• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1; RUN: llc < %s -mattr=sse2 -mtriple=i386-unknown-linux-gnu | FileCheck %s
2
3; Source file looks something like this:
4;
5; typedef int AAA[100][100];
6;
7; void testCombineMultiplies(AAA a,int lll)
8; {
9;   int LOC = lll + 5;
10;
11;   a[LOC][LOC] = 11;
12;
13;   a[LOC][20] = 22;
14;   a[LOC+20][20] = 33;
15; }
16;
17; We want to make sure we don't generate 2 multiply instructions,
18; one for a[LOC][] and one for a[LOC+20]. visitMUL in DAGCombiner.cpp
19; should combine the instructions in such a way to avoid the extra
20; multiply.
21;
22; Output looks roughly like this:
23;
24;	movl	8(%esp), %eax
25;	movl	12(%esp), %ecx
26;	imull	$400, %ecx, %edx        # imm = 0x190
27;	leal	(%edx,%eax), %esi
28;	movl	$11, 2020(%esi,%ecx,4)
29;	movl	$22, 2080(%edx,%eax)
30;	movl	$33, 10080(%edx,%eax)
31;
32; CHECK-LABEL: testCombineMultiplies
33; CHECK: imull $400, [[ARG1:%[a-z]+]], [[MUL:%[a-z]+]] # imm = 0x190
34; CHECK-NEXT: leal ([[ARG2:%[a-z]+]],[[MUL]]), [[LEA:%[a-z]+]]
35; CHECK-NEXT: movl $11, {{[0-9]+}}([[LEA]],[[ARG1]],4)
36; CHECK-NEXT: movl $22, {{[0-9]+}}([[ARG2]],[[MUL]])
37; CHECK-NEXT: movl $33, {{[0-9]+}}([[ARG2]],[[MUL]])
38; CHECK: retl
39;
40
41; Function Attrs: nounwind
42define void @testCombineMultiplies([100 x i32]* nocapture %a, i32 %lll) {
43entry:
44  %add = add nsw i32 %lll, 5
45  %arrayidx1 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add, i32 %add
46  store i32 11, i32* %arrayidx1, align 4
47  %arrayidx3 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add, i32 20
48  store i32 22, i32* %arrayidx3, align 4
49  %add4 = add nsw i32 %lll, 25
50  %arrayidx6 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add4, i32 20
51  store i32 33, i32* %arrayidx6, align 4
52  ret void
53}
54
55
56; Test for the same optimization on vector multiplies.
57;
58; Source looks something like this:
59;
60; typedef int v4int __attribute__((__vector_size__(16)));
61;
62; v4int x;
63; v4int v2, v3;
64; void testCombineMultiplies_splat(v4int v1) {
65;   v2 = (v1 + (v4int){ 11, 11, 11, 11 }) * (v4int) {22, 22, 22, 22};
66;   v3 = (v1 + (v4int){ 33, 33, 33, 33 }) * (v4int) {22, 22, 22, 22};
67;   x = (v1 + (v4int){ 11, 11, 11, 11 });
68; }
69;
70; Output looks something like this:
71;
72; testCombineMultiplies_splat:                              # @testCombineMultiplies_splat
73; # BB#0:                                 # %entry
74; 	movdqa	.LCPI1_0, %xmm1         # xmm1 = [11,11,11,11]
75; 	paddd	%xmm0, %xmm1
76; 	movdqa	.LCPI1_1, %xmm2         # xmm2 = [22,22,22,22]
77; 	pshufd	$245, %xmm0, %xmm3      # xmm3 = xmm0[1,1,3,3]
78; 	pmuludq	%xmm2, %xmm0
79; 	pshufd	$232, %xmm0, %xmm0      # xmm0 = xmm0[0,2,2,3]
80; 	pmuludq	%xmm2, %xmm3
81; 	pshufd	$232, %xmm3, %xmm2      # xmm2 = xmm3[0,2,2,3]
82; 	punpckldq	%xmm2, %xmm0    # xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1]
83; 	movdqa	.LCPI1_2, %xmm2         # xmm2 = [242,242,242,242]
84;	paddd	%xmm0, %xmm2
85;	paddd	.LCPI1_3, %xmm0
86;	movdqa	%xmm2, v2
87;	movdqa	%xmm0, v3
88;	movdqa	%xmm1, x
89;	retl
90;
91; Again, we want to make sure we don't generate two different multiplies.
92; We should have a single multiply for "v1 * {22, 22, 22, 22}" (made up of two
93; pmuludq instructions), followed by two adds. Without this optimization, we'd
94; do 2 adds, followed by 2 multiplies (i.e. 4 pmuludq instructions).
95;
96; CHECK-LABEL: testCombineMultiplies_splat
97; CHECK:       movdqa .LCPI1_0, [[C11:%xmm[0-9]]]
98; CHECK-NEXT:  paddd %xmm0, [[C11]]
99; CHECK-NEXT:  movdqa .LCPI1_1, [[C22:%xmm[0-9]]]
100; CHECK-NEXT:  pshufd $245, %xmm0, [[T1:%xmm[0-9]]]
101; CHECK-NEXT:  pmuludq [[C22]], [[T2:%xmm[0-9]]]
102; CHECK-NEXT:  pshufd $232, [[T2]], [[T3:%xmm[0-9]]]
103; CHECK-NEXT:  pmuludq [[C22]], [[T4:%xmm[0-9]]]
104; CHECK-NEXT:  pshufd $232, [[T4]], [[T5:%xmm[0-9]]]
105; CHECK-NEXT:  punpckldq [[T5]], [[T6:%xmm[0-9]]]
106; CHECK-NEXT:  movdqa .LCPI1_2, [[C242:%xmm[0-9]]]
107; CHECK-NEXT:  paddd [[T6]], [[C242]]
108; CHECK-NEXT:  paddd .LCPI1_3, [[C726:%xmm[0-9]]]
109; CHECK-NEXT:  movdqa [[C242]], v2
110; CHECK-NEXT:  [[C726]], v3
111; CHECK-NEXT:  [[C11]], x
112; CHECK-NEXT:  retl
113
114@v2 = common global <4 x i32> zeroinitializer, align 16
115@v3 = common global <4 x i32> zeroinitializer, align 16
116@x = common global <4 x i32> zeroinitializer, align 16
117
118; Function Attrs: nounwind
119define void @testCombineMultiplies_splat(<4 x i32> %v1) {
120entry:
121  %add1 = add <4 x i32> %v1, <i32 11, i32 11, i32 11, i32 11>
122  %mul1 = mul <4 x i32> %add1, <i32 22, i32 22, i32 22, i32 22>
123  %add2 = add <4 x i32> %v1, <i32 33, i32 33, i32 33, i32 33>
124  %mul2 = mul <4 x i32> %add2, <i32 22, i32 22, i32 22, i32 22>
125  store <4 x i32> %mul1, <4 x i32>* @v2, align 16
126  store <4 x i32> %mul2, <4 x i32>* @v3, align 16
127  store <4 x i32> %add1, <4 x i32>* @x, align 16
128  ret void
129}
130
131; Finally, check the non-splatted vector case. This is very similar
132; to the previous test case, except for the vector values.
133;
134; CHECK-LABEL: testCombineMultiplies_non_splat
135; CHECK:       movdqa .LCPI2_0, [[C11:%xmm[0-9]]]
136; CHECK-NEXT:  paddd %xmm0, [[C11]]
137; CHECK-NEXT:  movdqa .LCPI2_1, [[C22:%xmm[0-9]]]
138; CHECK-NEXT:  pshufd $245, %xmm0, [[T1:%xmm[0-9]]]
139; CHECK-NEXT:  pmuludq [[C22]], [[T2:%xmm[0-9]]]
140; CHECK-NEXT:  pshufd $232, [[T2]], [[T3:%xmm[0-9]]]
141; CHECK-NEXT:  pshufd $245, [[C22]], [[T7:%xmm[0-9]]]
142; CHECK-NEXT:  pmuludq [[T1]], [[T7]]
143; CHECK-NEXT:  pshufd $232, [[T7]], [[T5:%xmm[0-9]]]
144; CHECK-NEXT:  punpckldq [[T5]], [[T6:%xmm[0-9]]]
145; CHECK-NEXT:  movdqa .LCPI2_2, [[C242:%xmm[0-9]]]
146; CHECK-NEXT:  paddd [[T6]], [[C242]]
147; CHECK-NEXT:  paddd .LCPI2_3, [[C726:%xmm[0-9]]]
148; CHECK-NEXT:  movdqa [[C242]], v2
149; CHECK-NEXT:  [[C726]], v3
150; CHECK-NEXT:  [[C11]], x
151; CHECK-NEXT:  retl
152; Function Attrs: nounwind
153define void @testCombineMultiplies_non_splat(<4 x i32> %v1) {
154entry:
155  %add1 = add <4 x i32> %v1, <i32 11, i32 22, i32 33, i32 44>
156  %mul1 = mul <4 x i32> %add1, <i32 22, i32 33, i32 44, i32 55>
157  %add2 = add <4 x i32> %v1, <i32 33, i32 44, i32 55, i32 66>
158  %mul2 = mul <4 x i32> %add2, <i32 22, i32 33, i32 44, i32 55>
159  store <4 x i32> %mul1, <4 x i32>* @v2, align 16
160  store <4 x i32> %mul2, <4 x i32>* @v3, align 16
161  store <4 x i32> %add1, <4 x i32>* @x, align 16
162  ret void
163}
164