• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
2; RUN: llc < %s -mtriple=x86_64-unknown-unknown | FileCheck %s
3
4; The fundamental problem: an add separated from other arithmetic by a sext can't
5; be combined with the later instructions. However, if the first add is 'nsw',
6; then we can promote the sext ahead of that add to allow optimizations.
7
8define i64 @add_nsw_consts(i32 %i) {
9; CHECK-LABEL: add_nsw_consts:
10; CHECK:       # BB#0:
11; CHECK-NEXT:    movslq %edi, %rax
12; CHECK-NEXT:    addq $12, %rax
13; CHECK-NEXT:    retq
14
15  %add = add nsw i32 %i, 5
16  %ext = sext i32 %add to i64
17  %idx = add i64 %ext, 7
18  ret i64 %idx
19}
20
21; An x86 bonus: If we promote the sext ahead of the 'add nsw',
22; we allow LEA formation and eliminate an add instruction.
23
24define i64 @add_nsw_sext_add(i32 %i, i64 %x) {
25; CHECK-LABEL: add_nsw_sext_add:
26; CHECK:       # BB#0:
27; CHECK-NEXT:    movslq %edi, %rax
28; CHECK-NEXT:    leaq 5(%rsi,%rax), %rax
29; CHECK-NEXT:    retq
30
31  %add = add nsw i32 %i, 5
32  %ext = sext i32 %add to i64
33  %idx = add i64 %x, %ext
34  ret i64 %idx
35}
36
37; Throw in a scale (left shift) because an LEA can do that too.
38; Use a negative constant (LEA displacement) to verify that's handled correctly.
39
40define i64 @add_nsw_sext_lsh_add(i32 %i, i64 %x) {
41; CHECK-LABEL: add_nsw_sext_lsh_add:
42; CHECK:       # BB#0:
43; CHECK-NEXT:    movslq %edi, %rax
44; CHECK-NEXT:    leaq -40(%rsi,%rax,8), %rax
45; CHECK-NEXT:    retq
46
47  %add = add nsw i32 %i, -5
48  %ext = sext i32 %add to i64
49  %shl = shl i64 %ext, 3
50  %idx = add i64 %x, %shl
51  ret i64 %idx
52}
53
54; Don't promote the sext if it has no users. The wider add instruction needs an
55; extra byte to encode.
56
57define i64 @add_nsw_sext(i32 %i, i64 %x) {
58; CHECK-LABEL: add_nsw_sext:
59; CHECK:       # BB#0:
60; CHECK-NEXT:    addl $5, %edi
61; CHECK-NEXT:    movslq %edi, %rax
62; CHECK-NEXT:    retq
63
64  %add = add nsw i32 %i, 5
65  %ext = sext i32 %add to i64
66  ret i64 %ext
67}
68
69; The typical use case: a 64-bit system where an 'int' is used as an index into an array.
70
71define i8* @gep8(i32 %i, i8* %x) {
72; CHECK-LABEL: gep8:
73; CHECK:       # BB#0:
74; CHECK-NEXT:    movslq %edi, %rax
75; CHECK-NEXT:    leaq 5(%rsi,%rax), %rax
76; CHECK-NEXT:    retq
77
78  %add = add nsw i32 %i, 5
79  %ext = sext i32 %add to i64
80  %idx = getelementptr i8, i8* %x, i64 %ext
81  ret i8* %idx
82}
83
84define i16* @gep16(i32 %i, i16* %x) {
85; CHECK-LABEL: gep16:
86; CHECK:       # BB#0:
87; CHECK-NEXT:    movslq %edi, %rax
88; CHECK-NEXT:    leaq -10(%rsi,%rax,2), %rax
89; CHECK-NEXT:    retq
90
91  %add = add nsw i32 %i, -5
92  %ext = sext i32 %add to i64
93  %idx = getelementptr i16, i16* %x, i64 %ext
94  ret i16* %idx
95}
96
97define i32* @gep32(i32 %i, i32* %x) {
98; CHECK-LABEL: gep32:
99; CHECK:       # BB#0:
100; CHECK-NEXT:    movslq %edi, %rax
101; CHECK-NEXT:    leaq 20(%rsi,%rax,4), %rax
102; CHECK-NEXT:    retq
103
104  %add = add nsw i32 %i, 5
105  %ext = sext i32 %add to i64
106  %idx = getelementptr i32, i32* %x, i64 %ext
107  ret i32* %idx
108}
109
110define i64* @gep64(i32 %i, i64* %x) {
111; CHECK-LABEL: gep64:
112; CHECK:       # BB#0:
113; CHECK-NEXT:    movslq %edi, %rax
114; CHECK-NEXT:    leaq -40(%rsi,%rax,8), %rax
115; CHECK-NEXT:    retq
116
117  %add = add nsw i32 %i, -5
118  %ext = sext i32 %add to i64
119  %idx = getelementptr i64, i64* %x, i64 %ext
120  ret i64* %idx
121}
122
123; LEA can't scale by 16, but the adds can still be combined into an LEA.
124
125define i128* @gep128(i32 %i, i128* %x) {
126; CHECK-LABEL: gep128:
127; CHECK:       # BB#0:
128; CHECK-NEXT:    movslq %edi, %rax
129; CHECK-NEXT:    shlq $4, %rax
130; CHECK-NEXT:    leaq 80(%rsi,%rax), %rax
131; CHECK-NEXT:    retq
132
133  %add = add nsw i32 %i, 5
134  %ext = sext i32 %add to i64
135  %idx = getelementptr i128, i128* %x, i64 %ext
136  ret i128* %idx
137}
138
139; A bigger win can be achieved when there is more than one use of the
140; sign extended value. In this case, we can eliminate sign extension
141; instructions plus use more efficient addressing modes for memory ops.
142
143define void @PR20134(i32* %a, i32 %i) {
144; CHECK-LABEL: PR20134:
145; CHECK:       # BB#0:
146; CHECK-NEXT:    movslq %esi, %rax
147; CHECK-NEXT:    movl 4(%rdi,%rax,4), %ecx
148; CHECK-NEXT:    addl 8(%rdi,%rax,4), %ecx
149; CHECK-NEXT:    movl %ecx, (%rdi,%rax,4)
150; CHECK-NEXT:    retq
151
152  %add1 = add nsw i32 %i, 1
153  %idx1 = sext i32 %add1 to i64
154  %gep1 = getelementptr i32, i32* %a, i64 %idx1
155  %load1 = load i32, i32* %gep1, align 4
156
157  %add2 = add nsw i32 %i, 2
158  %idx2 = sext i32 %add2 to i64
159  %gep2 = getelementptr i32, i32* %a, i64 %idx2
160  %load2 = load i32, i32* %gep2, align 4
161
162  %add3 = add i32 %load1, %load2
163  %idx3 = sext i32 %i to i64
164  %gep3 = getelementptr i32, i32* %a, i64 %idx3
165  store i32 %add3, i32* %gep3, align 4
166  ret void
167}
168
169