• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- BugDriver.h - Top-Level BugPoint class -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class contains all of the shared state and information that is used by
11 // the BugPoint tool to track down errors in optimizations.  This class is the
12 // main driver class that invokes all sub-functionality.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_TOOLS_BUGPOINT_BUGDRIVER_H
17 #define LLVM_TOOLS_BUGPOINT_BUGDRIVER_H
18 
19 #include "llvm/IR/ValueMap.h"
20 #include "llvm/Transforms/Utils/ValueMapper.h"
21 #include <memory>
22 #include <string>
23 #include <vector>
24 
25 namespace llvm {
26 
27 class Value;
28 class PassInfo;
29 class Module;
30 class GlobalVariable;
31 class Function;
32 class BasicBlock;
33 class AbstractInterpreter;
34 class Instruction;
35 class LLVMContext;
36 
37 class DebugCrashes;
38 
39 class CC;
40 
41 extern bool DisableSimplifyCFG;
42 
43 /// BugpointIsInterrupted - Set to true when the user presses ctrl-c.
44 ///
45 extern bool BugpointIsInterrupted;
46 
47 class BugDriver {
48   LLVMContext& Context;
49   const char *ToolName;            // argv[0] of bugpoint
50   std::string ReferenceOutputFile; // Name of `good' output file
51   Module *Program;             // The raw program, linked together
52   std::vector<std::string> PassesToRun;
53   AbstractInterpreter *Interpreter;   // How to run the program
54   AbstractInterpreter *SafeInterpreter;  // To generate reference output, etc.
55   CC *cc;
56   bool run_find_bugs;
57   unsigned Timeout;
58   unsigned MemoryLimit;
59   bool UseValgrind;
60 
61   // FIXME: sort out public/private distinctions...
62   friend class ReducePassList;
63   friend class ReduceMisCodegenFunctions;
64 
65 public:
66   BugDriver(const char *toolname, bool find_bugs,
67             unsigned timeout, unsigned memlimit, bool use_valgrind,
68             LLVMContext& ctxt);
69   ~BugDriver();
70 
getToolName()71   const char *getToolName() const { return ToolName; }
72 
getContext()73   LLVMContext& getContext() const { return Context; }
74 
75   // Set up methods... these methods are used to copy information about the
76   // command line arguments into instance variables of BugDriver.
77   //
78   bool addSources(const std::vector<std::string> &FileNames);
addPass(std::string p)79   void addPass(std::string p) { PassesToRun.push_back(std::move(p)); }
setPassesToRun(const std::vector<std::string> & PTR)80   void setPassesToRun(const std::vector<std::string> &PTR) {
81     PassesToRun = PTR;
82   }
getPassesToRun()83   const std::vector<std::string> &getPassesToRun() const {
84     return PassesToRun;
85   }
86 
87   /// run - The top level method that is invoked after all of the instance
88   /// variables are set up from command line arguments. The \p as_child argument
89   /// indicates whether the driver is to run in parent mode or child mode.
90   ///
91   bool run(std::string &ErrMsg);
92 
93   /// debugOptimizerCrash - This method is called when some optimizer pass
94   /// crashes on input.  It attempts to prune down the testcase to something
95   /// reasonable, and figure out exactly which pass is crashing.
96   ///
97   bool debugOptimizerCrash(const std::string &ID = "passes");
98 
99   /// debugCodeGeneratorCrash - This method is called when the code generator
100   /// crashes on an input.  It attempts to reduce the input as much as possible
101   /// while still causing the code generator to crash.
102   bool debugCodeGeneratorCrash(std::string &Error);
103 
104   /// debugMiscompilation - This method is used when the passes selected are not
105   /// crashing, but the generated output is semantically different from the
106   /// input.
107   void debugMiscompilation(std::string *Error);
108 
109   /// debugPassMiscompilation - This method is called when the specified pass
110   /// miscompiles Program as input.  It tries to reduce the testcase to
111   /// something that smaller that still miscompiles the program.
112   /// ReferenceOutput contains the filename of the file containing the output we
113   /// are to match.
114   ///
115   bool debugPassMiscompilation(const PassInfo *ThePass,
116                                const std::string &ReferenceOutput);
117 
118   /// compileSharedObject - This method creates a SharedObject from a given
119   /// BitcodeFile for debugging a code generator.
120   ///
121   std::string compileSharedObject(const std::string &BitcodeFile,
122                                   std::string &Error);
123 
124   /// debugCodeGenerator - This method narrows down a module to a function or
125   /// set of functions, using the CBE as a ``safe'' code generator for other
126   /// functions that are not under consideration.
127   bool debugCodeGenerator(std::string *Error);
128 
129   /// isExecutingJIT - Returns true if bugpoint is currently testing the JIT
130   ///
131   bool isExecutingJIT();
132 
getProgram()133   Module *getProgram() const { return Program; }
134 
135   /// swapProgramIn - Set the current module to the specified module, returning
136   /// the old one.
swapProgramIn(Module * M)137   Module *swapProgramIn(Module *M) {
138     Module *OldProgram = Program;
139     Program = M;
140     return OldProgram;
141   }
142 
switchToSafeInterpreter()143   AbstractInterpreter *switchToSafeInterpreter() {
144     AbstractInterpreter *Old = Interpreter;
145     Interpreter = (AbstractInterpreter*)SafeInterpreter;
146     return Old;
147   }
148 
switchToInterpreter(AbstractInterpreter * AI)149   void switchToInterpreter(AbstractInterpreter *AI) {
150     Interpreter = AI;
151   }
152 
153   /// setNewProgram - If we reduce or update the program somehow, call this
154   /// method to update bugdriver with it.  This deletes the old module and sets
155   /// the specified one as the current program.
156   void setNewProgram(Module *M);
157 
158   /// compileProgram - Try to compile the specified module, returning false and
159   /// setting Error if an error occurs.  This is used for code generation
160   /// crash testing.
161   ///
162   void compileProgram(Module *M, std::string *Error) const;
163 
164   /// executeProgram - This method runs "Program", capturing the output of the
165   /// program to a file.  A recommended filename may be optionally specified.
166   ///
167   std::string executeProgram(const Module *Program,
168                              std::string OutputFilename,
169                              std::string Bitcode,
170                              const std::string &SharedObjects,
171                              AbstractInterpreter *AI,
172                              std::string *Error) const;
173 
174   /// executeProgramSafely - Used to create reference output with the "safe"
175   /// backend, if reference output is not provided.  If there is a problem with
176   /// the code generator (e.g., llc crashes), this will return false and set
177   /// Error.
178   ///
179   std::string executeProgramSafely(const Module *Program,
180                                    const std::string &OutputFile,
181                                    std::string *Error) const;
182 
183   /// createReferenceFile - calls compileProgram and then records the output
184   /// into ReferenceOutputFile. Returns true if reference file created, false
185   /// otherwise. Note: initializeExecutionEnvironment should be called BEFORE
186   /// this function.
187   ///
188   bool createReferenceFile(Module *M, const std::string &Filename
189                                             = "bugpoint.reference.out-%%%%%%%");
190 
191   /// diffProgram - This method executes the specified module and diffs the
192   /// output against the file specified by ReferenceOutputFile.  If the output
193   /// is different, 1 is returned.  If there is a problem with the code
194   /// generator (e.g., llc crashes), this will return -1 and set Error.
195   ///
196   bool diffProgram(const Module *Program,
197                    const std::string &BitcodeFile = "",
198                    const std::string &SharedObj = "",
199                    bool RemoveBitcode = false,
200                    std::string *Error = nullptr) const;
201 
202   /// EmitProgressBitcode - This function is used to output M to a file named
203   /// "bugpoint-ID.bc".
204   ///
205   void EmitProgressBitcode(const Module *M, const std::string &ID,
206                            bool NoFlyer = false) const;
207 
208   /// This method clones the current Program and deletes the specified
209   /// instruction from the cloned module.  It then runs a series of cleanup
210   /// passes (ADCE and SimplifyCFG) to eliminate any code which depends on the
211   /// value. The modified module is then returned.
212   ///
213   std::unique_ptr<Module> deleteInstructionFromProgram(const Instruction *I,
214                                                        unsigned Simp);
215 
216   /// This method clones the current Program and performs a series of cleanups
217   /// intended to get rid of extra cruft on the module. If the
218   /// MayModifySemantics argument is true, then the cleanups is allowed to
219   /// modify how the code behaves.
220   ///
221   std::unique_ptr<Module> performFinalCleanups(Module *M,
222                                                bool MayModifySemantics = false);
223 
224   /// Given a module, extract up to one loop from it into a new function. This
225   /// returns null if there are no extractable loops in the program or if the
226   /// loop extractor crashes.
227   std::unique_ptr<Module> extractLoop(Module *M);
228 
229   /// Extract all but the specified basic blocks into their own functions. The
230   /// only detail is that M is actually a module cloned from the one the BBs are
231   /// in, so some mapping needs to be performed. If this operation fails for
232   /// some reason (ie the implementation is buggy), this function should return
233   /// null, otherwise it returns a new Module.
234   std::unique_ptr<Module>
235   extractMappedBlocksFromModule(const std::vector<BasicBlock *> &BBs,
236                                 Module *M);
237 
238   /// Carefully run the specified set of pass on the specified/ module,
239   /// returning the transformed module on success, or a null pointer on failure.
240   std::unique_ptr<Module> runPassesOn(Module *M,
241                                       const std::vector<std::string> &Passes,
242                                       unsigned NumExtraArgs = 0,
243                                       const char *const *ExtraArgs = nullptr);
244 
245   /// runPasses - Run the specified passes on Program, outputting a bitcode
246   /// file and writting the filename into OutputFile if successful.  If the
247   /// optimizations fail for some reason (optimizer crashes), return true,
248   /// otherwise return false.  If DeleteOutput is set to true, the bitcode is
249   /// deleted on success, and the filename string is undefined.  This prints to
250   /// outs() a single line message indicating whether compilation was successful
251   /// or failed, unless Quiet is set.  ExtraArgs specifies additional arguments
252   /// to pass to the child bugpoint instance.
253   ///
254   bool runPasses(Module *Program,
255                  const std::vector<std::string> &PassesToRun,
256                  std::string &OutputFilename, bool DeleteOutput = false,
257                  bool Quiet = false, unsigned NumExtraArgs = 0,
258                  const char * const *ExtraArgs = nullptr) const;
259 
260   /// runPasses - Just like the method above, but this just returns true or
261   /// false indicating whether or not the optimizer crashed on the specified
262   /// input (true = crashed).  Does not produce any output.
263   ///
runPasses(Module * M,const std::vector<std::string> & PassesToRun)264   bool runPasses(Module *M,
265                  const std::vector<std::string> &PassesToRun) const {
266     std::string Filename;
267     return runPasses(M, PassesToRun, Filename, true);
268   }
269 
270   /// runManyPasses - Take the specified pass list and create different
271   /// combinations of passes to compile the program with. Compile the program with
272   /// each set and mark test to see if it compiled correctly. If the passes
273   /// compiled correctly output nothing and rearrange the passes into a new order.
274   /// If the passes did not compile correctly, output the command required to
275   /// recreate the failure. This returns true if a compiler error is found.
276   ///
277   bool runManyPasses(const std::vector<std::string> &AllPasses,
278                      std::string &ErrMsg);
279 
280   /// writeProgramToFile - This writes the current "Program" to the named
281   /// bitcode file.  If an error occurs, true is returned.
282   ///
283   bool writeProgramToFile(const std::string &Filename, const Module *M) const;
284   bool writeProgramToFile(const std::string &Filename, int FD,
285                           const Module *M) const;
286 
287 private:
288   /// initializeExecutionEnvironment - This method is used to set up the
289   /// environment for executing LLVM programs.
290   ///
291   bool initializeExecutionEnvironment();
292 };
293 
294 ///  Given a bitcode or assembly input filename, parse and return it, or return
295 ///  null if not possible.
296 ///
297 std::unique_ptr<Module> parseInputFile(StringRef InputFilename,
298                                        LLVMContext &ctxt);
299 
300 /// getPassesString - Turn a list of passes into a string which indicates the
301 /// command line options that must be passed to add the passes.
302 ///
303 std::string getPassesString(const std::vector<std::string> &Passes);
304 
305 /// PrintFunctionList - prints out list of problematic functions
306 ///
307 void PrintFunctionList(const std::vector<Function*> &Funcs);
308 
309 /// PrintGlobalVariableList - prints out list of problematic global variables
310 ///
311 void PrintGlobalVariableList(const std::vector<GlobalVariable*> &GVs);
312 
313 // DeleteGlobalInitializer - "Remove" the global variable by deleting its
314 // initializer, making it external.
315 //
316 void DeleteGlobalInitializer(GlobalVariable *GV);
317 
318 // DeleteFunctionBody - "Remove" the function by deleting all of it's basic
319 // blocks, making it external.
320 //
321 void DeleteFunctionBody(Function *F);
322 
323 /// Given a module and a list of functions in the module, split the functions
324 /// OUT of the specified module, and place them in the new module.
325 std::unique_ptr<Module>
326 SplitFunctionsOutOfModule(Module *M, const std::vector<Function *> &F,
327                           ValueToValueMapTy &VMap);
328 
329 } // End llvm namespace
330 
331 #endif
332