optimizations.
1169 
1170   // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1171   // the LLVM intrinsic definition for the pointer argument.
1172   unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1173   PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
1174   Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec");
1175 
1176   // Second, convert the x86 XMM integer vector mask to a vector of bools based
1177   // on each element's most significant bit (the sign bit).
1178   Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1179 
1180   IC.Builder->CreateMaskedStore(Vec, PtrCast, 1, BoolMask);
1181 
1182   // 'Replace uses' doesn't work for stores. Erase the original masked store.
1183   IC.eraseInstFromFunction(II);
1184   return true;
1185 }
1186 
1187 // Returns true iff the 2 intrinsics have the same operands, limiting the
1188 // comparison to the first NumOperands.
haveSameOperands(const IntrinsicInst & I,const IntrinsicInst & E,unsigned NumOperands)1189 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
1190                              unsigned NumOperands) {
1191   assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
1192   assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
1193   for (unsigned i = 0; i < NumOperands; i++)
1194     if (I.getArgOperand(i) != E.getArgOperand(i))
1195       return false;
1196   return true;
1197 }
1198 
1199 // Remove trivially empty start/end intrinsic ranges, i.e. a start
1200 // immediately followed by an end (ignoring debuginfo or other
1201 // start/end intrinsics in between). As this handles only the most trivial
1202 // cases, tracking the nesting level is not needed:
1203 //
1204 //   call @llvm.foo.start(i1 0) ; &I
1205 //   call @llvm.foo.start(i1 0)
1206 //   call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
1207 //   call @llvm.foo.end(i1 0)
removeTriviallyEmptyRange(IntrinsicInst & I,unsigned StartID,unsigned EndID,InstCombiner & IC)1208 static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID,
1209                                       unsigned EndID, InstCombiner &IC) {
1210   assert(I.getIntrinsicID() == StartID &&
1211          "Start intrinsic does not have expected ID");
1212   BasicBlock::iterator BI(I), BE(I.getParent()->end());
1213   for (++BI; BI != BE; ++BI) {
1214     if (auto *E = dyn_cast<IntrinsicInst>(BI)) {
1215       if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID)
1216         continue;
1217       if (E->getIntrinsicID() == EndID &&
1218           haveSameOperands(I, *E, E->getNumArgOperands())) {
1219         IC.eraseInstFromFunction(*E);
1220         IC.eraseInstFromFunction(I);
1221         return true;
1222       }
1223     }
1224     break;
1225   }
1226 
1227   return false;
1228 }
1229 
visitVAStartInst(VAStartInst & I)1230 Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) {
1231   removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this);
1232   return nullptr;
1233 }
1234 
visitVACopyInst(VACopyInst & I)1235 Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) {
1236   removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this);
1237   return nullptr;
1238 }
1239 
1240 /// CallInst simplification. This mostly only handles folding of intrinsic
1241 /// instructions. For normal calls, it allows visitCallSite to do the heavy
1242 /// lifting.
visitCallInst(CallInst & CI)1243 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
1244   auto Args = CI.arg_operands();
1245   if (Value *V = SimplifyCall(CI.getCalledValue(), Args.begin(), Args.end(), DL,
1246                               TLI, DT, AC))
1247     return replaceInstUsesWith(CI, V);
1248 
1249   if (isFreeCall(&CI, TLI))
1250     return visitFree(CI);
1251 
1252   // If the caller function is nounwind, mark the call as nounwind, even if the
1253   // callee isn't.
1254   if (CI.getParent()->getParent()->doesNotThrow() &&
1255       !CI.doesNotThrow()) {
1256     CI.setDoesNotThrow();
1257     return &CI;
1258   }
1259 
1260   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1261   if (!II) return visitCallSite(&CI);
1262 
1263   // Intrinsics cannot occur in an invoke, so handle them here instead of in
1264   // visitCallSite.
1265   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
1266     bool Changed = false;
1267 
1268     // memmove/cpy/set of zero bytes is a noop.
1269     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
1270       if (NumBytes->isNullValue())
1271         return eraseInstFromFunction(CI);
1272 
1273       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
1274         if (CI->getZExtValue() == 1) {
1275           // Replace the instruction with just byte operations.  We would
1276           // transform other cases to loads/stores, but we don't know if
1277           // alignment is sufficient.
1278         }
1279     }
1280 
1281     // No other transformations apply to volatile transfers.
1282     if (MI->isVolatile())
1283       return nullptr;
1284 
1285     // If we have a memmove and the source operation is a constant global,
1286     // then the source and dest pointers can't alias, so we can change this
1287     // into a call to memcpy.
1288     if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
1289       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1290         if (GVSrc->isConstant()) {
1291           Module *M = CI.getModule();
1292           Intrinsic::ID MemCpyID = Intrinsic::memcpy;
1293           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1294                            CI.getArgOperand(1)->getType(),
1295                            CI.getArgOperand(2)->getType() };
1296           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
1297           Changed = true;
1298         }
1299     }
1300 
1301     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1302       // memmove(x,x,size) -> noop.
1303       if (MTI->getSource() == MTI->getDest())
1304         return eraseInstFromFunction(CI);
1305     }
1306 
1307     // If we can determine a pointer alignment that is bigger than currently
1308     // set, update the alignment.
1309     if (isa<MemTransferInst>(MI)) {
1310       if (Instruction *I = SimplifyMemTransfer(MI))
1311         return I;
1312     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
1313       if (Instruction *I = SimplifyMemSet(MSI))
1314         return I;
1315     }
1316 
1317     if (Changed) return II;
1318   }
1319 
1320   auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
1321                                               unsigned DemandedWidth) {
1322     APInt UndefElts(Width, 0);
1323     APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
1324     return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
1325   };
1326   auto SimplifyDemandedVectorEltsHigh = [this](Value *Op, unsigned Width,
1327                                               unsigned DemandedWidth) {
1328     APInt UndefElts(Width, 0);
1329     APInt DemandedElts = APInt::getHighBitsSet(Width, DemandedWidth);
1330     return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
1331   };
1332 
1333   switch (II->getIntrinsicID()) {
1334   default: break;
1335   case Intrinsic::objectsize: {
1336     uint64_t Size;
1337     if (getObjectSize(II->getArgOperand(0), Size, DL, TLI)) {
1338       APInt APSize(II->getType()->getIntegerBitWidth(), Size);
1339       // Equality check to be sure that `Size` can fit in a value of type
1340       // `II->getType()`
1341       if (APSize == Size)
1342         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), APSize));
1343     }
1344     return nullptr;
1345   }
1346   case Intrinsic::bswap: {
1347     Value *IIOperand = II->getArgOperand(0);
1348     Value *X = nullptr;
1349 
1350     // bswap(bswap(x)) -> x
1351     if (match(IIOperand, m_BSwap(m_Value(X))))
1352         return replaceInstUsesWith(CI, X);
1353 
1354     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1355     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1356       unsigned C = X->getType()->getPrimitiveSizeInBits() -
1357         IIOperand->getType()->getPrimitiveSizeInBits();
1358       Value *CV = ConstantInt::get(X->getType(), C);
1359       Value *V = Builder->CreateLShr(X, CV);
1360       return new TruncInst(V, IIOperand->getType());
1361     }
1362     break;
1363   }
1364 
1365   case Intrinsic::bitreverse: {
1366     Value *IIOperand = II->getArgOperand(0);
1367     Value *X = nullptr;
1368 
1369     // bitreverse(bitreverse(x)) -> x
1370     if (match(IIOperand, m_Intrinsic<Intrinsic::bitreverse>(m_Value(X))))
1371       return replaceInstUsesWith(CI, X);
1372     break;
1373   }
1374 
1375   case Intrinsic::masked_load:
1376     if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II, *Builder))
1377       return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1378     break;
1379   case Intrinsic::masked_store:
1380     return simplifyMaskedStore(*II, *this);
1381   case Intrinsic::masked_gather:
1382     return simplifyMaskedGather(*II, *this);
1383   case Intrinsic::masked_scatter:
1384     return simplifyMaskedScatter(*II, *this);
1385 
1386   case Intrinsic::powi:
1387     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1388       // powi(x, 0) -> 1.0
1389       if (Power->isZero())
1390         return replaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
1391       // powi(x, 1) -> x
1392       if (Power->isOne())
1393         return replaceInstUsesWith(CI, II->getArgOperand(0));
1394       // powi(x, -1) -> 1/x
1395       if (Power->isAllOnesValue())
1396         return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
1397                                           II->getArgOperand(0));
1398     }
1399     break;
1400   case Intrinsic::cttz: {
1401     // If all bits below the first known one are known zero,
1402     // this value is constant.
1403     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
1404     // FIXME: Try to simplify vectors of integers.
1405     if (!IT) break;
1406     uint32_t BitWidth = IT->getBitWidth();
1407     APInt KnownZero(BitWidth, 0);
1408     APInt KnownOne(BitWidth, 0);
1409     computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
1410     unsigned TrailingZeros = KnownOne.countTrailingZeros();
1411     APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
1412     if ((Mask & KnownZero) == Mask)
1413       return replaceInstUsesWith(CI, ConstantInt::get(IT,
1414                                  APInt(BitWidth, TrailingZeros)));
1415 
1416     }
1417     break;
1418   case Intrinsic::ctlz: {
1419     // If all bits above the first known one are known zero,
1420     // this value is constant.
1421     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
1422     // FIXME: Try to simplify vectors of integers.
1423     if (!IT) break;
1424     uint32_t BitWidth = IT->getBitWidth();
1425     APInt KnownZero(BitWidth, 0);
1426     APInt KnownOne(BitWidth, 0);
1427     computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
1428     unsigned LeadingZeros = KnownOne.countLeadingZeros();
1429     APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
1430     if ((Mask & KnownZero) == Mask)
1431       return replaceInstUsesWith(CI, ConstantInt::get(IT,
1432                                  APInt(BitWidth, LeadingZeros)));
1433 
1434     }
1435     break;
1436 
1437   case Intrinsic::uadd_with_overflow:
1438   case Intrinsic::sadd_with_overflow:
1439   case Intrinsic::umul_with_overflow:
1440   case Intrinsic::smul_with_overflow:
1441     if (isa<Constant>(II->getArgOperand(0)) &&
1442         !isa<Constant>(II->getArgOperand(1))) {
1443       // Canonicalize constants into the RHS.
1444       Value *LHS = II->getArgOperand(0);
1445       II->setArgOperand(0, II->getArgOperand(1));
1446       II->setArgOperand(1, LHS);
1447       return II;
1448     }
1449     // fall through
1450 
1451   case Intrinsic::usub_with_overflow:
1452   case Intrinsic::ssub_with_overflow: {
1453     OverflowCheckFlavor OCF =
1454         IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
1455     assert(OCF != OCF_INVALID && "unexpected!");
1456 
1457     Value *OperationResult = nullptr;
1458     Constant *OverflowResult = nullptr;
1459     if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
1460                               *II, OperationResult, OverflowResult))
1461       return CreateOverflowTuple(II, OperationResult, OverflowResult);
1462 
1463     break;
1464   }
1465 
1466   case Intrinsic::minnum:
1467   case Intrinsic::maxnum: {
1468     Value *Arg0 = II->getArgOperand(0);
1469     Value *Arg1 = II->getArgOperand(1);
1470     // Canonicalize constants to the RHS.
1471     if (isa<ConstantFP>(Arg0) && !isa<ConstantFP>(Arg1)) {
1472       II->setArgOperand(0, Arg1);
1473       II->setArgOperand(1, Arg0);
1474       return II;
1475     }
1476     if (Value *V = simplifyMinnumMaxnum(*II))
1477       return replaceInstUsesWith(*II, V);
1478     break;
1479   }
1480   case Intrinsic::ppc_altivec_lvx:
1481   case Intrinsic::ppc_altivec_lvxl:
1482     // Turn PPC lvx -> load if the pointer is known aligned.
1483     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
1484         16) {
1485       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
1486                                          PointerType::getUnqual(II->getType()));
1487       return new LoadInst(Ptr);
1488     }
1489     break;
1490   case Intrinsic::ppc_vsx_lxvw4x:
1491   case Intrinsic::ppc_vsx_lxvd2x: {
1492     // Turn PPC VSX loads into normal loads.
1493     Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
1494                                         PointerType::getUnqual(II->getType()));
1495     return new LoadInst(Ptr, Twine(""), false, 1);
1496   }
1497   case Intrinsic::ppc_altivec_stvx:
1498   case Intrinsic::ppc_altivec_stvxl:
1499     // Turn stvx -> store if the pointer is known aligned.
1500     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
1501         16) {
1502       Type *OpPtrTy =
1503         PointerType::getUnqual(II->getArgOperand(0)->getType());
1504       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
1505       return new StoreInst(II->getArgOperand(0), Ptr);
1506     }
1507     break;
1508   case Intrinsic::ppc_vsx_stxvw4x:
1509   case Intrinsic::ppc_vsx_stxvd2x: {
1510     // Turn PPC VSX stores into normal stores.
1511     Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
1512     Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
1513     return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
1514   }
1515   case Intrinsic::ppc_qpx_qvlfs:
1516     // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
1517     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
1518         16) {
1519       Type *VTy = VectorType::get(Builder->getFloatTy(),
1520                                   II->getType()->getVectorNumElements());
1521       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
1522                                          PointerType::getUnqual(VTy));
1523       Value *Load = Builder->CreateLoad(Ptr);
1524       return new FPExtInst(Load, II->getType());
1525     }
1526     break;
1527   case Intrinsic::ppc_qpx_qvlfd:
1528     // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
1529     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, AC, DT) >=
1530         32) {
1531       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
1532                                          PointerType::getUnqual(II->getType()));
1533       return new LoadInst(Ptr);
1534     }
1535     break;
1536   case Intrinsic::ppc_qpx_qvstfs:
1537     // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
1538     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
1539         16) {
1540       Type *VTy = VectorType::get(Builder->getFloatTy(),
1541           II->getArgOperand(0)->getType()->getVectorNumElements());
1542       Value *TOp = Builder->CreateFPTrunc(II->getArgOperand(0), VTy);
1543       Type *OpPtrTy = PointerType::getUnqual(VTy);
1544       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
1545       return new StoreInst(TOp, Ptr);
1546     }
1547     break;
1548   case Intrinsic::ppc_qpx_qvstfd:
1549     // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
1550     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, AC, DT) >=
1551         32) {
1552       Type *OpPtrTy =
1553         PointerType::getUnqual(II->getArgOperand(0)->getType());
1554       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
1555       return new StoreInst(II->getArgOperand(0), Ptr);
1556     }
1557     break;
1558 
1559   case Intrinsic::x86_vcvtph2ps_128:
1560   case Intrinsic::x86_vcvtph2ps_256: {
1561     auto Arg = II->getArgOperand(0);
1562     auto ArgType = cast<VectorType>(Arg->getType());
1563     auto RetType = cast<VectorType>(II->getType());
1564     unsigned ArgWidth = ArgType->getNumElements();
1565     unsigned RetWidth = RetType->getNumElements();
1566     assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
1567     assert(ArgType->isIntOrIntVectorTy() &&
1568            ArgType->getScalarSizeInBits() == 16 &&
1569            "CVTPH2PS input type should be 16-bit integer vector");
1570     assert(RetType->getScalarType()->isFloatTy() &&
1571            "CVTPH2PS output type should be 32-bit float vector");
1572 
1573     // Constant folding: Convert to generic half to single conversion.
1574     if (isa<ConstantAggregateZero>(Arg))
1575       return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
1576 
1577     if (isa<ConstantDataVector>(Arg)) {
1578       auto VectorHalfAsShorts = Arg;
1579       if (RetWidth < ArgWidth) {
1580         SmallVector<uint32_t, 8> SubVecMask;
1581         for (unsigned i = 0; i != RetWidth; ++i)
1582           SubVecMask.push_back((int)i);
1583         VectorHalfAsShorts = Builder->CreateShuffleVector(
1584             Arg, UndefValue::get(ArgType), SubVecMask);
1585       }
1586 
1587       auto VectorHalfType =
1588           VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
1589       auto VectorHalfs =
1590           Builder->CreateBitCast(VectorHalfAsShorts, VectorHalfType);
1591       auto VectorFloats = Builder->CreateFPExt(VectorHalfs, RetType);
1592       return replaceInstUsesWith(*II, VectorFloats);
1593     }
1594 
1595     // We only use the lowest lanes of the argument.
1596     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
1597       II->setArgOperand(0, V);
1598       return II;
1599     }
1600     break;
1601   }
1602 
1603   case Intrinsic::x86_sse_cvtss2si:
1604   case Intrinsic::x86_sse_cvtss2si64:
1605   case Intrinsic::x86_sse_cvttss2si:
1606   case Intrinsic::x86_sse_cvttss2si64:
1607   case Intrinsic::x86_sse2_cvtsd2si:
1608   case Intrinsic::x86_sse2_cvtsd2si64:
1609   case Intrinsic::x86_sse2_cvttsd2si:
1610   case Intrinsic::x86_sse2_cvttsd2si64: {
1611     // These intrinsics only demand the 0th element of their input vectors. If
1612     // we can simplify the input based on that, do so now.
1613     Value *Arg = II->getArgOperand(0);
1614     unsigned VWidth = Arg->getType()->getVectorNumElements();
1615     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
1616       II->setArgOperand(0, V);
1617       return II;
1618     }
1619     break;
1620   }
1621 
1622   case Intrinsic::x86_mmx_pmovmskb:
1623   case Intrinsic::x86_sse_movmsk_ps:
1624   case Intrinsic::x86_sse2_movmsk_pd:
1625   case Intrinsic::x86_sse2_pmovmskb_128:
1626   case Intrinsic::x86_avx_movmsk_pd_256:
1627   case Intrinsic::x86_avx_movmsk_ps_256:
1628   case Intrinsic::x86_avx2_pmovmskb: {
1629     if (Value *V = simplifyX86movmsk(*II, *Builder))
1630       return replaceInstUsesWith(*II, V);
1631     break;
1632   }
1633 
1634   case Intrinsic::x86_sse_comieq_ss:
1635   case Intrinsic::x86_sse_comige_ss:
1636   case Intrinsic::x86_sse_comigt_ss:
1637   case Intrinsic::x86_sse_comile_ss:
1638   case Intrinsic::x86_sse_comilt_ss:
1639   case Intrinsic::x86_sse_comineq_ss:
1640   case Intrinsic::x86_sse_ucomieq_ss:
1641   case Intrinsic::x86_sse_ucomige_ss:
1642   case Intrinsic::x86_sse_ucomigt_ss:
1643   case Intrinsic::x86_sse_ucomile_ss:
1644   case Intrinsic::x86_sse_ucomilt_ss:
1645   case Intrinsic::x86_sse_ucomineq_ss:
1646   case Intrinsic::x86_sse2_comieq_sd:
1647   case Intrinsic::x86_sse2_comige_sd:
1648   case Intrinsic::x86_sse2_comigt_sd:
1649   case Intrinsic::x86_sse2_comile_sd:
1650   case Intrinsic::x86_sse2_comilt_sd:
1651   case Intrinsic::x86_sse2_comineq_sd:
1652   case Intrinsic::x86_sse2_ucomieq_sd:
1653   case Intrinsic::x86_sse2_ucomige_sd:
1654   case Intrinsic::x86_sse2_ucomigt_sd:
1655   case Intrinsic::x86_sse2_ucomile_sd:
1656   case Intrinsic::x86_sse2_ucomilt_sd:
1657   case Intrinsic::x86_sse2_ucomineq_sd: {
1658     // These intrinsics only demand the 0th element of their input vectors. If
1659     // we can simplify the input based on that, do so now.
1660     bool MadeChange = false;
1661     Value *Arg0 = II->getArgOperand(0);
1662     Value *Arg1 = II->getArgOperand(1);
1663     unsigned VWidth = Arg0->getType()->getVectorNumElements();
1664     if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
1665       II->setArgOperand(0, V);
1666       MadeChange = true;
1667     }
1668     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
1669       II->setArgOperand(1, V);
1670       MadeChange = true;
1671     }
1672     if (MadeChange)
1673       return II;
1674     break;
1675   }
1676 
1677   case Intrinsic::x86_sse_add_ss:
1678   case Intrinsic::x86_sse_sub_ss:
1679   case Intrinsic::x86_sse_mul_ss:
1680   case Intrinsic::x86_sse_div_ss:
1681   case Intrinsic::x86_sse_min_ss:
1682   case Intrinsic::x86_sse_max_ss:
1683   case Intrinsic::x86_sse_cmp_ss:
1684   case Intrinsic::x86_sse2_add_sd:
1685   case Intrinsic::x86_sse2_sub_sd:
1686   case Intrinsic::x86_sse2_mul_sd:
1687   case Intrinsic::x86_sse2_div_sd:
1688   case Intrinsic::x86_sse2_min_sd:
1689   case Intrinsic::x86_sse2_max_sd:
1690   case Intrinsic::x86_sse2_cmp_sd: {
1691     // These intrinsics only demand the lowest element of the second input
1692     // vector.
1693     Value *Arg1 = II->getArgOperand(1);
1694     unsigned VWidth = Arg1->getType()->getVectorNumElements();
1695     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
1696       II->setArgOperand(1, V);
1697       return II;
1698     }
1699     break;
1700   }
1701 
1702   case Intrinsic::x86_sse41_round_ss:
1703   case Intrinsic::x86_sse41_round_sd: {
1704     // These intrinsics demand the upper elements of the first input vector and
1705     // the lowest element of the second input vector.
1706     bool MadeChange = false;
1707     Value *Arg0 = II->getArgOperand(0);
1708     Value *Arg1 = II->getArgOperand(1);
1709     unsigned VWidth = Arg0->getType()->getVectorNumElements();
1710     if (Value *V = SimplifyDemandedVectorEltsHigh(Arg0, VWidth, VWidth - 1)) {
1711       II->setArgOperand(0, V);
1712       MadeChange = true;
1713     }
1714     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
1715       II->setArgOperand(1, V);
1716       MadeChange = true;
1717     }
1718     if (MadeChange)
1719       return II;
1720     break;
1721   }
1722 
1723   // Constant fold ashr( <A x Bi>, Ci ).
1724   // Constant fold lshr( <A x Bi>, Ci ).
1725   // Constant fold shl( <A x Bi>, Ci ).
1726   case Intrinsic::x86_sse2_psrai_d:
1727   case Intrinsic::x86_sse2_psrai_w:
1728   case Intrinsic::x86_avx2_psrai_d:
1729   case Intrinsic::x86_avx2_psrai_w:
1730   case Intrinsic::x86_sse2_psrli_d:
1731   case Intrinsic::x86_sse2_psrli_q:
1732   case Intrinsic::x86_sse2_psrli_w:
1733   case Intrinsic::x86_avx2_psrli_d:
1734   case Intrinsic::x86_avx2_psrli_q:
1735   case Intrinsic::x86_avx2_psrli_w:
1736   case Intrinsic::x86_sse2_pslli_d:
1737   case Intrinsic::x86_sse2_pslli_q:
1738   case Intrinsic::x86_sse2_pslli_w:
1739   case Intrinsic::x86_avx2_pslli_d:
1740   case Intrinsic::x86_avx2_pslli_q:
1741   case Intrinsic::x86_avx2_pslli_w:
1742     if (Value *V = simplifyX86immShift(*II, *Builder))
1743       return replaceInstUsesWith(*II, V);
1744     break;
1745 
1746   case Intrinsic::x86_sse2_psra_d:
1747   case Intrinsic::x86_sse2_psra_w:
1748   case Intrinsic::x86_avx2_psra_d:
1749   case Intrinsic::x86_avx2_psra_w:
1750   case Intrinsic::x86_sse2_psrl_d:
1751   case Intrinsic::x86_sse2_psrl_q:
1752   case Intrinsic::x86_sse2_psrl_w:
1753   case Intrinsic::x86_avx2_psrl_d:
1754   case Intrinsic::x86_avx2_psrl_q:
1755   case Intrinsic::x86_avx2_psrl_w:
1756   case Intrinsic::x86_sse2_psll_d:
1757   case Intrinsic::x86_sse2_psll_q:
1758   case Intrinsic::x86_sse2_psll_w:
1759   case Intrinsic::x86_avx2_psll_d:
1760   case Intrinsic::x86_avx2_psll_q:
1761   case Intrinsic::x86_avx2_psll_w: {
1762     if (Value *V = simplifyX86immShift(*II, *Builder))
1763       return replaceInstUsesWith(*II, V);
1764 
1765     // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
1766     // operand to compute the shift amount.
1767     Value *Arg1 = II->getArgOperand(1);
1768     assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
1769            "Unexpected packed shift size");
1770     unsigned VWidth = Arg1->getType()->getVectorNumElements();
1771 
1772     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
1773       II->setArgOperand(1, V);
1774       return II;
1775     }
1776     break;
1777   }
1778 
1779   case Intrinsic::x86_avx2_psllv_d:
1780   case Intrinsic::x86_avx2_psllv_d_256:
1781   case Intrinsic::x86_avx2_psllv_q:
1782   case Intrinsic::x86_avx2_psllv_q_256:
1783   case Intrinsic::x86_avx2_psrav_d:
1784   case Intrinsic::x86_avx2_psrav_d_256:
1785   case Intrinsic::x86_avx2_psrlv_d:
1786   case Intrinsic::x86_avx2_psrlv_d_256:
1787   case Intrinsic::x86_avx2_psrlv_q:
1788   case Intrinsic::x86_avx2_psrlv_q_256:
1789     if (Value *V = simplifyX86varShift(*II, *Builder))
1790       return replaceInstUsesWith(*II, V);
1791     break;
1792 
1793   case Intrinsic::x86_sse41_insertps:
1794     if (Value *V = simplifyX86insertps(*II, *Builder))
1795       return replaceInstUsesWith(*II, V);
1796     break;
1797 
1798   case Intrinsic::x86_sse4a_extrq: {
1799     Value *Op0 = II->getArgOperand(0);
1800     Value *Op1 = II->getArgOperand(1);
1801     unsigned VWidth0 = Op0->getType()->getVectorNumElements();
1802     unsigned VWidth1 = Op1->getType()->getVectorNumElements();
1803     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
1804            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
1805            VWidth1 == 16 && "Unexpected operand sizes");
1806 
1807     // See if we're dealing with constant values.
1808     Constant *C1 = dyn_cast<Constant>(Op1);
1809     ConstantInt *CILength =
1810         C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)0))
1811            : nullptr;
1812     ConstantInt *CIIndex =
1813         C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)1))
1814            : nullptr;
1815 
1816     // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
1817     if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
1818       return replaceInstUsesWith(*II, V);
1819 
1820     // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
1821     // operands and the lowest 16-bits of the second.
1822     bool MadeChange = false;
1823     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
1824       II->setArgOperand(0, V);
1825       MadeChange = true;
1826     }
1827     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
1828       II->setArgOperand(1, V);
1829       MadeChange = true;
1830     }
1831     if (MadeChange)
1832       return II;
1833     break;
1834   }
1835 
1836   case Intrinsic::x86_sse4a_extrqi: {
1837     // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
1838     // bits of the lower 64-bits. The upper 64-bits are undefined.
1839     Value *Op0 = II->getArgOperand(0);
1840     unsigned VWidth = Op0->getType()->getVectorNumElements();
1841     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
1842            "Unexpected operand size");
1843 
1844     // See if we're dealing with constant values.
1845     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
1846     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
1847 
1848     // Attempt to simplify to a constant or shuffle vector.
1849     if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
1850       return replaceInstUsesWith(*II, V);
1851 
1852     // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
1853     // operand.
1854     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
1855       II->setArgOperand(0, V);
1856       return II;
1857     }
1858     break;
1859   }
1860 
1861   case Intrinsic::x86_sse4a_insertq: {
1862     Value *Op0 = II->getArgOperand(0);
1863     Value *Op1 = II->getArgOperand(1);
1864     unsigned VWidth = Op0->getType()->getVectorNumElements();
1865     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
1866            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
1867            Op1->getType()->getVectorNumElements() == 2 &&
1868            "Unexpected operand size");
1869 
1870     // See if we're dealing with constant values.
1871     Constant *C1 = dyn_cast<Constant>(Op1);
1872     ConstantInt *CI11 =
1873         C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)1))
1874            : nullptr;
1875 
1876     // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
1877     if (CI11) {
1878       const APInt &V11 = CI11->getValue();
1879       APInt Len = V11.zextOrTrunc(6);
1880       APInt Idx = V11.lshr(8).zextOrTrunc(6);
1881       if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
1882         return replaceInstUsesWith(*II, V);
1883     }
1884 
1885     // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
1886     // operand.
1887     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
1888       II->setArgOperand(0, V);
1889       return II;
1890     }
1891     break;
1892   }
1893 
1894   case Intrinsic::x86_sse4a_insertqi: {
1895     // INSERTQI: Extract lowest Length bits from lower half of second source and
1896     // insert over first source starting at Index bit. The upper 64-bits are
1897     // undefined.
1898     Value *Op0 = II->getArgOperand(0);
1899     Value *Op1 = II->getArgOperand(1);
1900     unsigned VWidth0 = Op0->getType()->getVectorNumElements();
1901     unsigned VWidth1 = Op1->getType()->getVectorNumElements();
1902     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
1903            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
1904            VWidth1 == 2 && "Unexpected operand sizes");
1905 
1906     // See if we're dealing with constant values.
1907     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
1908     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
1909 
1910     // Attempt to simplify to a constant or shuffle vector.
1911     if (CILength && CIIndex) {
1912       APInt Len = CILength->getValue().zextOrTrunc(6);
1913       APInt Idx = CIIndex->getValue().zextOrTrunc(6);
1914       if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
1915         return replaceInstUsesWith(*II, V);
1916     }
1917 
1918     // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
1919     // operands.
1920     bool MadeChange = false;
1921     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
1922       II->setArgOperand(0, V);
1923       MadeChange = true;
1924     }
1925     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
1926       II->setArgOperand(1, V);
1927       MadeChange = true;
1928     }
1929     if (MadeChange)
1930       return II;
1931     break;
1932   }
1933 
1934   case Intrinsic::x86_sse41_pblendvb:
1935   case Intrinsic::x86_sse41_blendvps:
1936   case Intrinsic::x86_sse41_blendvpd:
1937   case Intrinsic::x86_avx_blendv_ps_256:
1938   case Intrinsic::x86_avx_blendv_pd_256:
1939   case Intrinsic::x86_avx2_pblendvb: {
1940     // Convert blendv* to vector selects if the mask is constant.
1941     // This optimization is convoluted because the intrinsic is defined as
1942     // getting a vector of floats or doubles for the ps and pd versions.
1943     // FIXME: That should be changed.
1944 
1945     Value *Op0 = II->getArgOperand(0);
1946     Value *Op1 = II->getArgOperand(1);
1947     Value *Mask = II->getArgOperand(2);
1948 
1949     // fold (blend A, A, Mask) -> A
1950     if (Op0 == Op1)
1951       return replaceInstUsesWith(CI, Op0);
1952 
1953     // Zero Mask - select 1st argument.
1954     if (isa<ConstantAggregateZero>(Mask))
1955       return replaceInstUsesWith(CI, Op0);
1956 
1957     // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
1958     if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
1959       Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
1960       return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
1961     }
1962     break;
1963   }
1964 
1965   case Intrinsic::x86_ssse3_pshuf_b_128:
1966   case Intrinsic::x86_avx2_pshuf_b:
1967     if (Value *V = simplifyX86pshufb(*II, *Builder))
1968       return replaceInstUsesWith(*II, V);
1969     break;
1970 
1971   case Intrinsic::x86_avx_vpermilvar_ps:
1972   case Intrinsic::x86_avx_vpermilvar_ps_256:
1973   case Intrinsic::x86_avx_vpermilvar_pd:
1974   case Intrinsic::x86_avx_vpermilvar_pd_256:
1975     if (Value *V = simplifyX86vpermilvar(*II, *Builder))
1976       return replaceInstUsesWith(*II, V);
1977     break;
1978 
1979   case Intrinsic::x86_avx2_permd:
1980   case Intrinsic::x86_avx2_permps:
1981     if (Value *V = simplifyX86vpermv(*II, *Builder))
1982       return replaceInstUsesWith(*II, V);
1983     break;
1984 
1985   case Intrinsic::x86_avx_vperm2f128_pd_256:
1986   case Intrinsic::x86_avx_vperm2f128_ps_256:
1987   case Intrinsic::x86_avx_vperm2f128_si_256:
1988   case Intrinsic::x86_avx2_vperm2i128:
1989     if (Value *V = simplifyX86vperm2(*II, *Builder))
1990       return replaceInstUsesWith(*II, V);
1991     break;
1992 
1993   case Intrinsic::x86_avx_maskload_ps:
1994   case Intrinsic::x86_avx_maskload_pd:
1995   case Intrinsic::x86_avx_maskload_ps_256:
1996   case Intrinsic::x86_avx_maskload_pd_256:
1997   case Intrinsic::x86_avx2_maskload_d:
1998   case Intrinsic::x86_avx2_maskload_q:
1999   case Intrinsic::x86_avx2_maskload_d_256:
2000   case Intrinsic::x86_avx2_maskload_q_256:
2001     if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
2002       return I;
2003     break;
2004 
2005   case Intrinsic::x86_sse2_maskmov_dqu:
2006   case Intrinsic::x86_avx_maskstore_ps:
2007   case Intrinsic::x86_avx_maskstore_pd:
2008   case Intrinsic::x86_avx_maskstore_ps_256:
2009   case Intrinsic::x86_avx_maskstore_pd_256:
2010   case Intrinsic::x86_avx2_maskstore_d:
2011   case Intrinsic::x86_avx2_maskstore_q:
2012   case Intrinsic::x86_avx2_maskstore_d_256:
2013   case Intrinsic::x86_avx2_maskstore_q_256:
2014     if (simplifyX86MaskedStore(*II, *this))
2015       return nullptr;
2016     break;
2017 
2018   case Intrinsic::x86_xop_vpcomb:
2019   case Intrinsic::x86_xop_vpcomd:
2020   case Intrinsic::x86_xop_vpcomq:
2021   case Intrinsic::x86_xop_vpcomw:
2022     if (Value *V = simplifyX86vpcom(*II, *Builder, true))
2023       return replaceInstUsesWith(*II, V);
2024     break;
2025 
2026   case Intrinsic::x86_xop_vpcomub:
2027   case Intrinsic::x86_xop_vpcomud:
2028   case Intrinsic::x86_xop_vpcomuq:
2029   case Intrinsic::x86_xop_vpcomuw:
2030     if (Value *V = simplifyX86vpcom(*II, *Builder, false))
2031       return replaceInstUsesWith(*II, V);
2032     break;
2033 
2034   case Intrinsic::ppc_altivec_vperm:
2035     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
2036     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
2037     // a vectorshuffle for little endian, we must undo the transformation
2038     // performed on vec_perm in altivec.h.  That is, we must complement
2039     // the permutation mask with respect to 31 and reverse the order of
2040     // V1 and V2.
2041     if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
2042       assert(Mask->getType()->getVectorNumElements() == 16 &&
2043              "Bad type for intrinsic!");
2044 
2045       // Check that all of the elements are integer constants or undefs.
2046       bool AllEltsOk = true;
2047       for (unsigned i = 0; i != 16; ++i) {
2048         Constant *Elt = Mask->getAggregateElement(i);
2049         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
2050           AllEltsOk = false;
2051           break;
2052         }
2053       }
2054 
2055       if (AllEltsOk) {
2056         // Cast the input vectors to byte vectors.
2057         Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
2058                                             Mask->getType());
2059         Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
2060                                             Mask->getType());
2061         Value *Result = UndefValue::get(Op0->getType());
2062 
2063         // Only extract each element once.
2064         Value *ExtractedElts[32];
2065         memset(ExtractedElts, 0, sizeof(ExtractedElts));
2066 
2067         for (unsigned i = 0; i != 16; ++i) {
2068           if (isa<UndefValue>(Mask->getAggregateElement(i)))
2069             continue;
2070           unsigned Idx =
2071             cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
2072           Idx &= 31;  // Match the hardware behavior.
2073           if (DL.isLittleEndian())
2074             Idx = 31 - Idx;
2075 
2076           if (!ExtractedElts[Idx]) {
2077             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
2078             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
2079             ExtractedElts[Idx] =
2080               Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
2081                                             Builder->getInt32(Idx&15));
2082           }
2083 
2084           // Insert this value into the result vector.
2085           Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
2086                                                 Builder->getInt32(i));
2087         }
2088         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
2089       }
2090     }
2091     break;
2092 
2093   case Intrinsic::arm_neon_vld1:
2094   case Intrinsic::arm_neon_vld2:
2095   case Intrinsic::arm_neon_vld3:
2096   case Intrinsic::arm_neon_vld4:
2097   case Intrinsic::arm_neon_vld2lane:
2098   case Intrinsic::arm_neon_vld3lane:
2099   case Intrinsic::arm_neon_vld4lane:
2100   case Intrinsic::arm_neon_vst1:
2101   case Intrinsic::arm_neon_vst2:
2102   case Intrinsic::arm_neon_vst3:
2103   case Intrinsic::arm_neon_vst4:
2104   case Intrinsic::arm_neon_vst2lane:
2105   case Intrinsic::arm_neon_vst3lane:
2106   case Intrinsic::arm_neon_vst4lane: {
2107     unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, AC, DT);
2108     unsigned AlignArg = II->getNumArgOperands() - 1;
2109     ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
2110     if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
2111       II->setArgOperand(AlignArg,
2112                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
2113                                          MemAlign, false));
2114       return II;
2115     }
2116     break;
2117   }
2118 
2119   case Intrinsic::arm_neon_vmulls:
2120   case Intrinsic::arm_neon_vmullu:
2121   case Intrinsic::aarch64_neon_smull:
2122   case Intrinsic::aarch64_neon_umull: {
2123     Value *Arg0 = II->getArgOperand(0);
2124     Value *Arg1 = II->getArgOperand(1);
2125 
2126     // Handle mul by zero first:
2127     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
2128       return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
2129     }
2130 
2131     // Check for constant LHS & RHS - in this case we just simplify.
2132     bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
2133                  II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
2134     VectorType *NewVT = cast<VectorType>(II->getType());
2135     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
2136       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
2137         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
2138         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
2139 
2140         return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
2141       }
2142 
2143       // Couldn't simplify - canonicalize constant to the RHS.
2144       std::swap(Arg0, Arg1);
2145     }
2146 
2147     // Handle mul by one:
2148     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
2149       if (ConstantInt *Splat =
2150               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
2151         if (Splat->isOne())
2152           return CastInst::CreateIntegerCast(Arg0, II->getType(),
2153                                              /*isSigned=*/!Zext);
2154 
2155     break;
2156   }
2157 
2158   case Intrinsic::amdgcn_rcp: {
2159     if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) {
2160       const APFloat &ArgVal = C->getValueAPF();
2161       APFloat Val(ArgVal.getSemantics(), 1.0);
2162       APFloat::opStatus Status = Val.divide(ArgVal,
2163                                             APFloat::rmNearestTiesToEven);
2164       // Only do this if it was exact and therefore not dependent on the
2165       // rounding mode.
2166       if (Status == APFloat::opOK)
2167         return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
2168     }
2169 
2170     break;
2171   }
2172   case Intrinsic::amdgcn_frexp_mant:
2173   case Intrinsic::amdgcn_frexp_exp: {
2174     Value *Src = II->getArgOperand(0);
2175     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
2176       int Exp;
2177       APFloat Significand = frexp(C->getValueAPF(), Exp,
2178                                   APFloat::rmNearestTiesToEven);
2179 
2180       if (II->getIntrinsicID() == Intrinsic::amdgcn_frexp_mant) {
2181         return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(),
2182                                                        Significand));
2183       }
2184 
2185       // Match instruction special case behavior.
2186       if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
2187         Exp = 0;
2188 
2189       return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp));
2190     }
2191 
2192     if (isa<UndefValue>(Src))
2193       return replaceInstUsesWith(CI, UndefValue::get(II->getType()));
2194 
2195     break;
2196   }
2197   case Intrinsic::stackrestore: {
2198     // If the save is right next to the restore, remove the restore.  This can
2199     // happen when variable allocas are DCE'd.
2200     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
2201       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
2202         if (&*++SS->getIterator() == II)
2203           return eraseInstFromFunction(CI);
2204       }
2205     }
2206 
2207     // Scan down this block to see if there is another stack restore in the
2208     // same block without an intervening call/alloca.
2209     BasicBlock::iterator BI(II);
2210     TerminatorInst *TI = II->getParent()->getTerminator();
2211     bool CannotRemove = false;
2212     for (++BI; &*BI != TI; ++BI) {
2213       if (isa<AllocaInst>(BI)) {
2214         CannotRemove = true;
2215         break;
2216       }
2217       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
2218         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
2219           // If there is a stackrestore below this one, remove this one.
2220           if (II->getIntrinsicID() == Intrinsic::stackrestore)
2221             return eraseInstFromFunction(CI);
2222 
2223           // Bail if we cross over an intrinsic with side effects, such as
2224           // llvm.stacksave, llvm.read_register, or llvm.setjmp.
2225           if (II->mayHaveSideEffects()) {
2226             CannotRemove = true;
2227             break;
2228           }
2229         } else {
2230           // If we found a non-intrinsic call, we can't remove the stack
2231           // restore.
2232           CannotRemove = true;
2233           break;
2234         }
2235       }
2236     }
2237 
2238     // If the stack restore is in a return, resume, or unwind block and if there
2239     // are no allocas or calls between the restore and the return, nuke the
2240     // restore.
2241     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
2242       return eraseInstFromFunction(CI);
2243     break;
2244   }
2245   case Intrinsic::lifetime_start:
2246     if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start,
2247                                   Intrinsic::lifetime_end, *this))
2248       return nullptr;
2249     break;
2250   case Intrinsic::assume: {
2251     Value *IIOperand = II->getArgOperand(0);
2252     // Remove an assume if it is immediately followed by an identical assume.
2253     if (match(II->getNextNode(),
2254               m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
2255       return eraseInstFromFunction(CI);
2256 
2257     // Canonicalize assume(a && b) -> assume(a); assume(b);
2258     // Note: New assumption intrinsics created here are registered by
2259     // the InstCombineIRInserter object.
2260     Value *AssumeIntrinsic = II->getCalledValue(), *A, *B;
2261     if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
2262       Builder->CreateCall(AssumeIntrinsic, A, II->getName());
2263       Builder->CreateCall(AssumeIntrinsic, B, II->getName());
2264       return eraseInstFromFunction(*II);
2265     }
2266     // assume(!(a || b)) -> assume(!a); assume(!b);
2267     if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
2268       Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
2269                           II->getName());
2270       Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
2271                           II->getName());
2272       return eraseInstFromFunction(*II);
2273     }
2274 
2275     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
2276     // (if assume is valid at the load)
2277     if (ICmpInst* ICmp = dyn_cast<ICmpInst>(IIOperand)) {
2278       Value *LHS = ICmp->getOperand(0);
2279       Value *RHS = ICmp->getOperand(1);
2280       if (ICmpInst::ICMP_NE == ICmp->getPredicate() &&
2281           isa<LoadInst>(LHS) &&
2282           isa<Constant>(RHS) &&
2283           RHS->getType()->isPointerTy() &&
2284           cast<Constant>(RHS)->isNullValue()) {
2285         LoadInst* LI = cast<LoadInst>(LHS);
2286         if (isValidAssumeForContext(II, LI, DT)) {
2287           MDNode *MD = MDNode::get(II->getContext(), None);
2288           LI->setMetadata(LLVMContext::MD_nonnull, MD);
2289           return eraseInstFromFunction(*II);
2290         }
2291       }
2292       // TODO: apply nonnull return attributes to calls and invokes
2293       // TODO: apply range metadata for range check patterns?
2294     }
2295     // If there is a dominating assume with the same condition as this one,
2296     // then this one is redundant, and should be removed.
2297     APInt KnownZero(1, 0), KnownOne(1, 0);
2298     computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II);
2299     if (KnownOne.isAllOnesValue())
2300       return eraseInstFromFunction(*II);
2301 
2302     break;
2303   }
2304   case Intrinsic::experimental_gc_relocate: {
2305     // Translate facts known about a pointer before relocating into
2306     // facts about the relocate value, while being careful to
2307     // preserve relocation semantics.
2308     Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr();
2309 
2310     // Remove the relocation if unused, note that this check is required
2311     // to prevent the cases below from looping forever.
2312     if (II->use_empty())
2313       return eraseInstFromFunction(*II);
2314 
2315     // Undef is undef, even after relocation.
2316     // TODO: provide a hook for this in GCStrategy.  This is clearly legal for
2317     // most practical collectors, but there was discussion in the review thread
2318     // about whether it was legal for all possible collectors.
2319     if (isa<UndefValue>(DerivedPtr))
2320       // Use undef of gc_relocate's type to replace it.
2321       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2322 
2323     if (auto *PT = dyn_cast<PointerType>(II->getType())) {
2324       // The relocation of null will be null for most any collector.
2325       // TODO: provide a hook for this in GCStrategy.  There might be some
2326       // weird collector this property does not hold for.
2327       if (isa<ConstantPointerNull>(DerivedPtr))
2328         // Use null-pointer of gc_relocate's type to replace it.
2329         return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
2330 
2331       // isKnownNonNull -> nonnull attribute
2332       if (isKnownNonNullAt(DerivedPtr, II, DT))
2333         II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
2334     }
2335 
2336     // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
2337     // Canonicalize on the type from the uses to the defs
2338 
2339     // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
2340     break;
2341   }
2342   }
2343 
2344   return visitCallSite(II);
2345 }
2346 
2347 // InvokeInst simplification
2348 //
visitInvokeInst(InvokeInst & II)2349 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
2350   return visitCallSite(&II);
2351 }
2352 
2353 /// If this cast does not affect the value passed through the varargs area, we
2354 /// can eliminate the use of the cast.
isSafeToEliminateVarargsCast(const CallSite CS,const DataLayout & DL,const CastInst * const CI,const int ix)2355 static bool isSafeToEliminateVarargsCast(const CallSite CS,
2356                                          const DataLayout &DL,
2357                                          const CastInst *const CI,
2358                                          const int ix) {
2359   if (!CI->isLosslessCast())
2360     return false;
2361 
2362   // If this is a GC intrinsic, avoid munging types.  We need types for
2363   // statepoint reconstruction in SelectionDAG.
2364   // TODO: This is probably something which should be expanded to all
2365   // intrinsics since the entire point of intrinsics is that
2366   // they are understandable by the optimizer.
2367   if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
2368     return false;
2369 
2370   // The size of ByVal or InAlloca arguments is derived from the type, so we
2371   // can't change to a type with a different size.  If the size were
2372   // passed explicitly we could avoid this check.
2373   if (!CS.isByValOrInAllocaArgument(ix))
2374     return true;
2375 
2376   Type* SrcTy =
2377             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
2378   Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
2379   if (!SrcTy->isSized() || !DstTy->isSized())
2380     return false;
2381   if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
2382     return false;
2383   return true;
2384 }
2385 
tryOptimizeCall(CallInst * CI)2386 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
2387   if (!CI->getCalledFunction()) return nullptr;
2388 
2389   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
2390     replaceInstUsesWith(*From, With);
2391   };
2392   LibCallSimplifier Simplifier(DL, TLI, InstCombineRAUW);
2393   if (Value *With = Simplifier.optimizeCall(CI)) {
2394     ++NumSimplified;
2395     return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
2396   }
2397 
2398   return nullptr;
2399 }
2400 
findInitTrampolineFromAlloca(Value * TrampMem)2401 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
2402   // Strip off at most one level of pointer casts, looking for an alloca.  This
2403   // is good enough in practice and simpler than handling any number of casts.
2404   Value *Underlying = TrampMem->stripPointerCasts();
2405   if (Underlying != TrampMem &&
2406       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
2407     return nullptr;
2408   if (!isa<AllocaInst>(Underlying))
2409     return nullptr;
2410 
2411   IntrinsicInst *InitTrampoline = nullptr;
2412   for (User *U : TrampMem->users()) {
2413     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
2414     if (!II)
2415       return nullptr;
2416     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
2417       if (InitTrampoline)
2418         // More than one init_trampoline writes to this value.  Give up.
2419         return nullptr;
2420       InitTrampoline = II;
2421       continue;
2422     }
2423     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
2424       // Allow any number of calls to adjust.trampoline.
2425       continue;
2426     return nullptr;
2427   }
2428 
2429   // No call to init.trampoline found.
2430   if (!InitTrampoline)
2431     return nullptr;
2432 
2433   // Check that the alloca is being used in the expected way.
2434   if (InitTrampoline->getOperand(0) != TrampMem)
2435     return nullptr;
2436 
2437   return InitTrampoline;
2438 }
2439 
findInitTrampolineFromBB(IntrinsicInst * AdjustTramp,Value * TrampMem)2440 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
2441                                                Value *TrampMem) {
2442   // Visit all the previous instructions in the basic block, and try to find a
2443   // init.trampoline which has a direct path to the adjust.trampoline.
2444   for (BasicBlock::iterator I = AdjustTramp->getIterator(),
2445                             E = AdjustTramp->getParent()->begin();
2446        I != E;) {
2447     Instruction *Inst = &*--I;
2448     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2449       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
2450           II->getOperand(0) == TrampMem)
2451         return II;
2452     if (Inst->mayWriteToMemory())
2453       return nullptr;
2454   }
2455   return nullptr;
2456 }
2457 
2458 // Given a call to llvm.adjust.trampoline, find and return the corresponding
2459 // call to llvm.init.trampoline if the call to the trampoline can be optimized
2460 // to a direct call to a function.  Otherwise return NULL.
2461 //
findInitTrampoline(Value * Callee)2462 static IntrinsicInst *findInitTrampoline(Value *Callee) {
2463   Callee = Callee->stripPointerCasts();
2464   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
2465   if (!AdjustTramp ||
2466       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
2467     return nullptr;
2468 
2469   Value *TrampMem = AdjustTramp->getOperand(0);
2470 
2471   if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
2472     return IT;
2473   if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
2474     return IT;
2475   return nullptr;
2476 }
2477 
2478 /// Improvements for call and invoke instructions.
visitCallSite(CallSite CS)2479 Instruction *InstCombiner::visitCallSite(CallSite CS) {
2480 
2481   if (isAllocLikeFn(CS.getInstruction(), TLI))
2482     return visitAllocSite(*CS.getInstruction());
2483 
2484   bool Changed = false;
2485 
2486   // Mark any parameters that are known to be non-null with the nonnull
2487   // attribute.  This is helpful for inlining calls to functions with null
2488   // checks on their arguments.
2489   SmallVector<unsigned, 4> Indices;
2490   unsigned ArgNo = 0;
2491 
2492   for (Value *V : CS.args()) {
2493     if (V->getType()->isPointerTy() &&
2494         !CS.paramHasAttr(ArgNo + 1, Attribute::NonNull) &&
2495         isKnownNonNullAt(V, CS.getInstruction(), DT))
2496       Indices.push_back(ArgNo + 1);
2497     ArgNo++;
2498   }
2499 
2500   assert(ArgNo == CS.arg_size() && "sanity check");
2501 
2502   if (!Indices.empty()) {
2503     AttributeSet AS = CS.getAttributes();
2504     LLVMContext &Ctx = CS.getInstruction()->getContext();
2505     AS = AS.addAttribute(Ctx, Indices,
2506                          Attribute::get(Ctx, Attribute::NonNull));
2507     CS.setAttributes(AS);
2508     Changed = true;
2509   }
2510 
2511   // If the callee is a pointer to a function, attempt to move any casts to the
2512   // arguments of the call/invoke.
2513   Value *Callee = CS.getCalledValue();
2514   if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
2515     return nullptr;
2516 
2517   if (Function *CalleeF = dyn_cast<Function>(Callee)) {
2518     // Remove the convergent attr on calls when the callee is not convergent.
2519     if (CS.isConvergent() && !CalleeF->isConvergent() &&
2520         !CalleeF->isIntrinsic()) {
2521       DEBUG(dbgs() << "Removing convergent attr from instr "
2522                    << CS.getInstruction() << "\n");
2523       CS.setNotConvergent();
2524       return CS.getInstruction();
2525     }
2526 
2527     // If the call and callee calling conventions don't match, this call must
2528     // be unreachable, as the call is undefined.
2529     if (CalleeF->getCallingConv() != CS.getCallingConv() &&
2530         // Only do this for calls to a function with a body.  A prototype may
2531         // not actually end up matching the implementation's calling conv for a
2532         // variety of reasons (e.g. it may be written in assembly).
2533         !CalleeF->isDeclaration()) {
2534       Instruction *OldCall = CS.getInstruction();
2535       new StoreInst(ConstantInt::getTrue(Callee->getContext()),
2536                 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
2537                                   OldCall);
2538       // If OldCall does not return void then replaceAllUsesWith undef.
2539       // This allows ValueHandlers and custom metadata to adjust itself.
2540       if (!OldCall->getType()->isVoidTy())
2541         replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
2542       if (isa<CallInst>(OldCall))
2543         return eraseInstFromFunction(*OldCall);
2544 
2545       // We cannot remove an invoke, because it would change the CFG, just
2546       // change the callee to a null pointer.
2547       cast<InvokeInst>(OldCall)->setCalledFunction(
2548                                     Constant::getNullValue(CalleeF->getType()));
2549       return nullptr;
2550     }
2551   }
2552 
2553   if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
2554     // If CS does not return void then replaceAllUsesWith undef.
2555     // This allows ValueHandlers and custom metadata to adjust itself.
2556     if (!CS.getInstruction()->getType()->isVoidTy())
2557       replaceInstUsesWith(*CS.getInstruction(),
2558                           UndefValue::get(CS.getInstruction()->getType()));
2559 
2560     if (isa<InvokeInst>(CS.getInstruction())) {
2561       // Can't remove an invoke because we cannot change the CFG.
2562       return nullptr;
2563     }
2564 
2565     // This instruction is not reachable, just remove it.  We insert a store to
2566     // undef so that we know that this code is not reachable, despite the fact
2567     // that we can't modify the CFG here.
2568     new StoreInst(ConstantInt::getTrue(Callee->getContext()),
2569                   UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
2570                   CS.getInstruction());
2571 
2572     return eraseInstFromFunction(*CS.getInstruction());
2573   }
2574 
2575   if (IntrinsicInst *II = findInitTrampoline(Callee))
2576     return transformCallThroughTrampoline(CS, II);
2577 
2578   PointerType *PTy = cast<PointerType>(Callee->getType());
2579   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2580   if (FTy->isVarArg()) {
2581     int ix = FTy->getNumParams();
2582     // See if we can optimize any arguments passed through the varargs area of
2583     // the call.
2584     for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
2585            E = CS.arg_end(); I != E; ++I, ++ix) {
2586       CastInst *CI = dyn_cast<CastInst>(*I);
2587       if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
2588         *I = CI->getOperand(0);
2589         Changed = true;
2590       }
2591     }
2592   }
2593 
2594   if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
2595     // Inline asm calls cannot throw - mark them 'nounwind'.
2596     CS.setDoesNotThrow();
2597     Changed = true;
2598   }
2599 
2600   // Try to optimize the call if possible, we require DataLayout for most of
2601   // this.  None of these calls are seen as possibly dead so go ahead and
2602   // delete the instruction now.
2603   if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
2604     Instruction *I = tryOptimizeCall(CI);
2605     // If we changed something return the result, etc. Otherwise let
2606     // the fallthrough check.
2607     if (I) return eraseInstFromFunction(*I);
2608   }
2609 
2610   return Changed ? CS.getInstruction() : nullptr;
2611 }
2612 
2613 /// If the callee is a constexpr cast of a function, attempt to move the cast to
2614 /// the arguments of the call/invoke.
transformConstExprCastCall(CallSite CS)2615 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
2616   Function *Callee =
2617     dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2618   if (!Callee)
2619     return false;
2620   // The prototype of thunks are a lie, don't try to directly call such
2621   // functions.
2622   if (Callee->hasFnAttribute("thunk"))
2623     return false;
2624   Instruction *Caller = CS.getInstruction();
2625   const AttributeSet &CallerPAL = CS.getAttributes();
2626 
2627   // Okay, this is a cast from a function to a different type.  Unless doing so
2628   // would cause a type conversion of one of our arguments, change this call to
2629   // be a direct call with arguments casted to the appropriate types.
2630   //
2631   FunctionType *FT = Callee->getFunctionType();
2632   Type *OldRetTy = Caller->getType();
2633   Type *NewRetTy = FT->getReturnType();
2634 
2635   // Check to see if we are changing the return type...
2636   if (OldRetTy != NewRetTy) {
2637 
2638     if (NewRetTy->isStructTy())
2639       return false; // TODO: Handle multiple return values.
2640 
2641     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
2642       if (Callee->isDeclaration())
2643         return false;   // Cannot transform this return value.
2644 
2645       if (!Caller->use_empty() &&
2646           // void -> non-void is handled specially
2647           !NewRetTy->isVoidTy())
2648         return false;   // Cannot transform this return value.
2649     }
2650 
2651     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
2652       AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
2653       if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
2654         return false;   // Attribute not compatible with transformed value.
2655     }
2656 
2657     // If the callsite is an invoke instruction, and the return value is used by
2658     // a PHI node in a successor, we cannot change the return type of the call
2659     // because there is no place to put the cast instruction (without breaking
2660     // the critical edge).  Bail out in this case.
2661     if (!Caller->use_empty())
2662       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
2663         for (User *U : II->users())
2664           if (PHINode *PN = dyn_cast<PHINode>(U))
2665             if (PN->getParent() == II->getNormalDest() ||
2666                 PN->getParent() == II->getUnwindDest())
2667               return false;
2668   }
2669 
2670   unsigned NumActualArgs = CS.arg_size();
2671   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
2672 
2673   // Prevent us turning:
2674   // declare void @takes_i32_inalloca(i32* inalloca)
2675   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
2676   //
2677   // into:
2678   //  call void @takes_i32_inalloca(i32* null)
2679   //
2680   //  Similarly, avoid folding away bitcasts of byval calls.
2681   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
2682       Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
2683     return false;
2684 
2685   CallSite::arg_iterator AI = CS.arg_begin();
2686   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
2687     Type *ParamTy = FT->getParamType(i);
2688     Type *ActTy = (*AI)->getType();
2689 
2690     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
2691       return false;   // Cannot transform this parameter value.
2692 
2693     if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
2694           overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
2695       return false;   // Attribute not compatible with transformed value.
2696 
2697     if (CS.isInAllocaArgument(i))
2698       return false;   // Cannot transform to and from inalloca.
2699 
2700     // If the parameter is passed as a byval argument, then we have to have a
2701     // sized type and the sized type has to have the same size as the old type.
2702     if (ParamTy != ActTy &&
2703         CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
2704                                                          Attribute::ByVal)) {
2705       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
2706       if (!ParamPTy || !ParamPTy->getElementType()->isSized())
2707         return false;
2708 
2709       Type *CurElTy = ActTy->getPointerElementType();
2710       if (DL.getTypeAllocSize(CurElTy) !=
2711           DL.getTypeAllocSize(ParamPTy->getElementType()))
2712         return false;
2713     }
2714   }
2715 
2716   if (Callee->isDeclaration()) {
2717     // Do not delete arguments unless we have a function body.
2718     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
2719       return false;
2720 
2721     // If the callee is just a declaration, don't change the varargsness of the
2722     // call.  We don't want to introduce a varargs call where one doesn't
2723     // already exist.
2724     PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
2725     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
2726       return false;
2727 
2728     // If both the callee and the cast type are varargs, we still have to make
2729     // sure the number of fixed parameters are the same or we have the same
2730     // ABI issues as if we introduce a varargs call.
2731     if (FT->isVarArg() &&
2732         cast<FunctionType>(APTy->getElementType())->isVarArg() &&
2733         FT->getNumParams() !=
2734         cast<FunctionType>(APTy->getElementType())->getNumParams())
2735       return false;
2736   }
2737 
2738   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
2739       !CallerPAL.isEmpty())
2740     // In this case we have more arguments than the new function type, but we
2741     // won't be dropping them.  Check that these extra arguments have attributes
2742     // that are compatible with being a vararg call argument.
2743     for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
2744       unsigned Index = CallerPAL.getSlotIndex(i - 1);
2745       if (Index <= FT->getNumParams())
2746         break;
2747 
2748       // Check if it has an attribute that's incompatible with varargs.
2749       AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1);
2750       if (PAttrs.hasAttribute(Index, Attribute::StructRet))
2751         return false;
2752     }
2753 
2754 
2755   // Okay, we decided that this is a safe thing to do: go ahead and start
2756   // inserting cast instructions as necessary.
2757   std::vector<Value*> Args;
2758   Args.reserve(NumActualArgs);
2759   SmallVector<AttributeSet, 8> attrVec;
2760   attrVec.reserve(NumCommonArgs);
2761 
2762   // Get any return attributes.
2763   AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
2764 
2765   // If the return value is not being used, the type may not be compatible
2766   // with the existing attributes.  Wipe out any problematic attributes.
2767   RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
2768 
2769   // Add the new return attributes.
2770   if (RAttrs.hasAttributes())
2771     attrVec.push_back(AttributeSet::get(Caller->getContext(),
2772                                         AttributeSet::ReturnIndex, RAttrs));
2773 
2774   AI = CS.arg_begin();
2775   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
2776     Type *ParamTy = FT->getParamType(i);
2777 
2778     if ((*AI)->getType() == ParamTy) {
2779       Args.push_back(*AI);
2780     } else {
2781       Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy));
2782     }
2783 
2784     // Add any parameter attributes.
2785     AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
2786     if (PAttrs.hasAttributes())
2787       attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1,
2788                                           PAttrs));
2789   }
2790 
2791   // If the function takes more arguments than the call was taking, add them
2792   // now.
2793   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
2794     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
2795 
2796   // If we are removing arguments to the function, emit an obnoxious warning.
2797   if (FT->getNumParams() < NumActualArgs) {
2798     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
2799     if (FT->isVarArg()) {
2800       // Add all of the arguments in their promoted form to the arg list.
2801       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
2802         Type *PTy = getPromotedType((*AI)->getType());
2803         if (PTy != (*AI)->getType()) {
2804           // Must promote to pass through va_arg area!
2805           Instruction::CastOps opcode =
2806             CastInst::getCastOpcode(*AI, false, PTy, false);
2807           Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
2808         } else {
2809           Args.push_back(*AI);
2810         }
2811 
2812         // Add any parameter attributes.
2813         AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
2814         if (PAttrs.hasAttributes())
2815           attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1,
2816                                               PAttrs));
2817       }
2818     }
2819   }
2820 
2821   AttributeSet FnAttrs = CallerPAL.getFnAttributes();
2822   if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex))
2823     attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs));
2824 
2825   if (NewRetTy->isVoidTy())
2826     Caller->setName("");   // Void type should not have a name.
2827 
2828   const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
2829                                                        attrVec);
2830 
2831   SmallVector<OperandBundleDef, 1> OpBundles;
2832   CS.getOperandBundlesAsDefs(OpBundles);
2833 
2834   Instruction *NC;
2835   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
2836     NC = Builder->CreateInvoke(Callee, II->getNormalDest(), II->getUnwindDest(),
2837                                Args, OpBundles);
2838     NC->takeName(II);
2839     cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
2840     cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
2841   } else {
2842     CallInst *CI = cast<CallInst>(Caller);
2843     NC = Builder->CreateCall(Callee, Args, OpBundles);
2844     NC->takeName(CI);
2845     if (CI->isTailCall())
2846       cast<CallInst>(NC)->setTailCall();
2847     cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
2848     cast<CallInst>(NC)->setAttributes(NewCallerPAL);
2849   }
2850 
2851   // Insert a cast of the return type as necessary.
2852   Value *NV = NC;
2853   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
2854     if (!NV->getType()->isVoidTy()) {
2855       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
2856       NC->setDebugLoc(Caller->getDebugLoc());
2857 
2858       // If this is an invoke instruction, we should insert it after the first
2859       // non-phi, instruction in the normal successor block.
2860       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
2861         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
2862         InsertNewInstBefore(NC, *I);
2863       } else {
2864         // Otherwise, it's a call, just insert cast right after the call.
2865         InsertNewInstBefore(NC, *Caller);
2866       }
2867       Worklist.AddUsersToWorkList(*Caller);
2868     } else {
2869       NV = UndefValue::get(Caller->getType());
2870     }
2871   }
2872 
2873   if (!Caller->use_empty())
2874     replaceInstUsesWith(*Caller, NV);
2875   else if (Caller->hasValueHandle()) {
2876     if (OldRetTy == NV->getType())
2877       ValueHandleBase::ValueIsRAUWd(Caller, NV);
2878     else
2879       // We cannot call ValueIsRAUWd with a different type, and the
2880       // actual tracked value will disappear.
2881       ValueHandleBase::ValueIsDeleted(Caller);
2882   }
2883 
2884   eraseInstFromFunction(*Caller);
2885   return true;
2886 }
2887 
2888 /// Turn a call to a function created by init_trampoline / adjust_trampoline
2889 /// intrinsic pair into a direct call to the underlying function.
2890 Instruction *
transformCallThroughTrampoline(CallSite CS,IntrinsicInst * Tramp)2891 InstCombiner::transformCallThroughTrampoline(CallSite CS,
2892                                              IntrinsicInst *Tramp) {
2893   Value *Callee = CS.getCalledValue();
2894   PointerType *PTy = cast<PointerType>(Callee->getType());
2895   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2896   const AttributeSet &Attrs = CS.getAttributes();
2897 
2898   // If the call already has the 'nest' attribute somewhere then give up -
2899   // otherwise 'nest' would occur twice after splicing in the chain.
2900   if (Attrs.hasAttrSomewhere(Attribute::Nest))
2901     return nullptr;
2902 
2903   assert(Tramp &&
2904          "transformCallThroughTrampoline called with incorrect CallSite.");
2905 
2906   Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
2907   FunctionType *NestFTy = cast<FunctionType>(NestF->getValueType());
2908 
2909   const AttributeSet &NestAttrs = NestF->getAttributes();
2910   if (!NestAttrs.isEmpty()) {
2911     unsigned NestIdx = 1;
2912     Type *NestTy = nullptr;
2913     AttributeSet NestAttr;
2914 
2915     // Look for a parameter marked with the 'nest' attribute.
2916     for (FunctionType::param_iterator I = NestFTy->param_begin(),
2917          E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
2918       if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
2919         // Record the parameter type and any other attributes.
2920         NestTy = *I;
2921         NestAttr = NestAttrs.getParamAttributes(NestIdx);
2922         break;
2923       }
2924 
2925     if (NestTy) {
2926       Instruction *Caller = CS.getInstruction();
2927       std::vector<Value*> NewArgs;
2928       NewArgs.reserve(CS.arg_size() + 1);
2929 
2930       SmallVector<AttributeSet, 8> NewAttrs;
2931       NewAttrs.reserve(Attrs.getNumSlots() + 1);
2932 
2933       // Insert the nest argument into the call argument list, which may
2934       // mean appending it.  Likewise for attributes.
2935 
2936       // Add any result attributes.
2937       if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
2938         NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
2939                                              Attrs.getRetAttributes()));
2940 
2941       {
2942         unsigned Idx = 1;
2943         CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
2944         do {
2945           if (Idx == NestIdx) {
2946             // Add the chain argument and attributes.
2947             Value *NestVal = Tramp->getArgOperand(2);
2948             if (NestVal->getType() != NestTy)
2949               NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
2950             NewArgs.push_back(NestVal);
2951             NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
2952                                                  NestAttr));
2953           }
2954 
2955           if (I == E)
2956             break;
2957 
2958           // Add the original argument and attributes.
2959           NewArgs.push_back(*I);
2960           AttributeSet Attr = Attrs.getParamAttributes(Idx);
2961           if (Attr.hasAttributes(Idx)) {
2962             AttrBuilder B(Attr, Idx);
2963             NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
2964                                                  Idx + (Idx >= NestIdx), B));
2965           }
2966 
2967           ++Idx;
2968           ++I;
2969         } while (1);
2970       }
2971 
2972       // Add any function attributes.
2973       if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
2974         NewAttrs.push_back(AttributeSet::get(FTy->getContext(),
2975                                              Attrs.getFnAttributes()));
2976 
2977       // The trampoline may have been bitcast to a bogus type (FTy).
2978       // Handle this by synthesizing a new function type, equal to FTy
2979       // with the chain parameter inserted.
2980 
2981       std::vector<Type*> NewTypes;
2982       NewTypes.reserve(FTy->getNumParams()+1);
2983 
2984       // Insert the chain's type into the list of parameter types, which may
2985       // mean appending it.
2986       {
2987         unsigned Idx = 1;
2988         FunctionType::param_iterator I = FTy->param_begin(),
2989           E = FTy->param_end();
2990 
2991         do {
2992           if (Idx == NestIdx)
2993             // Add the chain's type.
2994             NewTypes.push_back(NestTy);
2995 
2996           if (I == E)
2997             break;
2998 
2999           // Add the original type.
3000           NewTypes.push_back(*I);
3001 
3002           ++Idx;
3003           ++I;
3004         } while (1);
3005       }
3006 
3007       // Replace the trampoline call with a direct call.  Let the generic
3008       // code sort out any function type mismatches.
3009       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
3010                                                 FTy->isVarArg());
3011       Constant *NewCallee =
3012         NestF->getType() == PointerType::getUnqual(NewFTy) ?
3013         NestF : ConstantExpr::getBitCast(NestF,
3014                                          PointerType::getUnqual(NewFTy));
3015       const AttributeSet &NewPAL =
3016           AttributeSet::get(FTy->getContext(), NewAttrs);
3017 
3018       SmallVector<OperandBundleDef, 1> OpBundles;
3019       CS.getOperandBundlesAsDefs(OpBundles);
3020 
3021       Instruction *NewCaller;
3022       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
3023         NewCaller = InvokeInst::Create(NewCallee,
3024                                        II->getNormalDest(), II->getUnwindDest(),
3025                                        NewArgs, OpBundles);
3026         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
3027         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
3028       } else {
3029         NewCaller = CallInst::Create(NewCallee, NewArgs, OpBundles);
3030         if (cast<CallInst>(Caller)->isTailCall())
3031           cast<CallInst>(NewCaller)->setTailCall();
3032         cast<CallInst>(NewCaller)->
3033           setCallingConv(cast<CallInst>(Caller)->getCallingConv());
3034         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
3035       }
3036 
3037       return NewCaller;
3038     }
3039   }
3040 
3041   // Replace the trampoline call with a direct call.  Since there is no 'nest'
3042   // parameter, there is no need to adjust the argument list.  Let the generic
3043   // code sort out any function type mismatches.
3044   Constant *NewCallee =
3045     NestF->getType() == PTy ? NestF :
3046                               ConstantExpr::getBitCast(NestF, PTy);
3047   CS.setCalledFunction(NewCallee);
3048   return CS.getInstruction();
3049 }
3050