1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitCall and visitInvoke functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Analysis/MemoryBuiltins.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/PatternMatch.h"
22 #include "llvm/IR/Statepoint.h"
23 #include "llvm/Transforms/Utils/BuildLibCalls.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
26 using namespace llvm;
27 using namespace PatternMatch;
28
29 #define DEBUG_TYPE "instcombine"
30
31 STATISTIC(NumSimplified, "Number of library calls simplified");
32
33 /// Return the specified type promoted as it would be to pass though a va_arg
34 /// area.
getPromotedType(Type * Ty)35 static Type *getPromotedType(Type *Ty) {
36 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
37 if (ITy->getBitWidth() < 32)
38 return Type::getInt32Ty(Ty->getContext());
39 }
40 return Ty;
41 }
42
43 /// Given an aggregate type which ultimately holds a single scalar element,
44 /// like {{{type}}} or [1 x type], return type.
reduceToSingleValueType(Type * T)45 static Type *reduceToSingleValueType(Type *T) {
46 while (!T->isSingleValueType()) {
47 if (StructType *STy = dyn_cast<StructType>(T)) {
48 if (STy->getNumElements() == 1)
49 T = STy->getElementType(0);
50 else
51 break;
52 } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
53 if (ATy->getNumElements() == 1)
54 T = ATy->getElementType();
55 else
56 break;
57 } else
58 break;
59 }
60
61 return T;
62 }
63
64 /// Return a constant boolean vector that has true elements in all positions
65 /// where the input constant data vector has an element with the sign bit set.
getNegativeIsTrueBoolVec(ConstantDataVector * V)66 static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
67 SmallVector<Constant *, 32> BoolVec;
68 IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
69 for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
70 Constant *Elt = V->getElementAsConstant(I);
71 assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
72 "Unexpected constant data vector element type");
73 bool Sign = V->getElementType()->isIntegerTy()
74 ? cast<ConstantInt>(Elt)->isNegative()
75 : cast<ConstantFP>(Elt)->isNegative();
76 BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
77 }
78 return ConstantVector::get(BoolVec);
79 }
80
SimplifyMemTransfer(MemIntrinsic * MI)81 Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
82 unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, AC, DT);
83 unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, AC, DT);
84 unsigned MinAlign = std::min(DstAlign, SrcAlign);
85 unsigned CopyAlign = MI->getAlignment();
86
87 if (CopyAlign < MinAlign) {
88 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), MinAlign, false));
89 return MI;
90 }
91
92 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
93 // load/store.
94 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
95 if (!MemOpLength) return nullptr;
96
97 // Source and destination pointer types are always "i8*" for intrinsic. See
98 // if the size is something we can handle with a single primitive load/store.
99 // A single load+store correctly handles overlapping memory in the memmove
100 // case.
101 uint64_t Size = MemOpLength->getLimitedValue();
102 assert(Size && "0-sized memory transferring should be removed already.");
103
104 if (Size > 8 || (Size&(Size-1)))
105 return nullptr; // If not 1/2/4/8 bytes, exit.
106
107 // Use an integer load+store unless we can find something better.
108 unsigned SrcAddrSp =
109 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
110 unsigned DstAddrSp =
111 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
112
113 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
114 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
115 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
116
117 // Memcpy forces the use of i8* for the source and destination. That means
118 // that if you're using memcpy to move one double around, you'll get a cast
119 // from double* to i8*. We'd much rather use a double load+store rather than
120 // an i64 load+store, here because this improves the odds that the source or
121 // dest address will be promotable. See if we can find a better type than the
122 // integer datatype.
123 Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
124 MDNode *CopyMD = nullptr;
125 if (StrippedDest != MI->getArgOperand(0)) {
126 Type *SrcETy = cast<PointerType>(StrippedDest->getType())
127 ->getElementType();
128 if (SrcETy->isSized() && DL.getTypeStoreSize(SrcETy) == Size) {
129 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
130 // down through these levels if so.
131 SrcETy = reduceToSingleValueType(SrcETy);
132
133 if (SrcETy->isSingleValueType()) {
134 NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
135 NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
136
137 // If the memcpy has metadata describing the members, see if we can
138 // get the TBAA tag describing our copy.
139 if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
140 if (M->getNumOperands() == 3 && M->getOperand(0) &&
141 mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
142 mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() &&
143 M->getOperand(1) &&
144 mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
145 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
146 Size &&
147 M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
148 CopyMD = cast<MDNode>(M->getOperand(2));
149 }
150 }
151 }
152 }
153
154 // If the memcpy/memmove provides better alignment info than we can
155 // infer, use it.
156 SrcAlign = std::max(SrcAlign, CopyAlign);
157 DstAlign = std::max(DstAlign, CopyAlign);
158
159 Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
160 Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
161 LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
162 L->setAlignment(SrcAlign);
163 if (CopyMD)
164 L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
165 StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
166 S->setAlignment(DstAlign);
167 if (CopyMD)
168 S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
169
170 // Set the size of the copy to 0, it will be deleted on the next iteration.
171 MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
172 return MI;
173 }
174
SimplifyMemSet(MemSetInst * MI)175 Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
176 unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, AC, DT);
177 if (MI->getAlignment() < Alignment) {
178 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
179 Alignment, false));
180 return MI;
181 }
182
183 // Extract the length and alignment and fill if they are constant.
184 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
185 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
186 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
187 return nullptr;
188 uint64_t Len = LenC->getLimitedValue();
189 Alignment = MI->getAlignment();
190 assert(Len && "0-sized memory setting should be removed already.");
191
192 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
193 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
194 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
195
196 Value *Dest = MI->getDest();
197 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
198 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
199 Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
200
201 // Alignment 0 is identity for alignment 1 for memset, but not store.
202 if (Alignment == 0) Alignment = 1;
203
204 // Extract the fill value and store.
205 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
206 StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
207 MI->isVolatile());
208 S->setAlignment(Alignment);
209
210 // Set the size of the copy to 0, it will be deleted on the next iteration.
211 MI->setLength(Constant::getNullValue(LenC->getType()));
212 return MI;
213 }
214
215 return nullptr;
216 }
217
simplifyX86immShift(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)218 static Value *simplifyX86immShift(const IntrinsicInst &II,
219 InstCombiner::BuilderTy &Builder) {
220 bool LogicalShift = false;
221 bool ShiftLeft = false;
222
223 switch (II.getIntrinsicID()) {
224 default:
225 return nullptr;
226 case Intrinsic::x86_sse2_psra_d:
227 case Intrinsic::x86_sse2_psra_w:
228 case Intrinsic::x86_sse2_psrai_d:
229 case Intrinsic::x86_sse2_psrai_w:
230 case Intrinsic::x86_avx2_psra_d:
231 case Intrinsic::x86_avx2_psra_w:
232 case Intrinsic::x86_avx2_psrai_d:
233 case Intrinsic::x86_avx2_psrai_w:
234 LogicalShift = false; ShiftLeft = false;
235 break;
236 case Intrinsic::x86_sse2_psrl_d:
237 case Intrinsic::x86_sse2_psrl_q:
238 case Intrinsic::x86_sse2_psrl_w:
239 case Intrinsic::x86_sse2_psrli_d:
240 case Intrinsic::x86_sse2_psrli_q:
241 case Intrinsic::x86_sse2_psrli_w:
242 case Intrinsic::x86_avx2_psrl_d:
243 case Intrinsic::x86_avx2_psrl_q:
244 case Intrinsic::x86_avx2_psrl_w:
245 case Intrinsic::x86_avx2_psrli_d:
246 case Intrinsic::x86_avx2_psrli_q:
247 case Intrinsic::x86_avx2_psrli_w:
248 LogicalShift = true; ShiftLeft = false;
249 break;
250 case Intrinsic::x86_sse2_psll_d:
251 case Intrinsic::x86_sse2_psll_q:
252 case Intrinsic::x86_sse2_psll_w:
253 case Intrinsic::x86_sse2_pslli_d:
254 case Intrinsic::x86_sse2_pslli_q:
255 case Intrinsic::x86_sse2_pslli_w:
256 case Intrinsic::x86_avx2_psll_d:
257 case Intrinsic::x86_avx2_psll_q:
258 case Intrinsic::x86_avx2_psll_w:
259 case Intrinsic::x86_avx2_pslli_d:
260 case Intrinsic::x86_avx2_pslli_q:
261 case Intrinsic::x86_avx2_pslli_w:
262 LogicalShift = true; ShiftLeft = true;
263 break;
264 }
265 assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
266
267 // Simplify if count is constant.
268 auto Arg1 = II.getArgOperand(1);
269 auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
270 auto CDV = dyn_cast<ConstantDataVector>(Arg1);
271 auto CInt = dyn_cast<ConstantInt>(Arg1);
272 if (!CAZ && !CDV && !CInt)
273 return nullptr;
274
275 APInt Count(64, 0);
276 if (CDV) {
277 // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
278 // operand to compute the shift amount.
279 auto VT = cast<VectorType>(CDV->getType());
280 unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
281 assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
282 unsigned NumSubElts = 64 / BitWidth;
283
284 // Concatenate the sub-elements to create the 64-bit value.
285 for (unsigned i = 0; i != NumSubElts; ++i) {
286 unsigned SubEltIdx = (NumSubElts - 1) - i;
287 auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
288 Count = Count.shl(BitWidth);
289 Count |= SubElt->getValue().zextOrTrunc(64);
290 }
291 }
292 else if (CInt)
293 Count = CInt->getValue();
294
295 auto Vec = II.getArgOperand(0);
296 auto VT = cast<VectorType>(Vec->getType());
297 auto SVT = VT->getElementType();
298 unsigned VWidth = VT->getNumElements();
299 unsigned BitWidth = SVT->getPrimitiveSizeInBits();
300
301 // If shift-by-zero then just return the original value.
302 if (Count == 0)
303 return Vec;
304
305 // Handle cases when Shift >= BitWidth.
306 if (Count.uge(BitWidth)) {
307 // If LogicalShift - just return zero.
308 if (LogicalShift)
309 return ConstantAggregateZero::get(VT);
310
311 // If ArithmeticShift - clamp Shift to (BitWidth - 1).
312 Count = APInt(64, BitWidth - 1);
313 }
314
315 // Get a constant vector of the same type as the first operand.
316 auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
317 auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
318
319 if (ShiftLeft)
320 return Builder.CreateShl(Vec, ShiftVec);
321
322 if (LogicalShift)
323 return Builder.CreateLShr(Vec, ShiftVec);
324
325 return Builder.CreateAShr(Vec, ShiftVec);
326 }
327
328 // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
329 // Unlike the generic IR shifts, the intrinsics have defined behaviour for out
330 // of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
simplifyX86varShift(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)331 static Value *simplifyX86varShift(const IntrinsicInst &II,
332 InstCombiner::BuilderTy &Builder) {
333 bool LogicalShift = false;
334 bool ShiftLeft = false;
335
336 switch (II.getIntrinsicID()) {
337 default:
338 return nullptr;
339 case Intrinsic::x86_avx2_psrav_d:
340 case Intrinsic::x86_avx2_psrav_d_256:
341 LogicalShift = false;
342 ShiftLeft = false;
343 break;
344 case Intrinsic::x86_avx2_psrlv_d:
345 case Intrinsic::x86_avx2_psrlv_d_256:
346 case Intrinsic::x86_avx2_psrlv_q:
347 case Intrinsic::x86_avx2_psrlv_q_256:
348 LogicalShift = true;
349 ShiftLeft = false;
350 break;
351 case Intrinsic::x86_avx2_psllv_d:
352 case Intrinsic::x86_avx2_psllv_d_256:
353 case Intrinsic::x86_avx2_psllv_q:
354 case Intrinsic::x86_avx2_psllv_q_256:
355 LogicalShift = true;
356 ShiftLeft = true;
357 break;
358 }
359 assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
360
361 // Simplify if all shift amounts are constant/undef.
362 auto *CShift = dyn_cast<Constant>(II.getArgOperand(1));
363 if (!CShift)
364 return nullptr;
365
366 auto Vec = II.getArgOperand(0);
367 auto VT = cast<VectorType>(II.getType());
368 auto SVT = VT->getVectorElementType();
369 int NumElts = VT->getNumElements();
370 int BitWidth = SVT->getIntegerBitWidth();
371
372 // Collect each element's shift amount.
373 // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
374 bool AnyOutOfRange = false;
375 SmallVector<int, 8> ShiftAmts;
376 for (int I = 0; I < NumElts; ++I) {
377 auto *CElt = CShift->getAggregateElement(I);
378 if (CElt && isa<UndefValue>(CElt)) {
379 ShiftAmts.push_back(-1);
380 continue;
381 }
382
383 auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
384 if (!COp)
385 return nullptr;
386
387 // Handle out of range shifts.
388 // If LogicalShift - set to BitWidth (special case).
389 // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
390 APInt ShiftVal = COp->getValue();
391 if (ShiftVal.uge(BitWidth)) {
392 AnyOutOfRange = LogicalShift;
393 ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
394 continue;
395 }
396
397 ShiftAmts.push_back((int)ShiftVal.getZExtValue());
398 }
399
400 // If all elements out of range or UNDEF, return vector of zeros/undefs.
401 // ArithmeticShift should only hit this if they are all UNDEF.
402 auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
403 if (llvm::all_of(ShiftAmts, OutOfRange)) {
404 SmallVector<Constant *, 8> ConstantVec;
405 for (int Idx : ShiftAmts) {
406 if (Idx < 0) {
407 ConstantVec.push_back(UndefValue::get(SVT));
408 } else {
409 assert(LogicalShift && "Logical shift expected");
410 ConstantVec.push_back(ConstantInt::getNullValue(SVT));
411 }
412 }
413 return ConstantVector::get(ConstantVec);
414 }
415
416 // We can't handle only some out of range values with generic logical shifts.
417 if (AnyOutOfRange)
418 return nullptr;
419
420 // Build the shift amount constant vector.
421 SmallVector<Constant *, 8> ShiftVecAmts;
422 for (int Idx : ShiftAmts) {
423 if (Idx < 0)
424 ShiftVecAmts.push_back(UndefValue::get(SVT));
425 else
426 ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
427 }
428 auto ShiftVec = ConstantVector::get(ShiftVecAmts);
429
430 if (ShiftLeft)
431 return Builder.CreateShl(Vec, ShiftVec);
432
433 if (LogicalShift)
434 return Builder.CreateLShr(Vec, ShiftVec);
435
436 return Builder.CreateAShr(Vec, ShiftVec);
437 }
438
simplifyX86movmsk(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)439 static Value *simplifyX86movmsk(const IntrinsicInst &II,
440 InstCombiner::BuilderTy &Builder) {
441 Value *Arg = II.getArgOperand(0);
442 Type *ResTy = II.getType();
443 Type *ArgTy = Arg->getType();
444
445 // movmsk(undef) -> zero as we must ensure the upper bits are zero.
446 if (isa<UndefValue>(Arg))
447 return Constant::getNullValue(ResTy);
448
449 // We can't easily peek through x86_mmx types.
450 if (!ArgTy->isVectorTy())
451 return nullptr;
452
453 auto *C = dyn_cast<Constant>(Arg);
454 if (!C)
455 return nullptr;
456
457 // Extract signbits of the vector input and pack into integer result.
458 APInt Result(ResTy->getPrimitiveSizeInBits(), 0);
459 for (unsigned I = 0, E = ArgTy->getVectorNumElements(); I != E; ++I) {
460 auto *COp = C->getAggregateElement(I);
461 if (!COp)
462 return nullptr;
463 if (isa<UndefValue>(COp))
464 continue;
465
466 auto *CInt = dyn_cast<ConstantInt>(COp);
467 auto *CFp = dyn_cast<ConstantFP>(COp);
468 if (!CInt && !CFp)
469 return nullptr;
470
471 if ((CInt && CInt->isNegative()) || (CFp && CFp->isNegative()))
472 Result.setBit(I);
473 }
474
475 return Constant::getIntegerValue(ResTy, Result);
476 }
477
simplifyX86insertps(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)478 static Value *simplifyX86insertps(const IntrinsicInst &II,
479 InstCombiner::BuilderTy &Builder) {
480 auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
481 if (!CInt)
482 return nullptr;
483
484 VectorType *VecTy = cast<VectorType>(II.getType());
485 assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
486
487 // The immediate permute control byte looks like this:
488 // [3:0] - zero mask for each 32-bit lane
489 // [5:4] - select one 32-bit destination lane
490 // [7:6] - select one 32-bit source lane
491
492 uint8_t Imm = CInt->getZExtValue();
493 uint8_t ZMask = Imm & 0xf;
494 uint8_t DestLane = (Imm >> 4) & 0x3;
495 uint8_t SourceLane = (Imm >> 6) & 0x3;
496
497 ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
498
499 // If all zero mask bits are set, this was just a weird way to
500 // generate a zero vector.
501 if (ZMask == 0xf)
502 return ZeroVector;
503
504 // Initialize by passing all of the first source bits through.
505 uint32_t ShuffleMask[4] = { 0, 1, 2, 3 };
506
507 // We may replace the second operand with the zero vector.
508 Value *V1 = II.getArgOperand(1);
509
510 if (ZMask) {
511 // If the zero mask is being used with a single input or the zero mask
512 // overrides the destination lane, this is a shuffle with the zero vector.
513 if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
514 (ZMask & (1 << DestLane))) {
515 V1 = ZeroVector;
516 // We may still move 32-bits of the first source vector from one lane
517 // to another.
518 ShuffleMask[DestLane] = SourceLane;
519 // The zero mask may override the previous insert operation.
520 for (unsigned i = 0; i < 4; ++i)
521 if ((ZMask >> i) & 0x1)
522 ShuffleMask[i] = i + 4;
523 } else {
524 // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
525 return nullptr;
526 }
527 } else {
528 // Replace the selected destination lane with the selected source lane.
529 ShuffleMask[DestLane] = SourceLane + 4;
530 }
531
532 return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
533 }
534
535 /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
536 /// or conversion to a shuffle vector.
simplifyX86extrq(IntrinsicInst & II,Value * Op0,ConstantInt * CILength,ConstantInt * CIIndex,InstCombiner::BuilderTy & Builder)537 static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
538 ConstantInt *CILength, ConstantInt *CIIndex,
539 InstCombiner::BuilderTy &Builder) {
540 auto LowConstantHighUndef = [&](uint64_t Val) {
541 Type *IntTy64 = Type::getInt64Ty(II.getContext());
542 Constant *Args[] = {ConstantInt::get(IntTy64, Val),
543 UndefValue::get(IntTy64)};
544 return ConstantVector::get(Args);
545 };
546
547 // See if we're dealing with constant values.
548 Constant *C0 = dyn_cast<Constant>(Op0);
549 ConstantInt *CI0 =
550 C0 ? dyn_cast<ConstantInt>(C0->getAggregateElement((unsigned)0))
551 : nullptr;
552
553 // Attempt to constant fold.
554 if (CILength && CIIndex) {
555 // From AMD documentation: "The bit index and field length are each six
556 // bits in length other bits of the field are ignored."
557 APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
558 APInt APLength = CILength->getValue().zextOrTrunc(6);
559
560 unsigned Index = APIndex.getZExtValue();
561
562 // From AMD documentation: "a value of zero in the field length is
563 // defined as length of 64".
564 unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
565
566 // From AMD documentation: "If the sum of the bit index + length field
567 // is greater than 64, the results are undefined".
568 unsigned End = Index + Length;
569
570 // Note that both field index and field length are 8-bit quantities.
571 // Since variables 'Index' and 'Length' are unsigned values
572 // obtained from zero-extending field index and field length
573 // respectively, their sum should never wrap around.
574 if (End > 64)
575 return UndefValue::get(II.getType());
576
577 // If we are inserting whole bytes, we can convert this to a shuffle.
578 // Lowering can recognize EXTRQI shuffle masks.
579 if ((Length % 8) == 0 && (Index % 8) == 0) {
580 // Convert bit indices to byte indices.
581 Length /= 8;
582 Index /= 8;
583
584 Type *IntTy8 = Type::getInt8Ty(II.getContext());
585 Type *IntTy32 = Type::getInt32Ty(II.getContext());
586 VectorType *ShufTy = VectorType::get(IntTy8, 16);
587
588 SmallVector<Constant *, 16> ShuffleMask;
589 for (int i = 0; i != (int)Length; ++i)
590 ShuffleMask.push_back(
591 Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
592 for (int i = Length; i != 8; ++i)
593 ShuffleMask.push_back(
594 Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
595 for (int i = 8; i != 16; ++i)
596 ShuffleMask.push_back(UndefValue::get(IntTy32));
597
598 Value *SV = Builder.CreateShuffleVector(
599 Builder.CreateBitCast(Op0, ShufTy),
600 ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
601 return Builder.CreateBitCast(SV, II.getType());
602 }
603
604 // Constant Fold - shift Index'th bit to lowest position and mask off
605 // Length bits.
606 if (CI0) {
607 APInt Elt = CI0->getValue();
608 Elt = Elt.lshr(Index).zextOrTrunc(Length);
609 return LowConstantHighUndef(Elt.getZExtValue());
610 }
611
612 // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
613 if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
614 Value *Args[] = {Op0, CILength, CIIndex};
615 Module *M = II.getModule();
616 Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
617 return Builder.CreateCall(F, Args);
618 }
619 }
620
621 // Constant Fold - extraction from zero is always {zero, undef}.
622 if (CI0 && CI0->equalsInt(0))
623 return LowConstantHighUndef(0);
624
625 return nullptr;
626 }
627
628 /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
629 /// folding or conversion to a shuffle vector.
simplifyX86insertq(IntrinsicInst & II,Value * Op0,Value * Op1,APInt APLength,APInt APIndex,InstCombiner::BuilderTy & Builder)630 static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
631 APInt APLength, APInt APIndex,
632 InstCombiner::BuilderTy &Builder) {
633
634 // From AMD documentation: "The bit index and field length are each six bits
635 // in length other bits of the field are ignored."
636 APIndex = APIndex.zextOrTrunc(6);
637 APLength = APLength.zextOrTrunc(6);
638
639 // Attempt to constant fold.
640 unsigned Index = APIndex.getZExtValue();
641
642 // From AMD documentation: "a value of zero in the field length is
643 // defined as length of 64".
644 unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
645
646 // From AMD documentation: "If the sum of the bit index + length field
647 // is greater than 64, the results are undefined".
648 unsigned End = Index + Length;
649
650 // Note that both field index and field length are 8-bit quantities.
651 // Since variables 'Index' and 'Length' are unsigned values
652 // obtained from zero-extending field index and field length
653 // respectively, their sum should never wrap around.
654 if (End > 64)
655 return UndefValue::get(II.getType());
656
657 // If we are inserting whole bytes, we can convert this to a shuffle.
658 // Lowering can recognize INSERTQI shuffle masks.
659 if ((Length % 8) == 0 && (Index % 8) == 0) {
660 // Convert bit indices to byte indices.
661 Length /= 8;
662 Index /= 8;
663
664 Type *IntTy8 = Type::getInt8Ty(II.getContext());
665 Type *IntTy32 = Type::getInt32Ty(II.getContext());
666 VectorType *ShufTy = VectorType::get(IntTy8, 16);
667
668 SmallVector<Constant *, 16> ShuffleMask;
669 for (int i = 0; i != (int)Index; ++i)
670 ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
671 for (int i = 0; i != (int)Length; ++i)
672 ShuffleMask.push_back(
673 Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
674 for (int i = Index + Length; i != 8; ++i)
675 ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
676 for (int i = 8; i != 16; ++i)
677 ShuffleMask.push_back(UndefValue::get(IntTy32));
678
679 Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
680 Builder.CreateBitCast(Op1, ShufTy),
681 ConstantVector::get(ShuffleMask));
682 return Builder.CreateBitCast(SV, II.getType());
683 }
684
685 // See if we're dealing with constant values.
686 Constant *C0 = dyn_cast<Constant>(Op0);
687 Constant *C1 = dyn_cast<Constant>(Op1);
688 ConstantInt *CI00 =
689 C0 ? dyn_cast<ConstantInt>(C0->getAggregateElement((unsigned)0))
690 : nullptr;
691 ConstantInt *CI10 =
692 C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)0))
693 : nullptr;
694
695 // Constant Fold - insert bottom Length bits starting at the Index'th bit.
696 if (CI00 && CI10) {
697 APInt V00 = CI00->getValue();
698 APInt V10 = CI10->getValue();
699 APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
700 V00 = V00 & ~Mask;
701 V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
702 APInt Val = V00 | V10;
703 Type *IntTy64 = Type::getInt64Ty(II.getContext());
704 Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
705 UndefValue::get(IntTy64)};
706 return ConstantVector::get(Args);
707 }
708
709 // If we were an INSERTQ call, we'll save demanded elements if we convert to
710 // INSERTQI.
711 if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
712 Type *IntTy8 = Type::getInt8Ty(II.getContext());
713 Constant *CILength = ConstantInt::get(IntTy8, Length, false);
714 Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
715
716 Value *Args[] = {Op0, Op1, CILength, CIIndex};
717 Module *M = II.getModule();
718 Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
719 return Builder.CreateCall(F, Args);
720 }
721
722 return nullptr;
723 }
724
725 /// Attempt to convert pshufb* to shufflevector if the mask is constant.
simplifyX86pshufb(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)726 static Value *simplifyX86pshufb(const IntrinsicInst &II,
727 InstCombiner::BuilderTy &Builder) {
728 Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
729 if (!V)
730 return nullptr;
731
732 auto *VecTy = cast<VectorType>(II.getType());
733 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
734 unsigned NumElts = VecTy->getNumElements();
735 assert((NumElts == 16 || NumElts == 32) &&
736 "Unexpected number of elements in shuffle mask!");
737
738 // Construct a shuffle mask from constant integers or UNDEFs.
739 Constant *Indexes[32] = {NULL};
740
741 // Each byte in the shuffle control mask forms an index to permute the
742 // corresponding byte in the destination operand.
743 for (unsigned I = 0; I < NumElts; ++I) {
744 Constant *COp = V->getAggregateElement(I);
745 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
746 return nullptr;
747
748 if (isa<UndefValue>(COp)) {
749 Indexes[I] = UndefValue::get(MaskEltTy);
750 continue;
751 }
752
753 int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
754
755 // If the most significant bit (bit[7]) of each byte of the shuffle
756 // control mask is set, then zero is written in the result byte.
757 // The zero vector is in the right-hand side of the resulting
758 // shufflevector.
759
760 // The value of each index for the high 128-bit lane is the least
761 // significant 4 bits of the respective shuffle control byte.
762 Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
763 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
764 }
765
766 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
767 auto V1 = II.getArgOperand(0);
768 auto V2 = Constant::getNullValue(VecTy);
769 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
770 }
771
772 /// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
simplifyX86vpermilvar(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)773 static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
774 InstCombiner::BuilderTy &Builder) {
775 Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
776 if (!V)
777 return nullptr;
778
779 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
780 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
781 assert(NumElts == 8 || NumElts == 4 || NumElts == 2);
782
783 // Construct a shuffle mask from constant integers or UNDEFs.
784 Constant *Indexes[8] = {NULL};
785
786 // The intrinsics only read one or two bits, clear the rest.
787 for (unsigned I = 0; I < NumElts; ++I) {
788 Constant *COp = V->getAggregateElement(I);
789 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
790 return nullptr;
791
792 if (isa<UndefValue>(COp)) {
793 Indexes[I] = UndefValue::get(MaskEltTy);
794 continue;
795 }
796
797 APInt Index = cast<ConstantInt>(COp)->getValue();
798 Index = Index.zextOrTrunc(32).getLoBits(2);
799
800 // The PD variants uses bit 1 to select per-lane element index, so
801 // shift down to convert to generic shuffle mask index.
802 if (II.getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd ||
803 II.getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256)
804 Index = Index.lshr(1);
805
806 // The _256 variants are a bit trickier since the mask bits always index
807 // into the corresponding 128 half. In order to convert to a generic
808 // shuffle, we have to make that explicit.
809 if ((II.getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 ||
810 II.getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) &&
811 ((NumElts / 2) <= I)) {
812 Index += APInt(32, NumElts / 2);
813 }
814
815 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
816 }
817
818 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
819 auto V1 = II.getArgOperand(0);
820 auto V2 = UndefValue::get(V1->getType());
821 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
822 }
823
824 /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
simplifyX86vpermv(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)825 static Value *simplifyX86vpermv(const IntrinsicInst &II,
826 InstCombiner::BuilderTy &Builder) {
827 auto *V = dyn_cast<Constant>(II.getArgOperand(1));
828 if (!V)
829 return nullptr;
830
831 auto *VecTy = cast<VectorType>(II.getType());
832 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
833 unsigned Size = VecTy->getNumElements();
834 assert(Size == 8 && "Unexpected shuffle mask size");
835
836 // Construct a shuffle mask from constant integers or UNDEFs.
837 Constant *Indexes[8] = {NULL};
838
839 for (unsigned I = 0; I < Size; ++I) {
840 Constant *COp = V->getAggregateElement(I);
841 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
842 return nullptr;
843
844 if (isa<UndefValue>(COp)) {
845 Indexes[I] = UndefValue::get(MaskEltTy);
846 continue;
847 }
848
849 APInt Index = cast<ConstantInt>(COp)->getValue();
850 Index = Index.zextOrTrunc(32).getLoBits(3);
851 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
852 }
853
854 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size));
855 auto V1 = II.getArgOperand(0);
856 auto V2 = UndefValue::get(VecTy);
857 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
858 }
859
860 /// The shuffle mask for a perm2*128 selects any two halves of two 256-bit
861 /// source vectors, unless a zero bit is set. If a zero bit is set,
862 /// then ignore that half of the mask and clear that half of the vector.
simplifyX86vperm2(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)863 static Value *simplifyX86vperm2(const IntrinsicInst &II,
864 InstCombiner::BuilderTy &Builder) {
865 auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
866 if (!CInt)
867 return nullptr;
868
869 VectorType *VecTy = cast<VectorType>(II.getType());
870 ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
871
872 // The immediate permute control byte looks like this:
873 // [1:0] - select 128 bits from sources for low half of destination
874 // [2] - ignore
875 // [3] - zero low half of destination
876 // [5:4] - select 128 bits from sources for high half of destination
877 // [6] - ignore
878 // [7] - zero high half of destination
879
880 uint8_t Imm = CInt->getZExtValue();
881
882 bool LowHalfZero = Imm & 0x08;
883 bool HighHalfZero = Imm & 0x80;
884
885 // If both zero mask bits are set, this was just a weird way to
886 // generate a zero vector.
887 if (LowHalfZero && HighHalfZero)
888 return ZeroVector;
889
890 // If 0 or 1 zero mask bits are set, this is a simple shuffle.
891 unsigned NumElts = VecTy->getNumElements();
892 unsigned HalfSize = NumElts / 2;
893 SmallVector<uint32_t, 8> ShuffleMask(NumElts);
894
895 // The high bit of the selection field chooses the 1st or 2nd operand.
896 bool LowInputSelect = Imm & 0x02;
897 bool HighInputSelect = Imm & 0x20;
898
899 // The low bit of the selection field chooses the low or high half
900 // of the selected operand.
901 bool LowHalfSelect = Imm & 0x01;
902 bool HighHalfSelect = Imm & 0x10;
903
904 // Determine which operand(s) are actually in use for this instruction.
905 Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
906 Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
907
908 // If needed, replace operands based on zero mask.
909 V0 = LowHalfZero ? ZeroVector : V0;
910 V1 = HighHalfZero ? ZeroVector : V1;
911
912 // Permute low half of result.
913 unsigned StartIndex = LowHalfSelect ? HalfSize : 0;
914 for (unsigned i = 0; i < HalfSize; ++i)
915 ShuffleMask[i] = StartIndex + i;
916
917 // Permute high half of result.
918 StartIndex = HighHalfSelect ? HalfSize : 0;
919 StartIndex += NumElts;
920 for (unsigned i = 0; i < HalfSize; ++i)
921 ShuffleMask[i + HalfSize] = StartIndex + i;
922
923 return Builder.CreateShuffleVector(V0, V1, ShuffleMask);
924 }
925
926 /// Decode XOP integer vector comparison intrinsics.
simplifyX86vpcom(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder,bool IsSigned)927 static Value *simplifyX86vpcom(const IntrinsicInst &II,
928 InstCombiner::BuilderTy &Builder,
929 bool IsSigned) {
930 if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
931 uint64_t Imm = CInt->getZExtValue() & 0x7;
932 VectorType *VecTy = cast<VectorType>(II.getType());
933 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
934
935 switch (Imm) {
936 case 0x0:
937 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
938 break;
939 case 0x1:
940 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
941 break;
942 case 0x2:
943 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
944 break;
945 case 0x3:
946 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
947 break;
948 case 0x4:
949 Pred = ICmpInst::ICMP_EQ; break;
950 case 0x5:
951 Pred = ICmpInst::ICMP_NE; break;
952 case 0x6:
953 return ConstantInt::getSigned(VecTy, 0); // FALSE
954 case 0x7:
955 return ConstantInt::getSigned(VecTy, -1); // TRUE
956 }
957
958 if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0),
959 II.getArgOperand(1)))
960 return Builder.CreateSExtOrTrunc(Cmp, VecTy);
961 }
962 return nullptr;
963 }
964
simplifyMinnumMaxnum(const IntrinsicInst & II)965 static Value *simplifyMinnumMaxnum(const IntrinsicInst &II) {
966 Value *Arg0 = II.getArgOperand(0);
967 Value *Arg1 = II.getArgOperand(1);
968
969 // fmin(x, x) -> x
970 if (Arg0 == Arg1)
971 return Arg0;
972
973 const auto *C1 = dyn_cast<ConstantFP>(Arg1);
974
975 // fmin(x, nan) -> x
976 if (C1 && C1->isNaN())
977 return Arg0;
978
979 // This is the value because if undef were NaN, we would return the other
980 // value and cannot return a NaN unless both operands are.
981 //
982 // fmin(undef, x) -> x
983 if (isa<UndefValue>(Arg0))
984 return Arg1;
985
986 // fmin(x, undef) -> x
987 if (isa<UndefValue>(Arg1))
988 return Arg0;
989
990 Value *X = nullptr;
991 Value *Y = nullptr;
992 if (II.getIntrinsicID() == Intrinsic::minnum) {
993 // fmin(x, fmin(x, y)) -> fmin(x, y)
994 // fmin(y, fmin(x, y)) -> fmin(x, y)
995 if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
996 if (Arg0 == X || Arg0 == Y)
997 return Arg1;
998 }
999
1000 // fmin(fmin(x, y), x) -> fmin(x, y)
1001 // fmin(fmin(x, y), y) -> fmin(x, y)
1002 if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
1003 if (Arg1 == X || Arg1 == Y)
1004 return Arg0;
1005 }
1006
1007 // TODO: fmin(nnan x, inf) -> x
1008 // TODO: fmin(nnan ninf x, flt_max) -> x
1009 if (C1 && C1->isInfinity()) {
1010 // fmin(x, -inf) -> -inf
1011 if (C1->isNegative())
1012 return Arg1;
1013 }
1014 } else {
1015 assert(II.getIntrinsicID() == Intrinsic::maxnum);
1016 // fmax(x, fmax(x, y)) -> fmax(x, y)
1017 // fmax(y, fmax(x, y)) -> fmax(x, y)
1018 if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
1019 if (Arg0 == X || Arg0 == Y)
1020 return Arg1;
1021 }
1022
1023 // fmax(fmax(x, y), x) -> fmax(x, y)
1024 // fmax(fmax(x, y), y) -> fmax(x, y)
1025 if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
1026 if (Arg1 == X || Arg1 == Y)
1027 return Arg0;
1028 }
1029
1030 // TODO: fmax(nnan x, -inf) -> x
1031 // TODO: fmax(nnan ninf x, -flt_max) -> x
1032 if (C1 && C1->isInfinity()) {
1033 // fmax(x, inf) -> inf
1034 if (!C1->isNegative())
1035 return Arg1;
1036 }
1037 }
1038 return nullptr;
1039 }
1040
maskIsAllOneOrUndef(Value * Mask)1041 static bool maskIsAllOneOrUndef(Value *Mask) {
1042 auto *ConstMask = dyn_cast<Constant>(Mask);
1043 if (!ConstMask)
1044 return false;
1045 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1046 return true;
1047 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
1048 ++I) {
1049 if (auto *MaskElt = ConstMask->getAggregateElement(I))
1050 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1051 continue;
1052 return false;
1053 }
1054 return true;
1055 }
1056
simplifyMaskedLoad(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)1057 static Value *simplifyMaskedLoad(const IntrinsicInst &II,
1058 InstCombiner::BuilderTy &Builder) {
1059 // If the mask is all ones or undefs, this is a plain vector load of the 1st
1060 // argument.
1061 if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
1062 Value *LoadPtr = II.getArgOperand(0);
1063 unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue();
1064 return Builder.CreateAlignedLoad(LoadPtr, Alignment, "unmaskedload");
1065 }
1066
1067 return nullptr;
1068 }
1069
simplifyMaskedStore(IntrinsicInst & II,InstCombiner & IC)1070 static Instruction *simplifyMaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1071 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1072 if (!ConstMask)
1073 return nullptr;
1074
1075 // If the mask is all zeros, this instruction does nothing.
1076 if (ConstMask->isNullValue())
1077 return IC.eraseInstFromFunction(II);
1078
1079 // If the mask is all ones, this is a plain vector store of the 1st argument.
1080 if (ConstMask->isAllOnesValue()) {
1081 Value *StorePtr = II.getArgOperand(1);
1082 unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue();
1083 return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
1084 }
1085
1086 return nullptr;
1087 }
1088
simplifyMaskedGather(IntrinsicInst & II,InstCombiner & IC)1089 static Instruction *simplifyMaskedGather(IntrinsicInst &II, InstCombiner &IC) {
1090 // If the mask is all zeros, return the "passthru" argument of the gather.
1091 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
1092 if (ConstMask && ConstMask->isNullValue())
1093 return IC.replaceInstUsesWith(II, II.getArgOperand(3));
1094
1095 return nullptr;
1096 }
1097
simplifyMaskedScatter(IntrinsicInst & II,InstCombiner & IC)1098 static Instruction *simplifyMaskedScatter(IntrinsicInst &II, InstCombiner &IC) {
1099 // If the mask is all zeros, a scatter does nothing.
1100 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1101 if (ConstMask && ConstMask->isNullValue())
1102 return IC.eraseInstFromFunction(II);
1103
1104 return nullptr;
1105 }
1106
1107 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1108 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1109 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
simplifyX86MaskedLoad(IntrinsicInst & II,InstCombiner & IC)1110 static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
1111 Value *Ptr = II.getOperand(0);
1112 Value *Mask = II.getOperand(1);
1113 Constant *ZeroVec = Constant::getNullValue(II.getType());
1114
1115 // Special case a zero mask since that's not a ConstantDataVector.
1116 // This masked load instruction creates a zero vector.
1117 if (isa<ConstantAggregateZero>(Mask))
1118 return IC.replaceInstUsesWith(II, ZeroVec);
1119
1120 auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1121 if (!ConstMask)
1122 return nullptr;
1123
1124 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1125 // to allow target-independent optimizations.
1126
1127 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1128 // the LLVM intrinsic definition for the pointer argument.
1129 unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1130 PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
1131 Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec");
1132
1133 // Second, convert the x86 XMM integer vector mask to a vector of bools based
1134 // on each element's most significant bit (the sign bit).
1135 Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1136
1137 // The pass-through vector for an x86 masked load is a zero vector.
1138 CallInst *NewMaskedLoad =
1139 IC.Builder->CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec);
1140 return IC.replaceInstUsesWith(II, NewMaskedLoad);
1141 }
1142
1143 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1144 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1145 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
simplifyX86MaskedStore(IntrinsicInst & II,InstCombiner & IC)1146 static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1147 Value *Ptr = II.getOperand(0);
1148 Value *Mask = II.getOperand(1);
1149 Value *Vec = II.getOperand(2);
1150
1151 // Special case a zero mask since that's not a ConstantDataVector:
1152 // this masked store instruction does nothing.
1153 if (isa<ConstantAggregateZero>(Mask)) {
1154 IC.eraseInstFromFunction(II);
1155 return true;
1156 }
1157
1158 // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
1159 // anything else at this level.
1160 if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
1161 return false;
1162
1163 auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1164 if (!ConstMask)
1165 return false;
1166
1167 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1168 // to allow target-independent optimizations.
1169
1170 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1171 // the LLVM intrinsic definition for the pointer argument.
1172 unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1173 PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
1174 Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec");
1175
1176 // Second, convert the x86 XMM integer vector mask to a vector of bools based
1177 // on each element's most significant bit (the sign bit).
1178 Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1179
1180 IC.Builder->CreateMaskedStore(Vec, PtrCast, 1, BoolMask);
1181
1182 // 'Replace uses' doesn't work for stores. Erase the original masked store.
1183 IC.eraseInstFromFunction(II);
1184 return true;
1185 }
1186
1187 // Returns true iff the 2 intrinsics have the same operands, limiting the
1188 // comparison to the first NumOperands.
haveSameOperands(const IntrinsicInst & I,const IntrinsicInst & E,unsigned NumOperands)1189 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
1190 unsigned NumOperands) {
1191 assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
1192 assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
1193 for (unsigned i = 0; i < NumOperands; i++)
1194 if (I.getArgOperand(i) != E.getArgOperand(i))
1195 return false;
1196 return true;
1197 }
1198
1199 // Remove trivially empty start/end intrinsic ranges, i.e. a start
1200 // immediately followed by an end (ignoring debuginfo or other
1201 // start/end intrinsics in between). As this handles only the most trivial
1202 // cases, tracking the nesting level is not needed:
1203 //
1204 // call @llvm.foo.start(i1 0) ; &I
1205 // call @llvm.foo.start(i1 0)
1206 // call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
1207 // call @llvm.foo.end(i1 0)
removeTriviallyEmptyRange(IntrinsicInst & I,unsigned StartID,unsigned EndID,InstCombiner & IC)1208 static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID,
1209 unsigned EndID, InstCombiner &IC) {
1210 assert(I.getIntrinsicID() == StartID &&
1211 "Start intrinsic does not have expected ID");
1212 BasicBlock::iterator BI(I), BE(I.getParent()->end());
1213 for (++BI; BI != BE; ++BI) {
1214 if (auto *E = dyn_cast<IntrinsicInst>(BI)) {
1215 if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID)
1216 continue;
1217 if (E->getIntrinsicID() == EndID &&
1218 haveSameOperands(I, *E, E->getNumArgOperands())) {
1219 IC.eraseInstFromFunction(*E);
1220 IC.eraseInstFromFunction(I);
1221 return true;
1222 }
1223 }
1224 break;
1225 }
1226
1227 return false;
1228 }
1229
visitVAStartInst(VAStartInst & I)1230 Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) {
1231 removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this);
1232 return nullptr;
1233 }
1234
visitVACopyInst(VACopyInst & I)1235 Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) {
1236 removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this);
1237 return nullptr;
1238 }
1239
1240 /// CallInst simplification. This mostly only handles folding of intrinsic
1241 /// instructions. For normal calls, it allows visitCallSite to do the heavy
1242 /// lifting.
visitCallInst(CallInst & CI)1243 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
1244 auto Args = CI.arg_operands();
1245 if (Value *V = SimplifyCall(CI.getCalledValue(), Args.begin(), Args.end(), DL,
1246 TLI, DT, AC))
1247 return replaceInstUsesWith(CI, V);
1248
1249 if (isFreeCall(&CI, TLI))
1250 return visitFree(CI);
1251
1252 // If the caller function is nounwind, mark the call as nounwind, even if the
1253 // callee isn't.
1254 if (CI.getParent()->getParent()->doesNotThrow() &&
1255 !CI.doesNotThrow()) {
1256 CI.setDoesNotThrow();
1257 return &CI;
1258 }
1259
1260 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1261 if (!II) return visitCallSite(&CI);
1262
1263 // Intrinsics cannot occur in an invoke, so handle them here instead of in
1264 // visitCallSite.
1265 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
1266 bool Changed = false;
1267
1268 // memmove/cpy/set of zero bytes is a noop.
1269 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
1270 if (NumBytes->isNullValue())
1271 return eraseInstFromFunction(CI);
1272
1273 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
1274 if (CI->getZExtValue() == 1) {
1275 // Replace the instruction with just byte operations. We would
1276 // transform other cases to loads/stores, but we don't know if
1277 // alignment is sufficient.
1278 }
1279 }
1280
1281 // No other transformations apply to volatile transfers.
1282 if (MI->isVolatile())
1283 return nullptr;
1284
1285 // If we have a memmove and the source operation is a constant global,
1286 // then the source and dest pointers can't alias, so we can change this
1287 // into a call to memcpy.
1288 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
1289 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1290 if (GVSrc->isConstant()) {
1291 Module *M = CI.getModule();
1292 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
1293 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1294 CI.getArgOperand(1)->getType(),
1295 CI.getArgOperand(2)->getType() };
1296 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
1297 Changed = true;
1298 }
1299 }
1300
1301 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1302 // memmove(x,x,size) -> noop.
1303 if (MTI->getSource() == MTI->getDest())
1304 return eraseInstFromFunction(CI);
1305 }
1306
1307 // If we can determine a pointer alignment that is bigger than currently
1308 // set, update the alignment.
1309 if (isa<MemTransferInst>(MI)) {
1310 if (Instruction *I = SimplifyMemTransfer(MI))
1311 return I;
1312 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
1313 if (Instruction *I = SimplifyMemSet(MSI))
1314 return I;
1315 }
1316
1317 if (Changed) return II;
1318 }
1319
1320 auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
1321 unsigned DemandedWidth) {
1322 APInt UndefElts(Width, 0);
1323 APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
1324 return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
1325 };
1326 auto SimplifyDemandedVectorEltsHigh = [this](Value *Op, unsigned Width,
1327 unsigned DemandedWidth) {
1328 APInt UndefElts(Width, 0);
1329 APInt DemandedElts = APInt::getHighBitsSet(Width, DemandedWidth);
1330 return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
1331 };
1332
1333 switch (II->getIntrinsicID()) {
1334 default: break;
1335 case Intrinsic::objectsize: {
1336 uint64_t Size;
1337 if (getObjectSize(II->getArgOperand(0), Size, DL, TLI)) {
1338 APInt APSize(II->getType()->getIntegerBitWidth(), Size);
1339 // Equality check to be sure that `Size` can fit in a value of type
1340 // `II->getType()`
1341 if (APSize == Size)
1342 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), APSize));
1343 }
1344 return nullptr;
1345 }
1346 case Intrinsic::bswap: {
1347 Value *IIOperand = II->getArgOperand(0);
1348 Value *X = nullptr;
1349
1350 // bswap(bswap(x)) -> x
1351 if (match(IIOperand, m_BSwap(m_Value(X))))
1352 return replaceInstUsesWith(CI, X);
1353
1354 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1355 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1356 unsigned C = X->getType()->getPrimitiveSizeInBits() -
1357 IIOperand->getType()->getPrimitiveSizeInBits();
1358 Value *CV = ConstantInt::get(X->getType(), C);
1359 Value *V = Builder->CreateLShr(X, CV);
1360 return new TruncInst(V, IIOperand->getType());
1361 }
1362 break;
1363 }
1364
1365 case Intrinsic::bitreverse: {
1366 Value *IIOperand = II->getArgOperand(0);
1367 Value *X = nullptr;
1368
1369 // bitreverse(bitreverse(x)) -> x
1370 if (match(IIOperand, m_Intrinsic<Intrinsic::bitreverse>(m_Value(X))))
1371 return replaceInstUsesWith(CI, X);
1372 break;
1373 }
1374
1375 case Intrinsic::masked_load:
1376 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II, *Builder))
1377 return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1378 break;
1379 case Intrinsic::masked_store:
1380 return simplifyMaskedStore(*II, *this);
1381 case Intrinsic::masked_gather:
1382 return simplifyMaskedGather(*II, *this);
1383 case Intrinsic::masked_scatter:
1384 return simplifyMaskedScatter(*II, *this);
1385
1386 case Intrinsic::powi:
1387 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1388 // powi(x, 0) -> 1.0
1389 if (Power->isZero())
1390 return replaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
1391 // powi(x, 1) -> x
1392 if (Power->isOne())
1393 return replaceInstUsesWith(CI, II->getArgOperand(0));
1394 // powi(x, -1) -> 1/x
1395 if (Power->isAllOnesValue())
1396 return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
1397 II->getArgOperand(0));
1398 }
1399 break;
1400 case Intrinsic::cttz: {
1401 // If all bits below the first known one are known zero,
1402 // this value is constant.
1403 IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
1404 // FIXME: Try to simplify vectors of integers.
1405 if (!IT) break;
1406 uint32_t BitWidth = IT->getBitWidth();
1407 APInt KnownZero(BitWidth, 0);
1408 APInt KnownOne(BitWidth, 0);
1409 computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
1410 unsigned TrailingZeros = KnownOne.countTrailingZeros();
1411 APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
1412 if ((Mask & KnownZero) == Mask)
1413 return replaceInstUsesWith(CI, ConstantInt::get(IT,
1414 APInt(BitWidth, TrailingZeros)));
1415
1416 }
1417 break;
1418 case Intrinsic::ctlz: {
1419 // If all bits above the first known one are known zero,
1420 // this value is constant.
1421 IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
1422 // FIXME: Try to simplify vectors of integers.
1423 if (!IT) break;
1424 uint32_t BitWidth = IT->getBitWidth();
1425 APInt KnownZero(BitWidth, 0);
1426 APInt KnownOne(BitWidth, 0);
1427 computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
1428 unsigned LeadingZeros = KnownOne.countLeadingZeros();
1429 APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
1430 if ((Mask & KnownZero) == Mask)
1431 return replaceInstUsesWith(CI, ConstantInt::get(IT,
1432 APInt(BitWidth, LeadingZeros)));
1433
1434 }
1435 break;
1436
1437 case Intrinsic::uadd_with_overflow:
1438 case Intrinsic::sadd_with_overflow:
1439 case Intrinsic::umul_with_overflow:
1440 case Intrinsic::smul_with_overflow:
1441 if (isa<Constant>(II->getArgOperand(0)) &&
1442 !isa<Constant>(II->getArgOperand(1))) {
1443 // Canonicalize constants into the RHS.
1444 Value *LHS = II->getArgOperand(0);
1445 II->setArgOperand(0, II->getArgOperand(1));
1446 II->setArgOperand(1, LHS);
1447 return II;
1448 }
1449 // fall through
1450
1451 case Intrinsic::usub_with_overflow:
1452 case Intrinsic::ssub_with_overflow: {
1453 OverflowCheckFlavor OCF =
1454 IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
1455 assert(OCF != OCF_INVALID && "unexpected!");
1456
1457 Value *OperationResult = nullptr;
1458 Constant *OverflowResult = nullptr;
1459 if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
1460 *II, OperationResult, OverflowResult))
1461 return CreateOverflowTuple(II, OperationResult, OverflowResult);
1462
1463 break;
1464 }
1465
1466 case Intrinsic::minnum:
1467 case Intrinsic::maxnum: {
1468 Value *Arg0 = II->getArgOperand(0);
1469 Value *Arg1 = II->getArgOperand(1);
1470 // Canonicalize constants to the RHS.
1471 if (isa<ConstantFP>(Arg0) && !isa<ConstantFP>(Arg1)) {
1472 II->setArgOperand(0, Arg1);
1473 II->setArgOperand(1, Arg0);
1474 return II;
1475 }
1476 if (Value *V = simplifyMinnumMaxnum(*II))
1477 return replaceInstUsesWith(*II, V);
1478 break;
1479 }
1480 case Intrinsic::ppc_altivec_lvx:
1481 case Intrinsic::ppc_altivec_lvxl:
1482 // Turn PPC lvx -> load if the pointer is known aligned.
1483 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
1484 16) {
1485 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
1486 PointerType::getUnqual(II->getType()));
1487 return new LoadInst(Ptr);
1488 }
1489 break;
1490 case Intrinsic::ppc_vsx_lxvw4x:
1491 case Intrinsic::ppc_vsx_lxvd2x: {
1492 // Turn PPC VSX loads into normal loads.
1493 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
1494 PointerType::getUnqual(II->getType()));
1495 return new LoadInst(Ptr, Twine(""), false, 1);
1496 }
1497 case Intrinsic::ppc_altivec_stvx:
1498 case Intrinsic::ppc_altivec_stvxl:
1499 // Turn stvx -> store if the pointer is known aligned.
1500 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
1501 16) {
1502 Type *OpPtrTy =
1503 PointerType::getUnqual(II->getArgOperand(0)->getType());
1504 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
1505 return new StoreInst(II->getArgOperand(0), Ptr);
1506 }
1507 break;
1508 case Intrinsic::ppc_vsx_stxvw4x:
1509 case Intrinsic::ppc_vsx_stxvd2x: {
1510 // Turn PPC VSX stores into normal stores.
1511 Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
1512 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
1513 return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
1514 }
1515 case Intrinsic::ppc_qpx_qvlfs:
1516 // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
1517 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
1518 16) {
1519 Type *VTy = VectorType::get(Builder->getFloatTy(),
1520 II->getType()->getVectorNumElements());
1521 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
1522 PointerType::getUnqual(VTy));
1523 Value *Load = Builder->CreateLoad(Ptr);
1524 return new FPExtInst(Load, II->getType());
1525 }
1526 break;
1527 case Intrinsic::ppc_qpx_qvlfd:
1528 // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
1529 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, AC, DT) >=
1530 32) {
1531 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
1532 PointerType::getUnqual(II->getType()));
1533 return new LoadInst(Ptr);
1534 }
1535 break;
1536 case Intrinsic::ppc_qpx_qvstfs:
1537 // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
1538 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
1539 16) {
1540 Type *VTy = VectorType::get(Builder->getFloatTy(),
1541 II->getArgOperand(0)->getType()->getVectorNumElements());
1542 Value *TOp = Builder->CreateFPTrunc(II->getArgOperand(0), VTy);
1543 Type *OpPtrTy = PointerType::getUnqual(VTy);
1544 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
1545 return new StoreInst(TOp, Ptr);
1546 }
1547 break;
1548 case Intrinsic::ppc_qpx_qvstfd:
1549 // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
1550 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, AC, DT) >=
1551 32) {
1552 Type *OpPtrTy =
1553 PointerType::getUnqual(II->getArgOperand(0)->getType());
1554 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
1555 return new StoreInst(II->getArgOperand(0), Ptr);
1556 }
1557 break;
1558
1559 case Intrinsic::x86_vcvtph2ps_128:
1560 case Intrinsic::x86_vcvtph2ps_256: {
1561 auto Arg = II->getArgOperand(0);
1562 auto ArgType = cast<VectorType>(Arg->getType());
1563 auto RetType = cast<VectorType>(II->getType());
1564 unsigned ArgWidth = ArgType->getNumElements();
1565 unsigned RetWidth = RetType->getNumElements();
1566 assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
1567 assert(ArgType->isIntOrIntVectorTy() &&
1568 ArgType->getScalarSizeInBits() == 16 &&
1569 "CVTPH2PS input type should be 16-bit integer vector");
1570 assert(RetType->getScalarType()->isFloatTy() &&
1571 "CVTPH2PS output type should be 32-bit float vector");
1572
1573 // Constant folding: Convert to generic half to single conversion.
1574 if (isa<ConstantAggregateZero>(Arg))
1575 return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
1576
1577 if (isa<ConstantDataVector>(Arg)) {
1578 auto VectorHalfAsShorts = Arg;
1579 if (RetWidth < ArgWidth) {
1580 SmallVector<uint32_t, 8> SubVecMask;
1581 for (unsigned i = 0; i != RetWidth; ++i)
1582 SubVecMask.push_back((int)i);
1583 VectorHalfAsShorts = Builder->CreateShuffleVector(
1584 Arg, UndefValue::get(ArgType), SubVecMask);
1585 }
1586
1587 auto VectorHalfType =
1588 VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
1589 auto VectorHalfs =
1590 Builder->CreateBitCast(VectorHalfAsShorts, VectorHalfType);
1591 auto VectorFloats = Builder->CreateFPExt(VectorHalfs, RetType);
1592 return replaceInstUsesWith(*II, VectorFloats);
1593 }
1594
1595 // We only use the lowest lanes of the argument.
1596 if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
1597 II->setArgOperand(0, V);
1598 return II;
1599 }
1600 break;
1601 }
1602
1603 case Intrinsic::x86_sse_cvtss2si:
1604 case Intrinsic::x86_sse_cvtss2si64:
1605 case Intrinsic::x86_sse_cvttss2si:
1606 case Intrinsic::x86_sse_cvttss2si64:
1607 case Intrinsic::x86_sse2_cvtsd2si:
1608 case Intrinsic::x86_sse2_cvtsd2si64:
1609 case Intrinsic::x86_sse2_cvttsd2si:
1610 case Intrinsic::x86_sse2_cvttsd2si64: {
1611 // These intrinsics only demand the 0th element of their input vectors. If
1612 // we can simplify the input based on that, do so now.
1613 Value *Arg = II->getArgOperand(0);
1614 unsigned VWidth = Arg->getType()->getVectorNumElements();
1615 if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
1616 II->setArgOperand(0, V);
1617 return II;
1618 }
1619 break;
1620 }
1621
1622 case Intrinsic::x86_mmx_pmovmskb:
1623 case Intrinsic::x86_sse_movmsk_ps:
1624 case Intrinsic::x86_sse2_movmsk_pd:
1625 case Intrinsic::x86_sse2_pmovmskb_128:
1626 case Intrinsic::x86_avx_movmsk_pd_256:
1627 case Intrinsic::x86_avx_movmsk_ps_256:
1628 case Intrinsic::x86_avx2_pmovmskb: {
1629 if (Value *V = simplifyX86movmsk(*II, *Builder))
1630 return replaceInstUsesWith(*II, V);
1631 break;
1632 }
1633
1634 case Intrinsic::x86_sse_comieq_ss:
1635 case Intrinsic::x86_sse_comige_ss:
1636 case Intrinsic::x86_sse_comigt_ss:
1637 case Intrinsic::x86_sse_comile_ss:
1638 case Intrinsic::x86_sse_comilt_ss:
1639 case Intrinsic::x86_sse_comineq_ss:
1640 case Intrinsic::x86_sse_ucomieq_ss:
1641 case Intrinsic::x86_sse_ucomige_ss:
1642 case Intrinsic::x86_sse_ucomigt_ss:
1643 case Intrinsic::x86_sse_ucomile_ss:
1644 case Intrinsic::x86_sse_ucomilt_ss:
1645 case Intrinsic::x86_sse_ucomineq_ss:
1646 case Intrinsic::x86_sse2_comieq_sd:
1647 case Intrinsic::x86_sse2_comige_sd:
1648 case Intrinsic::x86_sse2_comigt_sd:
1649 case Intrinsic::x86_sse2_comile_sd:
1650 case Intrinsic::x86_sse2_comilt_sd:
1651 case Intrinsic::x86_sse2_comineq_sd:
1652 case Intrinsic::x86_sse2_ucomieq_sd:
1653 case Intrinsic::x86_sse2_ucomige_sd:
1654 case Intrinsic::x86_sse2_ucomigt_sd:
1655 case Intrinsic::x86_sse2_ucomile_sd:
1656 case Intrinsic::x86_sse2_ucomilt_sd:
1657 case Intrinsic::x86_sse2_ucomineq_sd: {
1658 // These intrinsics only demand the 0th element of their input vectors. If
1659 // we can simplify the input based on that, do so now.
1660 bool MadeChange = false;
1661 Value *Arg0 = II->getArgOperand(0);
1662 Value *Arg1 = II->getArgOperand(1);
1663 unsigned VWidth = Arg0->getType()->getVectorNumElements();
1664 if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
1665 II->setArgOperand(0, V);
1666 MadeChange = true;
1667 }
1668 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
1669 II->setArgOperand(1, V);
1670 MadeChange = true;
1671 }
1672 if (MadeChange)
1673 return II;
1674 break;
1675 }
1676
1677 case Intrinsic::x86_sse_add_ss:
1678 case Intrinsic::x86_sse_sub_ss:
1679 case Intrinsic::x86_sse_mul_ss:
1680 case Intrinsic::x86_sse_div_ss:
1681 case Intrinsic::x86_sse_min_ss:
1682 case Intrinsic::x86_sse_max_ss:
1683 case Intrinsic::x86_sse_cmp_ss:
1684 case Intrinsic::x86_sse2_add_sd:
1685 case Intrinsic::x86_sse2_sub_sd:
1686 case Intrinsic::x86_sse2_mul_sd:
1687 case Intrinsic::x86_sse2_div_sd:
1688 case Intrinsic::x86_sse2_min_sd:
1689 case Intrinsic::x86_sse2_max_sd:
1690 case Intrinsic::x86_sse2_cmp_sd: {
1691 // These intrinsics only demand the lowest element of the second input
1692 // vector.
1693 Value *Arg1 = II->getArgOperand(1);
1694 unsigned VWidth = Arg1->getType()->getVectorNumElements();
1695 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
1696 II->setArgOperand(1, V);
1697 return II;
1698 }
1699 break;
1700 }
1701
1702 case Intrinsic::x86_sse41_round_ss:
1703 case Intrinsic::x86_sse41_round_sd: {
1704 // These intrinsics demand the upper elements of the first input vector and
1705 // the lowest element of the second input vector.
1706 bool MadeChange = false;
1707 Value *Arg0 = II->getArgOperand(0);
1708 Value *Arg1 = II->getArgOperand(1);
1709 unsigned VWidth = Arg0->getType()->getVectorNumElements();
1710 if (Value *V = SimplifyDemandedVectorEltsHigh(Arg0, VWidth, VWidth - 1)) {
1711 II->setArgOperand(0, V);
1712 MadeChange = true;
1713 }
1714 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
1715 II->setArgOperand(1, V);
1716 MadeChange = true;
1717 }
1718 if (MadeChange)
1719 return II;
1720 break;
1721 }
1722
1723 // Constant fold ashr( <A x Bi>, Ci ).
1724 // Constant fold lshr( <A x Bi>, Ci ).
1725 // Constant fold shl( <A x Bi>, Ci ).
1726 case Intrinsic::x86_sse2_psrai_d:
1727 case Intrinsic::x86_sse2_psrai_w:
1728 case Intrinsic::x86_avx2_psrai_d:
1729 case Intrinsic::x86_avx2_psrai_w:
1730 case Intrinsic::x86_sse2_psrli_d:
1731 case Intrinsic::x86_sse2_psrli_q:
1732 case Intrinsic::x86_sse2_psrli_w:
1733 case Intrinsic::x86_avx2_psrli_d:
1734 case Intrinsic::x86_avx2_psrli_q:
1735 case Intrinsic::x86_avx2_psrli_w:
1736 case Intrinsic::x86_sse2_pslli_d:
1737 case Intrinsic::x86_sse2_pslli_q:
1738 case Intrinsic::x86_sse2_pslli_w:
1739 case Intrinsic::x86_avx2_pslli_d:
1740 case Intrinsic::x86_avx2_pslli_q:
1741 case Intrinsic::x86_avx2_pslli_w:
1742 if (Value *V = simplifyX86immShift(*II, *Builder))
1743 return replaceInstUsesWith(*II, V);
1744 break;
1745
1746 case Intrinsic::x86_sse2_psra_d:
1747 case Intrinsic::x86_sse2_psra_w:
1748 case Intrinsic::x86_avx2_psra_d:
1749 case Intrinsic::x86_avx2_psra_w:
1750 case Intrinsic::x86_sse2_psrl_d:
1751 case Intrinsic::x86_sse2_psrl_q:
1752 case Intrinsic::x86_sse2_psrl_w:
1753 case Intrinsic::x86_avx2_psrl_d:
1754 case Intrinsic::x86_avx2_psrl_q:
1755 case Intrinsic::x86_avx2_psrl_w:
1756 case Intrinsic::x86_sse2_psll_d:
1757 case Intrinsic::x86_sse2_psll_q:
1758 case Intrinsic::x86_sse2_psll_w:
1759 case Intrinsic::x86_avx2_psll_d:
1760 case Intrinsic::x86_avx2_psll_q:
1761 case Intrinsic::x86_avx2_psll_w: {
1762 if (Value *V = simplifyX86immShift(*II, *Builder))
1763 return replaceInstUsesWith(*II, V);
1764
1765 // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
1766 // operand to compute the shift amount.
1767 Value *Arg1 = II->getArgOperand(1);
1768 assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
1769 "Unexpected packed shift size");
1770 unsigned VWidth = Arg1->getType()->getVectorNumElements();
1771
1772 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
1773 II->setArgOperand(1, V);
1774 return II;
1775 }
1776 break;
1777 }
1778
1779 case Intrinsic::x86_avx2_psllv_d:
1780 case Intrinsic::x86_avx2_psllv_d_256:
1781 case Intrinsic::x86_avx2_psllv_q:
1782 case Intrinsic::x86_avx2_psllv_q_256:
1783 case Intrinsic::x86_avx2_psrav_d:
1784 case Intrinsic::x86_avx2_psrav_d_256:
1785 case Intrinsic::x86_avx2_psrlv_d:
1786 case Intrinsic::x86_avx2_psrlv_d_256:
1787 case Intrinsic::x86_avx2_psrlv_q:
1788 case Intrinsic::x86_avx2_psrlv_q_256:
1789 if (Value *V = simplifyX86varShift(*II, *Builder))
1790 return replaceInstUsesWith(*II, V);
1791 break;
1792
1793 case Intrinsic::x86_sse41_insertps:
1794 if (Value *V = simplifyX86insertps(*II, *Builder))
1795 return replaceInstUsesWith(*II, V);
1796 break;
1797
1798 case Intrinsic::x86_sse4a_extrq: {
1799 Value *Op0 = II->getArgOperand(0);
1800 Value *Op1 = II->getArgOperand(1);
1801 unsigned VWidth0 = Op0->getType()->getVectorNumElements();
1802 unsigned VWidth1 = Op1->getType()->getVectorNumElements();
1803 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
1804 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
1805 VWidth1 == 16 && "Unexpected operand sizes");
1806
1807 // See if we're dealing with constant values.
1808 Constant *C1 = dyn_cast<Constant>(Op1);
1809 ConstantInt *CILength =
1810 C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)0))
1811 : nullptr;
1812 ConstantInt *CIIndex =
1813 C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)1))
1814 : nullptr;
1815
1816 // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
1817 if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
1818 return replaceInstUsesWith(*II, V);
1819
1820 // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
1821 // operands and the lowest 16-bits of the second.
1822 bool MadeChange = false;
1823 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
1824 II->setArgOperand(0, V);
1825 MadeChange = true;
1826 }
1827 if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
1828 II->setArgOperand(1, V);
1829 MadeChange = true;
1830 }
1831 if (MadeChange)
1832 return II;
1833 break;
1834 }
1835
1836 case Intrinsic::x86_sse4a_extrqi: {
1837 // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
1838 // bits of the lower 64-bits. The upper 64-bits are undefined.
1839 Value *Op0 = II->getArgOperand(0);
1840 unsigned VWidth = Op0->getType()->getVectorNumElements();
1841 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
1842 "Unexpected operand size");
1843
1844 // See if we're dealing with constant values.
1845 ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
1846 ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
1847
1848 // Attempt to simplify to a constant or shuffle vector.
1849 if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
1850 return replaceInstUsesWith(*II, V);
1851
1852 // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
1853 // operand.
1854 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
1855 II->setArgOperand(0, V);
1856 return II;
1857 }
1858 break;
1859 }
1860
1861 case Intrinsic::x86_sse4a_insertq: {
1862 Value *Op0 = II->getArgOperand(0);
1863 Value *Op1 = II->getArgOperand(1);
1864 unsigned VWidth = Op0->getType()->getVectorNumElements();
1865 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
1866 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
1867 Op1->getType()->getVectorNumElements() == 2 &&
1868 "Unexpected operand size");
1869
1870 // See if we're dealing with constant values.
1871 Constant *C1 = dyn_cast<Constant>(Op1);
1872 ConstantInt *CI11 =
1873 C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)1))
1874 : nullptr;
1875
1876 // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
1877 if (CI11) {
1878 const APInt &V11 = CI11->getValue();
1879 APInt Len = V11.zextOrTrunc(6);
1880 APInt Idx = V11.lshr(8).zextOrTrunc(6);
1881 if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
1882 return replaceInstUsesWith(*II, V);
1883 }
1884
1885 // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
1886 // operand.
1887 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
1888 II->setArgOperand(0, V);
1889 return II;
1890 }
1891 break;
1892 }
1893
1894 case Intrinsic::x86_sse4a_insertqi: {
1895 // INSERTQI: Extract lowest Length bits from lower half of second source and
1896 // insert over first source starting at Index bit. The upper 64-bits are
1897 // undefined.
1898 Value *Op0 = II->getArgOperand(0);
1899 Value *Op1 = II->getArgOperand(1);
1900 unsigned VWidth0 = Op0->getType()->getVectorNumElements();
1901 unsigned VWidth1 = Op1->getType()->getVectorNumElements();
1902 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
1903 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
1904 VWidth1 == 2 && "Unexpected operand sizes");
1905
1906 // See if we're dealing with constant values.
1907 ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
1908 ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
1909
1910 // Attempt to simplify to a constant or shuffle vector.
1911 if (CILength && CIIndex) {
1912 APInt Len = CILength->getValue().zextOrTrunc(6);
1913 APInt Idx = CIIndex->getValue().zextOrTrunc(6);
1914 if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
1915 return replaceInstUsesWith(*II, V);
1916 }
1917
1918 // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
1919 // operands.
1920 bool MadeChange = false;
1921 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
1922 II->setArgOperand(0, V);
1923 MadeChange = true;
1924 }
1925 if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
1926 II->setArgOperand(1, V);
1927 MadeChange = true;
1928 }
1929 if (MadeChange)
1930 return II;
1931 break;
1932 }
1933
1934 case Intrinsic::x86_sse41_pblendvb:
1935 case Intrinsic::x86_sse41_blendvps:
1936 case Intrinsic::x86_sse41_blendvpd:
1937 case Intrinsic::x86_avx_blendv_ps_256:
1938 case Intrinsic::x86_avx_blendv_pd_256:
1939 case Intrinsic::x86_avx2_pblendvb: {
1940 // Convert blendv* to vector selects if the mask is constant.
1941 // This optimization is convoluted because the intrinsic is defined as
1942 // getting a vector of floats or doubles for the ps and pd versions.
1943 // FIXME: That should be changed.
1944
1945 Value *Op0 = II->getArgOperand(0);
1946 Value *Op1 = II->getArgOperand(1);
1947 Value *Mask = II->getArgOperand(2);
1948
1949 // fold (blend A, A, Mask) -> A
1950 if (Op0 == Op1)
1951 return replaceInstUsesWith(CI, Op0);
1952
1953 // Zero Mask - select 1st argument.
1954 if (isa<ConstantAggregateZero>(Mask))
1955 return replaceInstUsesWith(CI, Op0);
1956
1957 // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
1958 if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
1959 Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
1960 return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
1961 }
1962 break;
1963 }
1964
1965 case Intrinsic::x86_ssse3_pshuf_b_128:
1966 case Intrinsic::x86_avx2_pshuf_b:
1967 if (Value *V = simplifyX86pshufb(*II, *Builder))
1968 return replaceInstUsesWith(*II, V);
1969 break;
1970
1971 case Intrinsic::x86_avx_vpermilvar_ps:
1972 case Intrinsic::x86_avx_vpermilvar_ps_256:
1973 case Intrinsic::x86_avx_vpermilvar_pd:
1974 case Intrinsic::x86_avx_vpermilvar_pd_256:
1975 if (Value *V = simplifyX86vpermilvar(*II, *Builder))
1976 return replaceInstUsesWith(*II, V);
1977 break;
1978
1979 case Intrinsic::x86_avx2_permd:
1980 case Intrinsic::x86_avx2_permps:
1981 if (Value *V = simplifyX86vpermv(*II, *Builder))
1982 return replaceInstUsesWith(*II, V);
1983 break;
1984
1985 case Intrinsic::x86_avx_vperm2f128_pd_256:
1986 case Intrinsic::x86_avx_vperm2f128_ps_256:
1987 case Intrinsic::x86_avx_vperm2f128_si_256:
1988 case Intrinsic::x86_avx2_vperm2i128:
1989 if (Value *V = simplifyX86vperm2(*II, *Builder))
1990 return replaceInstUsesWith(*II, V);
1991 break;
1992
1993 case Intrinsic::x86_avx_maskload_ps:
1994 case Intrinsic::x86_avx_maskload_pd:
1995 case Intrinsic::x86_avx_maskload_ps_256:
1996 case Intrinsic::x86_avx_maskload_pd_256:
1997 case Intrinsic::x86_avx2_maskload_d:
1998 case Intrinsic::x86_avx2_maskload_q:
1999 case Intrinsic::x86_avx2_maskload_d_256:
2000 case Intrinsic::x86_avx2_maskload_q_256:
2001 if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
2002 return I;
2003 break;
2004
2005 case Intrinsic::x86_sse2_maskmov_dqu:
2006 case Intrinsic::x86_avx_maskstore_ps:
2007 case Intrinsic::x86_avx_maskstore_pd:
2008 case Intrinsic::x86_avx_maskstore_ps_256:
2009 case Intrinsic::x86_avx_maskstore_pd_256:
2010 case Intrinsic::x86_avx2_maskstore_d:
2011 case Intrinsic::x86_avx2_maskstore_q:
2012 case Intrinsic::x86_avx2_maskstore_d_256:
2013 case Intrinsic::x86_avx2_maskstore_q_256:
2014 if (simplifyX86MaskedStore(*II, *this))
2015 return nullptr;
2016 break;
2017
2018 case Intrinsic::x86_xop_vpcomb:
2019 case Intrinsic::x86_xop_vpcomd:
2020 case Intrinsic::x86_xop_vpcomq:
2021 case Intrinsic::x86_xop_vpcomw:
2022 if (Value *V = simplifyX86vpcom(*II, *Builder, true))
2023 return replaceInstUsesWith(*II, V);
2024 break;
2025
2026 case Intrinsic::x86_xop_vpcomub:
2027 case Intrinsic::x86_xop_vpcomud:
2028 case Intrinsic::x86_xop_vpcomuq:
2029 case Intrinsic::x86_xop_vpcomuw:
2030 if (Value *V = simplifyX86vpcom(*II, *Builder, false))
2031 return replaceInstUsesWith(*II, V);
2032 break;
2033
2034 case Intrinsic::ppc_altivec_vperm:
2035 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
2036 // Note that ppc_altivec_vperm has a big-endian bias, so when creating
2037 // a vectorshuffle for little endian, we must undo the transformation
2038 // performed on vec_perm in altivec.h. That is, we must complement
2039 // the permutation mask with respect to 31 and reverse the order of
2040 // V1 and V2.
2041 if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
2042 assert(Mask->getType()->getVectorNumElements() == 16 &&
2043 "Bad type for intrinsic!");
2044
2045 // Check that all of the elements are integer constants or undefs.
2046 bool AllEltsOk = true;
2047 for (unsigned i = 0; i != 16; ++i) {
2048 Constant *Elt = Mask->getAggregateElement(i);
2049 if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
2050 AllEltsOk = false;
2051 break;
2052 }
2053 }
2054
2055 if (AllEltsOk) {
2056 // Cast the input vectors to byte vectors.
2057 Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
2058 Mask->getType());
2059 Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
2060 Mask->getType());
2061 Value *Result = UndefValue::get(Op0->getType());
2062
2063 // Only extract each element once.
2064 Value *ExtractedElts[32];
2065 memset(ExtractedElts, 0, sizeof(ExtractedElts));
2066
2067 for (unsigned i = 0; i != 16; ++i) {
2068 if (isa<UndefValue>(Mask->getAggregateElement(i)))
2069 continue;
2070 unsigned Idx =
2071 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
2072 Idx &= 31; // Match the hardware behavior.
2073 if (DL.isLittleEndian())
2074 Idx = 31 - Idx;
2075
2076 if (!ExtractedElts[Idx]) {
2077 Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
2078 Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
2079 ExtractedElts[Idx] =
2080 Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
2081 Builder->getInt32(Idx&15));
2082 }
2083
2084 // Insert this value into the result vector.
2085 Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
2086 Builder->getInt32(i));
2087 }
2088 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
2089 }
2090 }
2091 break;
2092
2093 case Intrinsic::arm_neon_vld1:
2094 case Intrinsic::arm_neon_vld2:
2095 case Intrinsic::arm_neon_vld3:
2096 case Intrinsic::arm_neon_vld4:
2097 case Intrinsic::arm_neon_vld2lane:
2098 case Intrinsic::arm_neon_vld3lane:
2099 case Intrinsic::arm_neon_vld4lane:
2100 case Intrinsic::arm_neon_vst1:
2101 case Intrinsic::arm_neon_vst2:
2102 case Intrinsic::arm_neon_vst3:
2103 case Intrinsic::arm_neon_vst4:
2104 case Intrinsic::arm_neon_vst2lane:
2105 case Intrinsic::arm_neon_vst3lane:
2106 case Intrinsic::arm_neon_vst4lane: {
2107 unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, AC, DT);
2108 unsigned AlignArg = II->getNumArgOperands() - 1;
2109 ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
2110 if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
2111 II->setArgOperand(AlignArg,
2112 ConstantInt::get(Type::getInt32Ty(II->getContext()),
2113 MemAlign, false));
2114 return II;
2115 }
2116 break;
2117 }
2118
2119 case Intrinsic::arm_neon_vmulls:
2120 case Intrinsic::arm_neon_vmullu:
2121 case Intrinsic::aarch64_neon_smull:
2122 case Intrinsic::aarch64_neon_umull: {
2123 Value *Arg0 = II->getArgOperand(0);
2124 Value *Arg1 = II->getArgOperand(1);
2125
2126 // Handle mul by zero first:
2127 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
2128 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
2129 }
2130
2131 // Check for constant LHS & RHS - in this case we just simplify.
2132 bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
2133 II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
2134 VectorType *NewVT = cast<VectorType>(II->getType());
2135 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
2136 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
2137 CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
2138 CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
2139
2140 return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
2141 }
2142
2143 // Couldn't simplify - canonicalize constant to the RHS.
2144 std::swap(Arg0, Arg1);
2145 }
2146
2147 // Handle mul by one:
2148 if (Constant *CV1 = dyn_cast<Constant>(Arg1))
2149 if (ConstantInt *Splat =
2150 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
2151 if (Splat->isOne())
2152 return CastInst::CreateIntegerCast(Arg0, II->getType(),
2153 /*isSigned=*/!Zext);
2154
2155 break;
2156 }
2157
2158 case Intrinsic::amdgcn_rcp: {
2159 if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) {
2160 const APFloat &ArgVal = C->getValueAPF();
2161 APFloat Val(ArgVal.getSemantics(), 1.0);
2162 APFloat::opStatus Status = Val.divide(ArgVal,
2163 APFloat::rmNearestTiesToEven);
2164 // Only do this if it was exact and therefore not dependent on the
2165 // rounding mode.
2166 if (Status == APFloat::opOK)
2167 return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
2168 }
2169
2170 break;
2171 }
2172 case Intrinsic::amdgcn_frexp_mant:
2173 case Intrinsic::amdgcn_frexp_exp: {
2174 Value *Src = II->getArgOperand(0);
2175 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
2176 int Exp;
2177 APFloat Significand = frexp(C->getValueAPF(), Exp,
2178 APFloat::rmNearestTiesToEven);
2179
2180 if (II->getIntrinsicID() == Intrinsic::amdgcn_frexp_mant) {
2181 return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(),
2182 Significand));
2183 }
2184
2185 // Match instruction special case behavior.
2186 if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
2187 Exp = 0;
2188
2189 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp));
2190 }
2191
2192 if (isa<UndefValue>(Src))
2193 return replaceInstUsesWith(CI, UndefValue::get(II->getType()));
2194
2195 break;
2196 }
2197 case Intrinsic::stackrestore: {
2198 // If the save is right next to the restore, remove the restore. This can
2199 // happen when variable allocas are DCE'd.
2200 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
2201 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
2202 if (&*++SS->getIterator() == II)
2203 return eraseInstFromFunction(CI);
2204 }
2205 }
2206
2207 // Scan down this block to see if there is another stack restore in the
2208 // same block without an intervening call/alloca.
2209 BasicBlock::iterator BI(II);
2210 TerminatorInst *TI = II->getParent()->getTerminator();
2211 bool CannotRemove = false;
2212 for (++BI; &*BI != TI; ++BI) {
2213 if (isa<AllocaInst>(BI)) {
2214 CannotRemove = true;
2215 break;
2216 }
2217 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
2218 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
2219 // If there is a stackrestore below this one, remove this one.
2220 if (II->getIntrinsicID() == Intrinsic::stackrestore)
2221 return eraseInstFromFunction(CI);
2222
2223 // Bail if we cross over an intrinsic with side effects, such as
2224 // llvm.stacksave, llvm.read_register, or llvm.setjmp.
2225 if (II->mayHaveSideEffects()) {
2226 CannotRemove = true;
2227 break;
2228 }
2229 } else {
2230 // If we found a non-intrinsic call, we can't remove the stack
2231 // restore.
2232 CannotRemove = true;
2233 break;
2234 }
2235 }
2236 }
2237
2238 // If the stack restore is in a return, resume, or unwind block and if there
2239 // are no allocas or calls between the restore and the return, nuke the
2240 // restore.
2241 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
2242 return eraseInstFromFunction(CI);
2243 break;
2244 }
2245 case Intrinsic::lifetime_start:
2246 if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start,
2247 Intrinsic::lifetime_end, *this))
2248 return nullptr;
2249 break;
2250 case Intrinsic::assume: {
2251 Value *IIOperand = II->getArgOperand(0);
2252 // Remove an assume if it is immediately followed by an identical assume.
2253 if (match(II->getNextNode(),
2254 m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
2255 return eraseInstFromFunction(CI);
2256
2257 // Canonicalize assume(a && b) -> assume(a); assume(b);
2258 // Note: New assumption intrinsics created here are registered by
2259 // the InstCombineIRInserter object.
2260 Value *AssumeIntrinsic = II->getCalledValue(), *A, *B;
2261 if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
2262 Builder->CreateCall(AssumeIntrinsic, A, II->getName());
2263 Builder->CreateCall(AssumeIntrinsic, B, II->getName());
2264 return eraseInstFromFunction(*II);
2265 }
2266 // assume(!(a || b)) -> assume(!a); assume(!b);
2267 if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
2268 Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
2269 II->getName());
2270 Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
2271 II->getName());
2272 return eraseInstFromFunction(*II);
2273 }
2274
2275 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
2276 // (if assume is valid at the load)
2277 if (ICmpInst* ICmp = dyn_cast<ICmpInst>(IIOperand)) {
2278 Value *LHS = ICmp->getOperand(0);
2279 Value *RHS = ICmp->getOperand(1);
2280 if (ICmpInst::ICMP_NE == ICmp->getPredicate() &&
2281 isa<LoadInst>(LHS) &&
2282 isa<Constant>(RHS) &&
2283 RHS->getType()->isPointerTy() &&
2284 cast<Constant>(RHS)->isNullValue()) {
2285 LoadInst* LI = cast<LoadInst>(LHS);
2286 if (isValidAssumeForContext(II, LI, DT)) {
2287 MDNode *MD = MDNode::get(II->getContext(), None);
2288 LI->setMetadata(LLVMContext::MD_nonnull, MD);
2289 return eraseInstFromFunction(*II);
2290 }
2291 }
2292 // TODO: apply nonnull return attributes to calls and invokes
2293 // TODO: apply range metadata for range check patterns?
2294 }
2295 // If there is a dominating assume with the same condition as this one,
2296 // then this one is redundant, and should be removed.
2297 APInt KnownZero(1, 0), KnownOne(1, 0);
2298 computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II);
2299 if (KnownOne.isAllOnesValue())
2300 return eraseInstFromFunction(*II);
2301
2302 break;
2303 }
2304 case Intrinsic::experimental_gc_relocate: {
2305 // Translate facts known about a pointer before relocating into
2306 // facts about the relocate value, while being careful to
2307 // preserve relocation semantics.
2308 Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr();
2309
2310 // Remove the relocation if unused, note that this check is required
2311 // to prevent the cases below from looping forever.
2312 if (II->use_empty())
2313 return eraseInstFromFunction(*II);
2314
2315 // Undef is undef, even after relocation.
2316 // TODO: provide a hook for this in GCStrategy. This is clearly legal for
2317 // most practical collectors, but there was discussion in the review thread
2318 // about whether it was legal for all possible collectors.
2319 if (isa<UndefValue>(DerivedPtr))
2320 // Use undef of gc_relocate's type to replace it.
2321 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2322
2323 if (auto *PT = dyn_cast<PointerType>(II->getType())) {
2324 // The relocation of null will be null for most any collector.
2325 // TODO: provide a hook for this in GCStrategy. There might be some
2326 // weird collector this property does not hold for.
2327 if (isa<ConstantPointerNull>(DerivedPtr))
2328 // Use null-pointer of gc_relocate's type to replace it.
2329 return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
2330
2331 // isKnownNonNull -> nonnull attribute
2332 if (isKnownNonNullAt(DerivedPtr, II, DT))
2333 II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
2334 }
2335
2336 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
2337 // Canonicalize on the type from the uses to the defs
2338
2339 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
2340 break;
2341 }
2342 }
2343
2344 return visitCallSite(II);
2345 }
2346
2347 // InvokeInst simplification
2348 //
visitInvokeInst(InvokeInst & II)2349 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
2350 return visitCallSite(&II);
2351 }
2352
2353 /// If this cast does not affect the value passed through the varargs area, we
2354 /// can eliminate the use of the cast.
isSafeToEliminateVarargsCast(const CallSite CS,const DataLayout & DL,const CastInst * const CI,const int ix)2355 static bool isSafeToEliminateVarargsCast(const CallSite CS,
2356 const DataLayout &DL,
2357 const CastInst *const CI,
2358 const int ix) {
2359 if (!CI->isLosslessCast())
2360 return false;
2361
2362 // If this is a GC intrinsic, avoid munging types. We need types for
2363 // statepoint reconstruction in SelectionDAG.
2364 // TODO: This is probably something which should be expanded to all
2365 // intrinsics since the entire point of intrinsics is that
2366 // they are understandable by the optimizer.
2367 if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
2368 return false;
2369
2370 // The size of ByVal or InAlloca arguments is derived from the type, so we
2371 // can't change to a type with a different size. If the size were
2372 // passed explicitly we could avoid this check.
2373 if (!CS.isByValOrInAllocaArgument(ix))
2374 return true;
2375
2376 Type* SrcTy =
2377 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
2378 Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
2379 if (!SrcTy->isSized() || !DstTy->isSized())
2380 return false;
2381 if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
2382 return false;
2383 return true;
2384 }
2385
tryOptimizeCall(CallInst * CI)2386 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
2387 if (!CI->getCalledFunction()) return nullptr;
2388
2389 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
2390 replaceInstUsesWith(*From, With);
2391 };
2392 LibCallSimplifier Simplifier(DL, TLI, InstCombineRAUW);
2393 if (Value *With = Simplifier.optimizeCall(CI)) {
2394 ++NumSimplified;
2395 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
2396 }
2397
2398 return nullptr;
2399 }
2400
findInitTrampolineFromAlloca(Value * TrampMem)2401 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
2402 // Strip off at most one level of pointer casts, looking for an alloca. This
2403 // is good enough in practice and simpler than handling any number of casts.
2404 Value *Underlying = TrampMem->stripPointerCasts();
2405 if (Underlying != TrampMem &&
2406 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
2407 return nullptr;
2408 if (!isa<AllocaInst>(Underlying))
2409 return nullptr;
2410
2411 IntrinsicInst *InitTrampoline = nullptr;
2412 for (User *U : TrampMem->users()) {
2413 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
2414 if (!II)
2415 return nullptr;
2416 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
2417 if (InitTrampoline)
2418 // More than one init_trampoline writes to this value. Give up.
2419 return nullptr;
2420 InitTrampoline = II;
2421 continue;
2422 }
2423 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
2424 // Allow any number of calls to adjust.trampoline.
2425 continue;
2426 return nullptr;
2427 }
2428
2429 // No call to init.trampoline found.
2430 if (!InitTrampoline)
2431 return nullptr;
2432
2433 // Check that the alloca is being used in the expected way.
2434 if (InitTrampoline->getOperand(0) != TrampMem)
2435 return nullptr;
2436
2437 return InitTrampoline;
2438 }
2439
findInitTrampolineFromBB(IntrinsicInst * AdjustTramp,Value * TrampMem)2440 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
2441 Value *TrampMem) {
2442 // Visit all the previous instructions in the basic block, and try to find a
2443 // init.trampoline which has a direct path to the adjust.trampoline.
2444 for (BasicBlock::iterator I = AdjustTramp->getIterator(),
2445 E = AdjustTramp->getParent()->begin();
2446 I != E;) {
2447 Instruction *Inst = &*--I;
2448 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2449 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
2450 II->getOperand(0) == TrampMem)
2451 return II;
2452 if (Inst->mayWriteToMemory())
2453 return nullptr;
2454 }
2455 return nullptr;
2456 }
2457
2458 // Given a call to llvm.adjust.trampoline, find and return the corresponding
2459 // call to llvm.init.trampoline if the call to the trampoline can be optimized
2460 // to a direct call to a function. Otherwise return NULL.
2461 //
findInitTrampoline(Value * Callee)2462 static IntrinsicInst *findInitTrampoline(Value *Callee) {
2463 Callee = Callee->stripPointerCasts();
2464 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
2465 if (!AdjustTramp ||
2466 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
2467 return nullptr;
2468
2469 Value *TrampMem = AdjustTramp->getOperand(0);
2470
2471 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
2472 return IT;
2473 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
2474 return IT;
2475 return nullptr;
2476 }
2477
2478 /// Improvements for call and invoke instructions.
visitCallSite(CallSite CS)2479 Instruction *InstCombiner::visitCallSite(CallSite CS) {
2480
2481 if (isAllocLikeFn(CS.getInstruction(), TLI))
2482 return visitAllocSite(*CS.getInstruction());
2483
2484 bool Changed = false;
2485
2486 // Mark any parameters that are known to be non-null with the nonnull
2487 // attribute. This is helpful for inlining calls to functions with null
2488 // checks on their arguments.
2489 SmallVector<unsigned, 4> Indices;
2490 unsigned ArgNo = 0;
2491
2492 for (Value *V : CS.args()) {
2493 if (V->getType()->isPointerTy() &&
2494 !CS.paramHasAttr(ArgNo + 1, Attribute::NonNull) &&
2495 isKnownNonNullAt(V, CS.getInstruction(), DT))
2496 Indices.push_back(ArgNo + 1);
2497 ArgNo++;
2498 }
2499
2500 assert(ArgNo == CS.arg_size() && "sanity check");
2501
2502 if (!Indices.empty()) {
2503 AttributeSet AS = CS.getAttributes();
2504 LLVMContext &Ctx = CS.getInstruction()->getContext();
2505 AS = AS.addAttribute(Ctx, Indices,
2506 Attribute::get(Ctx, Attribute::NonNull));
2507 CS.setAttributes(AS);
2508 Changed = true;
2509 }
2510
2511 // If the callee is a pointer to a function, attempt to move any casts to the
2512 // arguments of the call/invoke.
2513 Value *Callee = CS.getCalledValue();
2514 if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
2515 return nullptr;
2516
2517 if (Function *CalleeF = dyn_cast<Function>(Callee)) {
2518 // Remove the convergent attr on calls when the callee is not convergent.
2519 if (CS.isConvergent() && !CalleeF->isConvergent() &&
2520 !CalleeF->isIntrinsic()) {
2521 DEBUG(dbgs() << "Removing convergent attr from instr "
2522 << CS.getInstruction() << "\n");
2523 CS.setNotConvergent();
2524 return CS.getInstruction();
2525 }
2526
2527 // If the call and callee calling conventions don't match, this call must
2528 // be unreachable, as the call is undefined.
2529 if (CalleeF->getCallingConv() != CS.getCallingConv() &&
2530 // Only do this for calls to a function with a body. A prototype may
2531 // not actually end up matching the implementation's calling conv for a
2532 // variety of reasons (e.g. it may be written in assembly).
2533 !CalleeF->isDeclaration()) {
2534 Instruction *OldCall = CS.getInstruction();
2535 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
2536 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
2537 OldCall);
2538 // If OldCall does not return void then replaceAllUsesWith undef.
2539 // This allows ValueHandlers and custom metadata to adjust itself.
2540 if (!OldCall->getType()->isVoidTy())
2541 replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
2542 if (isa<CallInst>(OldCall))
2543 return eraseInstFromFunction(*OldCall);
2544
2545 // We cannot remove an invoke, because it would change the CFG, just
2546 // change the callee to a null pointer.
2547 cast<InvokeInst>(OldCall)->setCalledFunction(
2548 Constant::getNullValue(CalleeF->getType()));
2549 return nullptr;
2550 }
2551 }
2552
2553 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
2554 // If CS does not return void then replaceAllUsesWith undef.
2555 // This allows ValueHandlers and custom metadata to adjust itself.
2556 if (!CS.getInstruction()->getType()->isVoidTy())
2557 replaceInstUsesWith(*CS.getInstruction(),
2558 UndefValue::get(CS.getInstruction()->getType()));
2559
2560 if (isa<InvokeInst>(CS.getInstruction())) {
2561 // Can't remove an invoke because we cannot change the CFG.
2562 return nullptr;
2563 }
2564
2565 // This instruction is not reachable, just remove it. We insert a store to
2566 // undef so that we know that this code is not reachable, despite the fact
2567 // that we can't modify the CFG here.
2568 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
2569 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
2570 CS.getInstruction());
2571
2572 return eraseInstFromFunction(*CS.getInstruction());
2573 }
2574
2575 if (IntrinsicInst *II = findInitTrampoline(Callee))
2576 return transformCallThroughTrampoline(CS, II);
2577
2578 PointerType *PTy = cast<PointerType>(Callee->getType());
2579 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2580 if (FTy->isVarArg()) {
2581 int ix = FTy->getNumParams();
2582 // See if we can optimize any arguments passed through the varargs area of
2583 // the call.
2584 for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
2585 E = CS.arg_end(); I != E; ++I, ++ix) {
2586 CastInst *CI = dyn_cast<CastInst>(*I);
2587 if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
2588 *I = CI->getOperand(0);
2589 Changed = true;
2590 }
2591 }
2592 }
2593
2594 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
2595 // Inline asm calls cannot throw - mark them 'nounwind'.
2596 CS.setDoesNotThrow();
2597 Changed = true;
2598 }
2599
2600 // Try to optimize the call if possible, we require DataLayout for most of
2601 // this. None of these calls are seen as possibly dead so go ahead and
2602 // delete the instruction now.
2603 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
2604 Instruction *I = tryOptimizeCall(CI);
2605 // If we changed something return the result, etc. Otherwise let
2606 // the fallthrough check.
2607 if (I) return eraseInstFromFunction(*I);
2608 }
2609
2610 return Changed ? CS.getInstruction() : nullptr;
2611 }
2612
2613 /// If the callee is a constexpr cast of a function, attempt to move the cast to
2614 /// the arguments of the call/invoke.
transformConstExprCastCall(CallSite CS)2615 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
2616 Function *Callee =
2617 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2618 if (!Callee)
2619 return false;
2620 // The prototype of thunks are a lie, don't try to directly call such
2621 // functions.
2622 if (Callee->hasFnAttribute("thunk"))
2623 return false;
2624 Instruction *Caller = CS.getInstruction();
2625 const AttributeSet &CallerPAL = CS.getAttributes();
2626
2627 // Okay, this is a cast from a function to a different type. Unless doing so
2628 // would cause a type conversion of one of our arguments, change this call to
2629 // be a direct call with arguments casted to the appropriate types.
2630 //
2631 FunctionType *FT = Callee->getFunctionType();
2632 Type *OldRetTy = Caller->getType();
2633 Type *NewRetTy = FT->getReturnType();
2634
2635 // Check to see if we are changing the return type...
2636 if (OldRetTy != NewRetTy) {
2637
2638 if (NewRetTy->isStructTy())
2639 return false; // TODO: Handle multiple return values.
2640
2641 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
2642 if (Callee->isDeclaration())
2643 return false; // Cannot transform this return value.
2644
2645 if (!Caller->use_empty() &&
2646 // void -> non-void is handled specially
2647 !NewRetTy->isVoidTy())
2648 return false; // Cannot transform this return value.
2649 }
2650
2651 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
2652 AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
2653 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
2654 return false; // Attribute not compatible with transformed value.
2655 }
2656
2657 // If the callsite is an invoke instruction, and the return value is used by
2658 // a PHI node in a successor, we cannot change the return type of the call
2659 // because there is no place to put the cast instruction (without breaking
2660 // the critical edge). Bail out in this case.
2661 if (!Caller->use_empty())
2662 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
2663 for (User *U : II->users())
2664 if (PHINode *PN = dyn_cast<PHINode>(U))
2665 if (PN->getParent() == II->getNormalDest() ||
2666 PN->getParent() == II->getUnwindDest())
2667 return false;
2668 }
2669
2670 unsigned NumActualArgs = CS.arg_size();
2671 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
2672
2673 // Prevent us turning:
2674 // declare void @takes_i32_inalloca(i32* inalloca)
2675 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
2676 //
2677 // into:
2678 // call void @takes_i32_inalloca(i32* null)
2679 //
2680 // Similarly, avoid folding away bitcasts of byval calls.
2681 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
2682 Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
2683 return false;
2684
2685 CallSite::arg_iterator AI = CS.arg_begin();
2686 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
2687 Type *ParamTy = FT->getParamType(i);
2688 Type *ActTy = (*AI)->getType();
2689
2690 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
2691 return false; // Cannot transform this parameter value.
2692
2693 if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
2694 overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
2695 return false; // Attribute not compatible with transformed value.
2696
2697 if (CS.isInAllocaArgument(i))
2698 return false; // Cannot transform to and from inalloca.
2699
2700 // If the parameter is passed as a byval argument, then we have to have a
2701 // sized type and the sized type has to have the same size as the old type.
2702 if (ParamTy != ActTy &&
2703 CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
2704 Attribute::ByVal)) {
2705 PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
2706 if (!ParamPTy || !ParamPTy->getElementType()->isSized())
2707 return false;
2708
2709 Type *CurElTy = ActTy->getPointerElementType();
2710 if (DL.getTypeAllocSize(CurElTy) !=
2711 DL.getTypeAllocSize(ParamPTy->getElementType()))
2712 return false;
2713 }
2714 }
2715
2716 if (Callee->isDeclaration()) {
2717 // Do not delete arguments unless we have a function body.
2718 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
2719 return false;
2720
2721 // If the callee is just a declaration, don't change the varargsness of the
2722 // call. We don't want to introduce a varargs call where one doesn't
2723 // already exist.
2724 PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
2725 if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
2726 return false;
2727
2728 // If both the callee and the cast type are varargs, we still have to make
2729 // sure the number of fixed parameters are the same or we have the same
2730 // ABI issues as if we introduce a varargs call.
2731 if (FT->isVarArg() &&
2732 cast<FunctionType>(APTy->getElementType())->isVarArg() &&
2733 FT->getNumParams() !=
2734 cast<FunctionType>(APTy->getElementType())->getNumParams())
2735 return false;
2736 }
2737
2738 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
2739 !CallerPAL.isEmpty())
2740 // In this case we have more arguments than the new function type, but we
2741 // won't be dropping them. Check that these extra arguments have attributes
2742 // that are compatible with being a vararg call argument.
2743 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
2744 unsigned Index = CallerPAL.getSlotIndex(i - 1);
2745 if (Index <= FT->getNumParams())
2746 break;
2747
2748 // Check if it has an attribute that's incompatible with varargs.
2749 AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1);
2750 if (PAttrs.hasAttribute(Index, Attribute::StructRet))
2751 return false;
2752 }
2753
2754
2755 // Okay, we decided that this is a safe thing to do: go ahead and start
2756 // inserting cast instructions as necessary.
2757 std::vector<Value*> Args;
2758 Args.reserve(NumActualArgs);
2759 SmallVector<AttributeSet, 8> attrVec;
2760 attrVec.reserve(NumCommonArgs);
2761
2762 // Get any return attributes.
2763 AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
2764
2765 // If the return value is not being used, the type may not be compatible
2766 // with the existing attributes. Wipe out any problematic attributes.
2767 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
2768
2769 // Add the new return attributes.
2770 if (RAttrs.hasAttributes())
2771 attrVec.push_back(AttributeSet::get(Caller->getContext(),
2772 AttributeSet::ReturnIndex, RAttrs));
2773
2774 AI = CS.arg_begin();
2775 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
2776 Type *ParamTy = FT->getParamType(i);
2777
2778 if ((*AI)->getType() == ParamTy) {
2779 Args.push_back(*AI);
2780 } else {
2781 Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy));
2782 }
2783
2784 // Add any parameter attributes.
2785 AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
2786 if (PAttrs.hasAttributes())
2787 attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1,
2788 PAttrs));
2789 }
2790
2791 // If the function takes more arguments than the call was taking, add them
2792 // now.
2793 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
2794 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
2795
2796 // If we are removing arguments to the function, emit an obnoxious warning.
2797 if (FT->getNumParams() < NumActualArgs) {
2798 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
2799 if (FT->isVarArg()) {
2800 // Add all of the arguments in their promoted form to the arg list.
2801 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
2802 Type *PTy = getPromotedType((*AI)->getType());
2803 if (PTy != (*AI)->getType()) {
2804 // Must promote to pass through va_arg area!
2805 Instruction::CastOps opcode =
2806 CastInst::getCastOpcode(*AI, false, PTy, false);
2807 Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
2808 } else {
2809 Args.push_back(*AI);
2810 }
2811
2812 // Add any parameter attributes.
2813 AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
2814 if (PAttrs.hasAttributes())
2815 attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1,
2816 PAttrs));
2817 }
2818 }
2819 }
2820
2821 AttributeSet FnAttrs = CallerPAL.getFnAttributes();
2822 if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex))
2823 attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs));
2824
2825 if (NewRetTy->isVoidTy())
2826 Caller->setName(""); // Void type should not have a name.
2827
2828 const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
2829 attrVec);
2830
2831 SmallVector<OperandBundleDef, 1> OpBundles;
2832 CS.getOperandBundlesAsDefs(OpBundles);
2833
2834 Instruction *NC;
2835 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
2836 NC = Builder->CreateInvoke(Callee, II->getNormalDest(), II->getUnwindDest(),
2837 Args, OpBundles);
2838 NC->takeName(II);
2839 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
2840 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
2841 } else {
2842 CallInst *CI = cast<CallInst>(Caller);
2843 NC = Builder->CreateCall(Callee, Args, OpBundles);
2844 NC->takeName(CI);
2845 if (CI->isTailCall())
2846 cast<CallInst>(NC)->setTailCall();
2847 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
2848 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
2849 }
2850
2851 // Insert a cast of the return type as necessary.
2852 Value *NV = NC;
2853 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
2854 if (!NV->getType()->isVoidTy()) {
2855 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
2856 NC->setDebugLoc(Caller->getDebugLoc());
2857
2858 // If this is an invoke instruction, we should insert it after the first
2859 // non-phi, instruction in the normal successor block.
2860 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
2861 BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
2862 InsertNewInstBefore(NC, *I);
2863 } else {
2864 // Otherwise, it's a call, just insert cast right after the call.
2865 InsertNewInstBefore(NC, *Caller);
2866 }
2867 Worklist.AddUsersToWorkList(*Caller);
2868 } else {
2869 NV = UndefValue::get(Caller->getType());
2870 }
2871 }
2872
2873 if (!Caller->use_empty())
2874 replaceInstUsesWith(*Caller, NV);
2875 else if (Caller->hasValueHandle()) {
2876 if (OldRetTy == NV->getType())
2877 ValueHandleBase::ValueIsRAUWd(Caller, NV);
2878 else
2879 // We cannot call ValueIsRAUWd with a different type, and the
2880 // actual tracked value will disappear.
2881 ValueHandleBase::ValueIsDeleted(Caller);
2882 }
2883
2884 eraseInstFromFunction(*Caller);
2885 return true;
2886 }
2887
2888 /// Turn a call to a function created by init_trampoline / adjust_trampoline
2889 /// intrinsic pair into a direct call to the underlying function.
2890 Instruction *
transformCallThroughTrampoline(CallSite CS,IntrinsicInst * Tramp)2891 InstCombiner::transformCallThroughTrampoline(CallSite CS,
2892 IntrinsicInst *Tramp) {
2893 Value *Callee = CS.getCalledValue();
2894 PointerType *PTy = cast<PointerType>(Callee->getType());
2895 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2896 const AttributeSet &Attrs = CS.getAttributes();
2897
2898 // If the call already has the 'nest' attribute somewhere then give up -
2899 // otherwise 'nest' would occur twice after splicing in the chain.
2900 if (Attrs.hasAttrSomewhere(Attribute::Nest))
2901 return nullptr;
2902
2903 assert(Tramp &&
2904 "transformCallThroughTrampoline called with incorrect CallSite.");
2905
2906 Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
2907 FunctionType *NestFTy = cast<FunctionType>(NestF->getValueType());
2908
2909 const AttributeSet &NestAttrs = NestF->getAttributes();
2910 if (!NestAttrs.isEmpty()) {
2911 unsigned NestIdx = 1;
2912 Type *NestTy = nullptr;
2913 AttributeSet NestAttr;
2914
2915 // Look for a parameter marked with the 'nest' attribute.
2916 for (FunctionType::param_iterator I = NestFTy->param_begin(),
2917 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
2918 if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
2919 // Record the parameter type and any other attributes.
2920 NestTy = *I;
2921 NestAttr = NestAttrs.getParamAttributes(NestIdx);
2922 break;
2923 }
2924
2925 if (NestTy) {
2926 Instruction *Caller = CS.getInstruction();
2927 std::vector<Value*> NewArgs;
2928 NewArgs.reserve(CS.arg_size() + 1);
2929
2930 SmallVector<AttributeSet, 8> NewAttrs;
2931 NewAttrs.reserve(Attrs.getNumSlots() + 1);
2932
2933 // Insert the nest argument into the call argument list, which may
2934 // mean appending it. Likewise for attributes.
2935
2936 // Add any result attributes.
2937 if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
2938 NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
2939 Attrs.getRetAttributes()));
2940
2941 {
2942 unsigned Idx = 1;
2943 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
2944 do {
2945 if (Idx == NestIdx) {
2946 // Add the chain argument and attributes.
2947 Value *NestVal = Tramp->getArgOperand(2);
2948 if (NestVal->getType() != NestTy)
2949 NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
2950 NewArgs.push_back(NestVal);
2951 NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
2952 NestAttr));
2953 }
2954
2955 if (I == E)
2956 break;
2957
2958 // Add the original argument and attributes.
2959 NewArgs.push_back(*I);
2960 AttributeSet Attr = Attrs.getParamAttributes(Idx);
2961 if (Attr.hasAttributes(Idx)) {
2962 AttrBuilder B(Attr, Idx);
2963 NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
2964 Idx + (Idx >= NestIdx), B));
2965 }
2966
2967 ++Idx;
2968 ++I;
2969 } while (1);
2970 }
2971
2972 // Add any function attributes.
2973 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
2974 NewAttrs.push_back(AttributeSet::get(FTy->getContext(),
2975 Attrs.getFnAttributes()));
2976
2977 // The trampoline may have been bitcast to a bogus type (FTy).
2978 // Handle this by synthesizing a new function type, equal to FTy
2979 // with the chain parameter inserted.
2980
2981 std::vector<Type*> NewTypes;
2982 NewTypes.reserve(FTy->getNumParams()+1);
2983
2984 // Insert the chain's type into the list of parameter types, which may
2985 // mean appending it.
2986 {
2987 unsigned Idx = 1;
2988 FunctionType::param_iterator I = FTy->param_begin(),
2989 E = FTy->param_end();
2990
2991 do {
2992 if (Idx == NestIdx)
2993 // Add the chain's type.
2994 NewTypes.push_back(NestTy);
2995
2996 if (I == E)
2997 break;
2998
2999 // Add the original type.
3000 NewTypes.push_back(*I);
3001
3002 ++Idx;
3003 ++I;
3004 } while (1);
3005 }
3006
3007 // Replace the trampoline call with a direct call. Let the generic
3008 // code sort out any function type mismatches.
3009 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
3010 FTy->isVarArg());
3011 Constant *NewCallee =
3012 NestF->getType() == PointerType::getUnqual(NewFTy) ?
3013 NestF : ConstantExpr::getBitCast(NestF,
3014 PointerType::getUnqual(NewFTy));
3015 const AttributeSet &NewPAL =
3016 AttributeSet::get(FTy->getContext(), NewAttrs);
3017
3018 SmallVector<OperandBundleDef, 1> OpBundles;
3019 CS.getOperandBundlesAsDefs(OpBundles);
3020
3021 Instruction *NewCaller;
3022 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
3023 NewCaller = InvokeInst::Create(NewCallee,
3024 II->getNormalDest(), II->getUnwindDest(),
3025 NewArgs, OpBundles);
3026 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
3027 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
3028 } else {
3029 NewCaller = CallInst::Create(NewCallee, NewArgs, OpBundles);
3030 if (cast<CallInst>(Caller)->isTailCall())
3031 cast<CallInst>(NewCaller)->setTailCall();
3032 cast<CallInst>(NewCaller)->
3033 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
3034 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
3035 }
3036
3037 return NewCaller;
3038 }
3039 }
3040
3041 // Replace the trampoline call with a direct call. Since there is no 'nest'
3042 // parameter, there is no need to adjust the argument list. Let the generic
3043 // code sort out any function type mismatches.
3044 Constant *NewCallee =
3045 NestF->getType() == PTy ? NestF :
3046 ConstantExpr::getBitCast(NestF, PTy);
3047 CS.setCalledFunction(NewCallee);
3048 return CS.getInstruction();
3049 }
3050