1; Test floating-point absolute. 2; 3; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z10 | FileCheck %s 4; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z13 | FileCheck %s 5 6; Test f32. 7declare float @llvm.fabs.f32(float %f) 8define float @f1(float %f) { 9; CHECK-LABEL: f1: 10; CHECK: lpdfr %f0, %f0 11; CHECK: br %r14 12 %res = call float @llvm.fabs.f32(float %f) 13 ret float %res 14} 15 16; Test f64. 17declare double @llvm.fabs.f64(double %f) 18define double @f2(double %f) { 19; CHECK-LABEL: f2: 20; CHECK: lpdfr %f0, %f0 21; CHECK: br %r14 22 %res = call double @llvm.fabs.f64(double %f) 23 ret double %res 24} 25 26; Test f128. With the loads and stores, a pure absolute would probably 27; be better implemented using an NI on the upper byte. Do some extra 28; processing so that using FPRs is unequivocally better. 29declare fp128 @llvm.fabs.f128(fp128 %f) 30define void @f3(fp128 *%ptr, fp128 *%ptr2) { 31; CHECK-LABEL: f3: 32; CHECK: lpxbr 33; CHECK: dxbr 34; CHECK: br %r14 35 %orig = load fp128 , fp128 *%ptr 36 %abs = call fp128 @llvm.fabs.f128(fp128 %orig) 37 %op2 = load fp128 , fp128 *%ptr2 38 %res = fdiv fp128 %abs, %op2 39 store fp128 %res, fp128 *%ptr 40 ret void 41} 42