1 //===- llvm/unittest/Linker/LinkModulesTest.cpp - IRBuilder tests ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/AsmParser/Parser.h"
12 #include "llvm/IR/BasicBlock.h"
13 #include "llvm/IR/DataLayout.h"
14 #include "llvm/IR/Function.h"
15 #include "llvm/IR/IRBuilder.h"
16 #include "llvm/IR/Module.h"
17 #include "llvm/Linker/Linker.h"
18 #include "llvm/Support/SourceMgr.h"
19 #include "llvm-c/Core.h"
20 #include "llvm-c/Linker.h"
21 #include "gtest/gtest.h"
22
23 using namespace llvm;
24
25 namespace {
26
27 class LinkModuleTest : public testing::Test {
28 protected:
SetUp()29 void SetUp() override {
30 M.reset(new Module("MyModule", Ctx));
31 FunctionType *FTy = FunctionType::get(
32 Type::getInt8PtrTy(Ctx), Type::getInt32Ty(Ctx), false /*=isVarArg*/);
33 F = Function::Create(FTy, Function::ExternalLinkage, "ba_func", M.get());
34 F->setCallingConv(CallingConv::C);
35
36 EntryBB = BasicBlock::Create(Ctx, "entry", F);
37 SwitchCase1BB = BasicBlock::Create(Ctx, "switch.case.1", F);
38 SwitchCase2BB = BasicBlock::Create(Ctx, "switch.case.2", F);
39 ExitBB = BasicBlock::Create(Ctx, "exit", F);
40
41 AT = ArrayType::get(Type::getInt8PtrTy(Ctx), 3);
42
43 GV = new GlobalVariable(*M.get(), AT, false /*=isConstant*/,
44 GlobalValue::InternalLinkage, nullptr,"switch.bas");
45
46 // Global Initializer
47 std::vector<Constant *> Init;
48 Constant *SwitchCase1BA = BlockAddress::get(SwitchCase1BB);
49 Init.push_back(SwitchCase1BA);
50
51 Constant *SwitchCase2BA = BlockAddress::get(SwitchCase2BB);
52 Init.push_back(SwitchCase2BA);
53
54 ConstantInt *One = ConstantInt::get(Type::getInt32Ty(Ctx), 1);
55 Constant *OnePtr = ConstantExpr::getCast(Instruction::IntToPtr, One,
56 Type::getInt8PtrTy(Ctx));
57 Init.push_back(OnePtr);
58
59 GV->setInitializer(ConstantArray::get(AT, Init));
60 }
61
TearDown()62 void TearDown() override { M.reset(); }
63
64 LLVMContext Ctx;
65 std::unique_ptr<Module> M;
66 Function *F;
67 ArrayType *AT;
68 GlobalVariable *GV;
69 BasicBlock *EntryBB;
70 BasicBlock *SwitchCase1BB;
71 BasicBlock *SwitchCase2BB;
72 BasicBlock *ExitBB;
73 };
74
expectNoDiags(const DiagnosticInfo & DI,void * C)75 static void expectNoDiags(const DiagnosticInfo &DI, void *C) {
76 EXPECT_TRUE(false);
77 }
78
TEST_F(LinkModuleTest,BlockAddress)79 TEST_F(LinkModuleTest, BlockAddress) {
80 IRBuilder<> Builder(EntryBB);
81
82 std::vector<Value *> GEPIndices;
83 GEPIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ctx), 0));
84 GEPIndices.push_back(&*F->arg_begin());
85
86 Value *GEP = Builder.CreateGEP(AT, GV, GEPIndices, "switch.gep");
87 Value *Load = Builder.CreateLoad(GEP, "switch.load");
88
89 Builder.CreateRet(Load);
90
91 Builder.SetInsertPoint(SwitchCase1BB);
92 Builder.CreateBr(ExitBB);
93
94 Builder.SetInsertPoint(SwitchCase2BB);
95 Builder.CreateBr(ExitBB);
96
97 Builder.SetInsertPoint(ExitBB);
98 Builder.CreateRet(ConstantPointerNull::get(Type::getInt8PtrTy(Ctx)));
99
100 Module *LinkedModule = new Module("MyModuleLinked", Ctx);
101 Ctx.setDiagnosticHandler(expectNoDiags);
102 Linker::linkModules(*LinkedModule, std::move(M));
103
104 // Check that the global "@switch.bas" is well-formed.
105 const GlobalVariable *LinkedGV = LinkedModule->getNamedGlobal("switch.bas");
106 const Constant *Init = LinkedGV->getInitializer();
107
108 // @switch.bas = internal global [3 x i8*]
109 // [i8* blockaddress(@ba_func, %switch.case.1),
110 // i8* blockaddress(@ba_func, %switch.case.2),
111 // i8* inttoptr (i32 1 to i8*)]
112
113 ArrayType *AT = ArrayType::get(Type::getInt8PtrTy(Ctx), 3);
114 EXPECT_EQ(AT, Init->getType());
115
116 Value *Elem = Init->getOperand(0);
117 ASSERT_TRUE(isa<BlockAddress>(Elem));
118 EXPECT_EQ(cast<BlockAddress>(Elem)->getFunction(),
119 LinkedModule->getFunction("ba_func"));
120 EXPECT_EQ(cast<BlockAddress>(Elem)->getBasicBlock()->getParent(),
121 LinkedModule->getFunction("ba_func"));
122
123 Elem = Init->getOperand(1);
124 ASSERT_TRUE(isa<BlockAddress>(Elem));
125 EXPECT_EQ(cast<BlockAddress>(Elem)->getFunction(),
126 LinkedModule->getFunction("ba_func"));
127 EXPECT_EQ(cast<BlockAddress>(Elem)->getBasicBlock()->getParent(),
128 LinkedModule->getFunction("ba_func"));
129
130 delete LinkedModule;
131 }
132
getExternal(LLVMContext & Ctx,StringRef FuncName)133 static Module *getExternal(LLVMContext &Ctx, StringRef FuncName) {
134 // Create a module with an empty externally-linked function
135 Module *M = new Module("ExternalModule", Ctx);
136 FunctionType *FTy = FunctionType::get(
137 Type::getVoidTy(Ctx), Type::getInt8PtrTy(Ctx), false /*=isVarArgs*/);
138
139 Function *F =
140 Function::Create(FTy, Function::ExternalLinkage, FuncName, M);
141 F->setCallingConv(CallingConv::C);
142
143 BasicBlock *BB = BasicBlock::Create(Ctx, "", F);
144 IRBuilder<> Builder(BB);
145 Builder.CreateRetVoid();
146 return M;
147 }
148
getInternal(LLVMContext & Ctx)149 static Module *getInternal(LLVMContext &Ctx) {
150 Module *InternalM = new Module("InternalModule", Ctx);
151 FunctionType *FTy = FunctionType::get(
152 Type::getVoidTy(Ctx), Type::getInt8PtrTy(Ctx), false /*=isVarArgs*/);
153
154 Function *F =
155 Function::Create(FTy, Function::InternalLinkage, "bar", InternalM);
156 F->setCallingConv(CallingConv::C);
157
158 BasicBlock *BB = BasicBlock::Create(Ctx, "", F);
159 IRBuilder<> Builder(BB);
160 Builder.CreateRetVoid();
161
162 StructType *STy = StructType::create(Ctx, PointerType::get(FTy, 0));
163
164 GlobalVariable *GV =
165 new GlobalVariable(*InternalM, STy, false /*=isConstant*/,
166 GlobalValue::InternalLinkage, nullptr, "g");
167
168 GV->setInitializer(ConstantStruct::get(STy, F));
169 return InternalM;
170 }
171
TEST_F(LinkModuleTest,EmptyModule)172 TEST_F(LinkModuleTest, EmptyModule) {
173 std::unique_ptr<Module> InternalM(getInternal(Ctx));
174 std::unique_ptr<Module> EmptyM(new Module("EmptyModule1", Ctx));
175 Ctx.setDiagnosticHandler(expectNoDiags);
176 Linker::linkModules(*EmptyM, std::move(InternalM));
177 }
178
TEST_F(LinkModuleTest,EmptyModule2)179 TEST_F(LinkModuleTest, EmptyModule2) {
180 std::unique_ptr<Module> InternalM(getInternal(Ctx));
181 std::unique_ptr<Module> EmptyM(new Module("EmptyModule1", Ctx));
182 Ctx.setDiagnosticHandler(expectNoDiags);
183 Linker::linkModules(*InternalM, std::move(EmptyM));
184 }
185
TEST_F(LinkModuleTest,TypeMerge)186 TEST_F(LinkModuleTest, TypeMerge) {
187 LLVMContext C;
188 SMDiagnostic Err;
189
190 const char *M1Str = "%t = type {i32}\n"
191 "@t1 = weak global %t zeroinitializer\n";
192 std::unique_ptr<Module> M1 = parseAssemblyString(M1Str, Err, C);
193
194 const char *M2Str = "%t = type {i32}\n"
195 "@t2 = weak global %t zeroinitializer\n";
196 std::unique_ptr<Module> M2 = parseAssemblyString(M2Str, Err, C);
197
198 Ctx.setDiagnosticHandler(expectNoDiags);
199 Linker::linkModules(*M1, std::move(M2));
200
201 EXPECT_EQ(M1->getNamedGlobal("t1")->getType(),
202 M1->getNamedGlobal("t2")->getType());
203 }
204
TEST_F(LinkModuleTest,NewCAPISuccess)205 TEST_F(LinkModuleTest, NewCAPISuccess) {
206 std::unique_ptr<Module> DestM(getExternal(Ctx, "foo"));
207 std::unique_ptr<Module> SourceM(getExternal(Ctx, "bar"));
208 LLVMBool Result =
209 LLVMLinkModules2(wrap(DestM.get()), wrap(SourceM.release()));
210 EXPECT_EQ(0, Result);
211 // "bar" is present in destination module
212 EXPECT_NE(nullptr, DestM->getFunction("bar"));
213 }
214
diagnosticHandler(LLVMDiagnosticInfoRef DI,void * C)215 static void diagnosticHandler(LLVMDiagnosticInfoRef DI, void *C) {
216 auto *Err = reinterpret_cast<std::string *>(C);
217 char *CErr = LLVMGetDiagInfoDescription(DI);
218 *Err = CErr;
219 LLVMDisposeMessage(CErr);
220 }
221
TEST_F(LinkModuleTest,NewCAPIFailure)222 TEST_F(LinkModuleTest, NewCAPIFailure) {
223 // Symbol clash between two modules
224 LLVMContext Ctx;
225 std::string Err;
226 LLVMContextSetDiagnosticHandler(wrap(&Ctx), diagnosticHandler, &Err);
227
228 std::unique_ptr<Module> DestM(getExternal(Ctx, "foo"));
229 std::unique_ptr<Module> SourceM(getExternal(Ctx, "foo"));
230 LLVMBool Result =
231 LLVMLinkModules2(wrap(DestM.get()), wrap(SourceM.release()));
232 EXPECT_EQ(1, Result);
233 EXPECT_EQ("Linking globals named 'foo': symbol multiply defined!", Err);
234 }
235
TEST_F(LinkModuleTest,MoveDistinctMDs)236 TEST_F(LinkModuleTest, MoveDistinctMDs) {
237 LLVMContext C;
238 SMDiagnostic Err;
239
240 const char *SrcStr = "define void @foo() !attach !0 {\n"
241 "entry:\n"
242 " call void @llvm.md(metadata !1)\n"
243 " ret void, !attach !2\n"
244 "}\n"
245 "declare void @llvm.md(metadata)\n"
246 "!named = !{!3, !4}\n"
247 "!0 = distinct !{}\n"
248 "!1 = distinct !{}\n"
249 "!2 = distinct !{}\n"
250 "!3 = distinct !{}\n"
251 "!4 = !{!3}\n";
252
253 std::unique_ptr<Module> Src = parseAssemblyString(SrcStr, Err, C);
254 assert(Src);
255 ASSERT_TRUE(Src.get());
256
257 // Get the addresses of the Metadata before merging.
258 Function *F = &*Src->begin();
259 ASSERT_EQ("foo", F->getName());
260 BasicBlock *BB = &F->getEntryBlock();
261 auto *CI = cast<CallInst>(&BB->front());
262 auto *RI = cast<ReturnInst>(BB->getTerminator());
263 NamedMDNode *NMD = &*Src->named_metadata_begin();
264
265 MDNode *M0 = F->getMetadata("attach");
266 MDNode *M1 =
267 cast<MDNode>(cast<MetadataAsValue>(CI->getArgOperand(0))->getMetadata());
268 MDNode *M2 = RI->getMetadata("attach");
269 MDNode *M3 = NMD->getOperand(0);
270 MDNode *M4 = NMD->getOperand(1);
271
272 // Confirm a few things about the IR.
273 EXPECT_TRUE(M0->isDistinct());
274 EXPECT_TRUE(M1->isDistinct());
275 EXPECT_TRUE(M2->isDistinct());
276 EXPECT_TRUE(M3->isDistinct());
277 EXPECT_TRUE(M4->isUniqued());
278 EXPECT_EQ(M3, M4->getOperand(0));
279
280 // Link into destination module.
281 auto Dst = llvm::make_unique<Module>("Linked", C);
282 ASSERT_TRUE(Dst.get());
283 Ctx.setDiagnosticHandler(expectNoDiags);
284 Linker::linkModules(*Dst, std::move(Src));
285
286 // Check that distinct metadata was moved, not cloned. Even !4, the uniqued
287 // node, should effectively be moved, since its only operand hasn't changed.
288 F = &*Dst->begin();
289 BB = &F->getEntryBlock();
290 CI = cast<CallInst>(&BB->front());
291 RI = cast<ReturnInst>(BB->getTerminator());
292 NMD = &*Dst->named_metadata_begin();
293
294 EXPECT_EQ(M0, F->getMetadata("attach"));
295 EXPECT_EQ(M1, cast<MetadataAsValue>(CI->getArgOperand(0))->getMetadata());
296 EXPECT_EQ(M2, RI->getMetadata("attach"));
297 EXPECT_EQ(M3, NMD->getOperand(0));
298 EXPECT_EQ(M4, NMD->getOperand(1));
299
300 // Confirm a few things about the IR. This shouldn't have changed.
301 EXPECT_TRUE(M0->isDistinct());
302 EXPECT_TRUE(M1->isDistinct());
303 EXPECT_TRUE(M2->isDistinct());
304 EXPECT_TRUE(M3->isDistinct());
305 EXPECT_TRUE(M4->isUniqued());
306 EXPECT_EQ(M3, M4->getOperand(0));
307 }
308
TEST_F(LinkModuleTest,RemangleIntrinsics)309 TEST_F(LinkModuleTest, RemangleIntrinsics) {
310 LLVMContext C;
311 SMDiagnostic Err;
312
313 // We load two modules inside the same context C. In both modules there is a
314 // "struct.rtx_def" type. In the module loaded the second (Bar) this type will
315 // be renamed to "struct.rtx_def.0". Check that the intrinsics which have this
316 // type in the signature are properly remangled.
317 const char *FooStr =
318 "%struct.rtx_def = type { i16 }\n"
319 "define void @foo(%struct.rtx_def* %a, i8 %b, i32 %c) {\n"
320 " call void @llvm.memset.p0struct.rtx_def.i32(%struct.rtx_def* %a, i8 %b, i32 %c, i32 4, i1 true)\n"
321 " ret void\n"
322 "}\n"
323 "declare void @llvm.memset.p0struct.rtx_def.i32(%struct.rtx_def*, i8, i32, i32, i1)\n";
324
325 const char *BarStr =
326 "%struct.rtx_def = type { i16 }\n"
327 "define void @bar(%struct.rtx_def* %a, i8 %b, i32 %c) {\n"
328 " call void @llvm.memset.p0struct.rtx_def.i32(%struct.rtx_def* %a, i8 %b, i32 %c, i32 4, i1 true)\n"
329 " ret void\n"
330 "}\n"
331 "declare void @llvm.memset.p0struct.rtx_def.i32(%struct.rtx_def*, i8, i32, i32, i1)\n";
332
333 std::unique_ptr<Module> Foo = parseAssemblyString(FooStr, Err, C);
334 assert(Foo);
335 ASSERT_TRUE(Foo.get());
336 // Foo is loaded first, so the type and the intrinsic have theis original
337 // names.
338 ASSERT_TRUE(Foo->getFunction("llvm.memset.p0struct.rtx_def.i32"));
339 ASSERT_FALSE(Foo->getFunction("llvm.memset.p0struct.rtx_def.0.i32"));
340
341 std::unique_ptr<Module> Bar = parseAssemblyString(BarStr, Err, C);
342 assert(Bar);
343 ASSERT_TRUE(Bar.get());
344 // Bar is loaded after Foo, so the type is renamed to struct.rtx_def.0. Check
345 // that the intrinsic is also renamed.
346 ASSERT_FALSE(Bar->getFunction("llvm.memset.p0struct.rtx_def.i32"));
347 ASSERT_TRUE(Bar->getFunction("llvm.memset.p0struct.rtx_def.0.i32"));
348
349 // Link two modules together.
350 auto Dst = llvm::make_unique<Module>("Linked", C);
351 ASSERT_TRUE(Dst.get());
352 Ctx.setDiagnosticHandler(expectNoDiags);
353 bool Failed = Linker::linkModules(*Foo, std::move(Bar));
354 ASSERT_FALSE(Failed);
355
356 // "struct.rtx_def" from Foo and "struct.rtx_def.0" from Bar are isomorphic
357 // types, so they must be uniquified by linker. Check that they use the same
358 // intrinsic definition.
359 Function *F = Foo->getFunction("llvm.memset.p0struct.rtx_def.i32");
360 ASSERT_EQ(F->getNumUses(), (unsigned)2);
361 }
362
363 } // end anonymous namespace
364