• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31 //
32 // The Google C++ Testing Framework (Google Test)
33 //
34 // This header file declares functions and macros used internally by
35 // Google Test.  They are subject to change without notice.
36 
37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39 
40 #include "gtest/internal/gtest-port.h"
41 
42 #if GTEST_OS_LINUX
43 # include <stdlib.h>
44 # include <sys/types.h>
45 # include <sys/wait.h>
46 # include <unistd.h>
47 #endif  // GTEST_OS_LINUX
48 
49 #include <ctype.h>
50 #include <string.h>
51 #include <iomanip>
52 #include <limits>
53 #include <set>
54 
55 #include "gtest/internal/gtest-string.h"
56 #include "gtest/internal/gtest-filepath.h"
57 #include "gtest/internal/gtest-type-util.h"
58 
59 #if !GTEST_NO_LLVM_RAW_OSTREAM
60 #include "llvm/Support/raw_os_ostream.h"
61 #endif
62 
63 // Due to C++ preprocessor weirdness, we need double indirection to
64 // concatenate two tokens when one of them is __LINE__.  Writing
65 //
66 //   foo ## __LINE__
67 //
68 // will result in the token foo__LINE__, instead of foo followed by
69 // the current line number.  For more details, see
70 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
71 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
72 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
73 
74 // Google Test defines the testing::Message class to allow construction of
75 // test messages via the << operator.  The idea is that anything
76 // streamable to std::ostream can be streamed to a testing::Message.
77 // This allows a user to use his own types in Google Test assertions by
78 // overloading the << operator.
79 //
80 // util/gtl/stl_logging-inl.h overloads << for STL containers.  These
81 // overloads cannot be defined in the std namespace, as that will be
82 // undefined behavior.  Therefore, they are defined in the global
83 // namespace instead.
84 //
85 // C++'s symbol lookup rule (i.e. Koenig lookup) says that these
86 // overloads are visible in either the std namespace or the global
87 // namespace, but not other namespaces, including the testing
88 // namespace which Google Test's Message class is in.
89 //
90 // To allow STL containers (and other types that has a << operator
91 // defined in the global namespace) to be used in Google Test assertions,
92 // testing::Message must access the custom << operator from the global
93 // namespace.  Hence this helper function.
94 //
95 // Note: Jeffrey Yasskin suggested an alternative fix by "using
96 // ::operator<<;" in the definition of Message's operator<<.  That fix
97 // doesn't require a helper function, but unfortunately doesn't
98 // compile with MSVC.
99 
100 // LLVM INTERNAL CHANGE: To allow operator<< to work with both
101 // std::ostreams and LLVM's raw_ostreams, we define a special
102 // std::ostream with an implicit conversion to raw_ostream& and stream
103 // to that.  This causes the compiler to prefer std::ostream overloads
104 // but still find raw_ostream& overloads.
105 #if !GTEST_NO_LLVM_RAW_OSTREAM
106 namespace llvm {
107 class convertible_fwd_ostream : public std::ostream {
108   virtual void anchor();
109   raw_os_ostream ros_;
110 
111 public:
convertible_fwd_ostream(std::ostream & os)112   convertible_fwd_ostream(std::ostream& os)
113     : std::ostream(os.rdbuf()), ros_(*this) {}
114   operator raw_ostream&() { return ros_; }
115 };
116 }
117 template <typename T>
GTestStreamToHelper(std::ostream * os,const T & val)118 inline void GTestStreamToHelper(std::ostream* os, const T& val) {
119   llvm::convertible_fwd_ostream cos(*os);
120   cos << val;
121 }
122 #else
123 template <typename T>
GTestStreamToHelper(std::ostream * os,const T & val)124 inline void GTestStreamToHelper(std::ostream* os, const T& val) {
125   *os << val;
126 }
127 #endif
128 
129 class ProtocolMessage;
130 namespace proto2 { class Message; }
131 
132 namespace testing {
133 
134 // Forward declarations.
135 
136 class AssertionResult;                 // Result of an assertion.
137 class Message;                         // Represents a failure message.
138 class Test;                            // Represents a test.
139 class TestInfo;                        // Information about a test.
140 class TestPartResult;                  // Result of a test part.
141 class UnitTest;                        // A collection of test cases.
142 
143 template <typename T>
144 ::std::string PrintToString(const T& value);
145 
146 namespace internal {
147 
148 struct TraceInfo;                      // Information about a trace point.
149 class ScopedTrace;                     // Implements scoped trace.
150 class TestInfoImpl;                    // Opaque implementation of TestInfo
151 class UnitTestImpl;                    // Opaque implementation of UnitTest
152 
153 // How many times InitGoogleTest() has been called.
154 extern int g_init_gtest_count;
155 
156 // The text used in failure messages to indicate the start of the
157 // stack trace.
158 GTEST_API_ extern const char kStackTraceMarker[];
159 
160 // A secret type that Google Test users don't know about.  It has no
161 // definition on purpose.  Therefore it's impossible to create a
162 // Secret object, which is what we want.
163 class Secret;
164 
165 // Two overloaded helpers for checking at compile time whether an
166 // expression is a null pointer literal (i.e. NULL or any 0-valued
167 // compile-time integral constant).  Their return values have
168 // different sizes, so we can use sizeof() to test which version is
169 // picked by the compiler.  These helpers have no implementations, as
170 // we only need their signatures.
171 //
172 // Given IsNullLiteralHelper(x), the compiler will pick the first
173 // version if x can be implicitly converted to Secret*, and pick the
174 // second version otherwise.  Since Secret is a secret and incomplete
175 // type, the only expression a user can write that has type Secret* is
176 // a null pointer literal.  Therefore, we know that x is a null
177 // pointer literal if and only if the first version is picked by the
178 // compiler.
179 char IsNullLiteralHelper(Secret* p);
180 char (&IsNullLiteralHelper(...))[2];  // NOLINT
181 
182 // A compile-time bool constant that is true if and only if x is a
183 // null pointer literal (i.e. NULL or any 0-valued compile-time
184 // integral constant).
185 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
186 // We lose support for NULL detection where the compiler doesn't like
187 // passing non-POD classes through ellipsis (...).
188 # define GTEST_IS_NULL_LITERAL_(x) false
189 #else
190 # define GTEST_IS_NULL_LITERAL_(x) \
191     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
192 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
193 
194 // Appends the user-supplied message to the Google-Test-generated message.
195 GTEST_API_ String AppendUserMessage(const String& gtest_msg,
196                                     const Message& user_msg);
197 
198 // A helper class for creating scoped traces in user programs.
199 class GTEST_API_ ScopedTrace {
200  public:
201   // The c'tor pushes the given source file location and message onto
202   // a trace stack maintained by Google Test.
203   ScopedTrace(const char* file, int line, const Message& message);
204 
205   // The d'tor pops the info pushed by the c'tor.
206   //
207   // Note that the d'tor is not virtual in order to be efficient.
208   // Don't inherit from ScopedTrace!
209   ~ScopedTrace();
210 
211  private:
212   GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
213 } GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
214                             // c'tor and d'tor.  Therefore it doesn't
215                             // need to be used otherwise.
216 
217 // Converts a streamable value to a String.  A NULL pointer is
218 // converted to "(null)".  When the input value is a ::string,
219 // ::std::string, ::wstring, or ::std::wstring object, each NUL
220 // character in it is replaced with "\\0".
221 // Declared here but defined in gtest.h, so that it has access
222 // to the definition of the Message class, required by the ARM
223 // compiler.
224 template <typename T>
225 String StreamableToString(const T& streamable);
226 
227 // The Symbian compiler has a bug that prevents it from selecting the
228 // correct overload of FormatForComparisonFailureMessage (see below)
229 // unless we pass the first argument by reference.  If we do that,
230 // however, Visual Age C++ 10.1 generates a compiler error.  Therefore
231 // we only apply the work-around for Symbian.
232 #if defined(__SYMBIAN32__)
233 # define GTEST_CREF_WORKAROUND_ const&
234 #else
235 # define GTEST_CREF_WORKAROUND_
236 #endif
237 
238 // When this operand is a const char* or char*, if the other operand
239 // is a ::std::string or ::string, we print this operand as a C string
240 // rather than a pointer (we do the same for wide strings); otherwise
241 // we print it as a pointer to be safe.
242 
243 // This internal macro is used to avoid duplicated code.
244 #define GTEST_FORMAT_IMPL_(operand2_type, operand1_printer)\
245 inline String FormatForComparisonFailureMessage(\
246     operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
247     const operand2_type& /*operand2*/) {\
248   return operand1_printer(str);\
249 }\
250 inline String FormatForComparisonFailureMessage(\
251     const operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
252     const operand2_type& /*operand2*/) {\
253   return operand1_printer(str);\
254 }
255 
256 GTEST_FORMAT_IMPL_(::std::string, String::ShowCStringQuoted)
257 #if GTEST_HAS_STD_WSTRING
258 GTEST_FORMAT_IMPL_(::std::wstring, String::ShowWideCStringQuoted)
259 #endif  // GTEST_HAS_STD_WSTRING
260 
261 #if GTEST_HAS_GLOBAL_STRING
262 GTEST_FORMAT_IMPL_(::string, String::ShowCStringQuoted)
263 #endif  // GTEST_HAS_GLOBAL_STRING
264 #if GTEST_HAS_GLOBAL_WSTRING
265 GTEST_FORMAT_IMPL_(::wstring, String::ShowWideCStringQuoted)
266 #endif  // GTEST_HAS_GLOBAL_WSTRING
267 
268 #undef GTEST_FORMAT_IMPL_
269 
270 // The next four overloads handle the case where the operand being
271 // printed is a char/wchar_t pointer and the other operand is not a
272 // string/wstring object.  In such cases, we just print the operand as
273 // a pointer to be safe.
274 #define GTEST_FORMAT_CHAR_PTR_IMPL_(CharType)                       \
275   template <typename T>                                             \
276   String FormatForComparisonFailureMessage(CharType* GTEST_CREF_WORKAROUND_ p, \
277                                            const T&) { \
278     return PrintToString(static_cast<const void*>(p));              \
279   }
280 
281 GTEST_FORMAT_CHAR_PTR_IMPL_(char)
282 GTEST_FORMAT_CHAR_PTR_IMPL_(const char)
283 GTEST_FORMAT_CHAR_PTR_IMPL_(wchar_t)
284 GTEST_FORMAT_CHAR_PTR_IMPL_(const wchar_t)
285 
286 #undef GTEST_FORMAT_CHAR_PTR_IMPL_
287 
288 // Constructs and returns the message for an equality assertion
289 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
290 //
291 // The first four parameters are the expressions used in the assertion
292 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
293 // where foo is 5 and bar is 6, we have:
294 //
295 //   expected_expression: "foo"
296 //   actual_expression:   "bar"
297 //   expected_value:      "5"
298 //   actual_value:        "6"
299 //
300 // The ignoring_case parameter is true iff the assertion is a
301 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
302 // be inserted into the message.
303 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
304                                      const char* actual_expression,
305                                      const String& expected_value,
306                                      const String& actual_value,
307                                      bool ignoring_case);
308 
309 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
310 GTEST_API_ String GetBoolAssertionFailureMessage(
311     const AssertionResult& assertion_result,
312     const char* expression_text,
313     const char* actual_predicate_value,
314     const char* expected_predicate_value);
315 
316 // This template class represents an IEEE floating-point number
317 // (either single-precision or double-precision, depending on the
318 // template parameters).
319 //
320 // The purpose of this class is to do more sophisticated number
321 // comparison.  (Due to round-off error, etc, it's very unlikely that
322 // two floating-points will be equal exactly.  Hence a naive
323 // comparison by the == operation often doesn't work.)
324 //
325 // Format of IEEE floating-point:
326 //
327 //   The most-significant bit being the leftmost, an IEEE
328 //   floating-point looks like
329 //
330 //     sign_bit exponent_bits fraction_bits
331 //
332 //   Here, sign_bit is a single bit that designates the sign of the
333 //   number.
334 //
335 //   For float, there are 8 exponent bits and 23 fraction bits.
336 //
337 //   For double, there are 11 exponent bits and 52 fraction bits.
338 //
339 //   More details can be found at
340 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
341 //
342 // Template parameter:
343 //
344 //   RawType: the raw floating-point type (either float or double)
345 template <typename RawType>
346 class FloatingPoint {
347  public:
348   // Defines the unsigned integer type that has the same size as the
349   // floating point number.
350   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
351 
352   // Constants.
353 
354   // # of bits in a number.
355   static const size_t kBitCount = 8*sizeof(RawType);
356 
357   // # of fraction bits in a number.
358   static const size_t kFractionBitCount =
359     std::numeric_limits<RawType>::digits - 1;
360 
361   // # of exponent bits in a number.
362   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
363 
364   // The mask for the sign bit.
365   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
366 
367   // The mask for the fraction bits.
368   static const Bits kFractionBitMask =
369     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
370 
371   // The mask for the exponent bits.
372   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
373 
374   // How many ULP's (Units in the Last Place) we want to tolerate when
375   // comparing two numbers.  The larger the value, the more error we
376   // allow.  A 0 value means that two numbers must be exactly the same
377   // to be considered equal.
378   //
379   // The maximum error of a single floating-point operation is 0.5
380   // units in the last place.  On Intel CPU's, all floating-point
381   // calculations are done with 80-bit precision, while double has 64
382   // bits.  Therefore, 4 should be enough for ordinary use.
383   //
384   // See the following article for more details on ULP:
385   // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.
386   static const size_t kMaxUlps = 4;
387 
388   // Constructs a FloatingPoint from a raw floating-point number.
389   //
390   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
391   // around may change its bits, although the new value is guaranteed
392   // to be also a NAN.  Therefore, don't expect this constructor to
393   // preserve the bits in x when x is a NAN.
FloatingPoint(const RawType & x)394   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
395 
396   // Static methods
397 
398   // Reinterprets a bit pattern as a floating-point number.
399   //
400   // This function is needed to test the AlmostEquals() method.
ReinterpretBits(const Bits bits)401   static RawType ReinterpretBits(const Bits bits) {
402     FloatingPoint fp(0);
403     fp.u_.bits_ = bits;
404     return fp.u_.value_;
405   }
406 
407   // Returns the floating-point number that represent positive infinity.
Infinity()408   static RawType Infinity() {
409     return ReinterpretBits(kExponentBitMask);
410   }
411 
412   // Non-static methods
413 
414   // Returns the bits that represents this number.
bits()415   const Bits &bits() const { return u_.bits_; }
416 
417   // Returns the exponent bits of this number.
exponent_bits()418   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
419 
420   // Returns the fraction bits of this number.
fraction_bits()421   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
422 
423   // Returns the sign bit of this number.
sign_bit()424   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
425 
426   // Returns true iff this is NAN (not a number).
is_nan()427   bool is_nan() const {
428     // It's a NAN if the exponent bits are all ones and the fraction
429     // bits are not entirely zeros.
430     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
431   }
432 
433   // Returns true iff this number is at most kMaxUlps ULP's away from
434   // rhs.  In particular, this function:
435   //
436   //   - returns false if either number is (or both are) NAN.
437   //   - treats really large numbers as almost equal to infinity.
438   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
AlmostEquals(const FloatingPoint & rhs)439   bool AlmostEquals(const FloatingPoint& rhs) const {
440     // The IEEE standard says that any comparison operation involving
441     // a NAN must return false.
442     if (is_nan() || rhs.is_nan()) return false;
443 
444     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
445         <= kMaxUlps;
446   }
447 
448  private:
449   // The data type used to store the actual floating-point number.
450   union FloatingPointUnion {
451     RawType value_;  // The raw floating-point number.
452     Bits bits_;      // The bits that represent the number.
453   };
454 
455   // Converts an integer from the sign-and-magnitude representation to
456   // the biased representation.  More precisely, let N be 2 to the
457   // power of (kBitCount - 1), an integer x is represented by the
458   // unsigned number x + N.
459   //
460   // For instance,
461   //
462   //   -N + 1 (the most negative number representable using
463   //          sign-and-magnitude) is represented by 1;
464   //   0      is represented by N; and
465   //   N - 1  (the biggest number representable using
466   //          sign-and-magnitude) is represented by 2N - 1.
467   //
468   // Read http://en.wikipedia.org/wiki/Signed_number_representations
469   // for more details on signed number representations.
SignAndMagnitudeToBiased(const Bits & sam)470   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
471     if (kSignBitMask & sam) {
472       // sam represents a negative number.
473       return ~sam + 1;
474     } else {
475       // sam represents a positive number.
476       return kSignBitMask | sam;
477     }
478   }
479 
480   // Given two numbers in the sign-and-magnitude representation,
481   // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(const Bits & sam1,const Bits & sam2)482   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
483                                                      const Bits &sam2) {
484     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
485     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
486     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
487   }
488 
489   FloatingPointUnion u_;
490 };
491 
492 // Typedefs the instances of the FloatingPoint template class that we
493 // care to use.
494 typedef FloatingPoint<float> Float;
495 typedef FloatingPoint<double> Double;
496 
497 // In order to catch the mistake of putting tests that use different
498 // test fixture classes in the same test case, we need to assign
499 // unique IDs to fixture classes and compare them.  The TypeId type is
500 // used to hold such IDs.  The user should treat TypeId as an opaque
501 // type: the only operation allowed on TypeId values is to compare
502 // them for equality using the == operator.
503 typedef const void* TypeId;
504 
505 template <typename T>
506 class TypeIdHelper {
507  public:
508   // dummy_ must not have a const type.  Otherwise an overly eager
509   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
510   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
511   static bool dummy_;
512 };
513 
514 template <typename T>
515 bool TypeIdHelper<T>::dummy_ = false;
516 
517 // GetTypeId<T>() returns the ID of type T.  Different values will be
518 // returned for different types.  Calling the function twice with the
519 // same type argument is guaranteed to return the same ID.
520 template <typename T>
GetTypeId()521 TypeId GetTypeId() {
522   // The compiler is required to allocate a different
523   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
524   // the template.  Therefore, the address of dummy_ is guaranteed to
525   // be unique.
526   return &(TypeIdHelper<T>::dummy_);
527 }
528 
529 // Returns the type ID of ::testing::Test.  Always call this instead
530 // of GetTypeId< ::testing::Test>() to get the type ID of
531 // ::testing::Test, as the latter may give the wrong result due to a
532 // suspected linker bug when compiling Google Test as a Mac OS X
533 // framework.
534 GTEST_API_ TypeId GetTestTypeId();
535 
536 // Defines the abstract factory interface that creates instances
537 // of a Test object.
538 class TestFactoryBase {
539  public:
540   virtual ~TestFactoryBase();
541 
542   // Creates a test instance to run. The instance is both created and destroyed
543   // within TestInfoImpl::Run()
544   virtual Test* CreateTest() = 0;
545 
546  protected:
TestFactoryBase()547   TestFactoryBase() {}
548 
549  private:
550   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
551 };
552 
553 // This class provides implementation of TeastFactoryBase interface.
554 // It is used in TEST and TEST_F macros.
555 template <class TestClass>
556 class TestFactoryImpl : public TestFactoryBase {
557  public:
CreateTest()558    Test *CreateTest() override { return new TestClass; }
559 };
560 
561 #if GTEST_OS_WINDOWS
562 
563 // Predicate-formatters for implementing the HRESULT checking macros
564 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
565 // We pass a long instead of HRESULT to avoid causing an
566 // include dependency for the HRESULT type.
567 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
568                                             long hr);  // NOLINT
569 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
570                                             long hr);  // NOLINT
571 
572 #endif  // GTEST_OS_WINDOWS
573 
574 // Types of SetUpTestCase() and TearDownTestCase() functions.
575 typedef void (*SetUpTestCaseFunc)();
576 typedef void (*TearDownTestCaseFunc)();
577 
578 // Creates a new TestInfo object and registers it with Google Test;
579 // returns the created object.
580 //
581 // Arguments:
582 //
583 //   test_case_name:   name of the test case
584 //   name:             name of the test
585 //   type_param        the name of the test's type parameter, or NULL if
586 //                     this is not  a typed or a type-parameterized test.
587 //   value_param       text representation of the test's value parameter,
588 //                     or NULL if this is not a type-parameterized test.
589 //   fixture_class_id: ID of the test fixture class
590 //   set_up_tc:        pointer to the function that sets up the test case
591 //   tear_down_tc:     pointer to the function that tears down the test case
592 //   factory:          pointer to the factory that creates a test object.
593 //                     The newly created TestInfo instance will assume
594 //                     ownership of the factory object.
595 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
596     const char* test_case_name, const char* name,
597     const char* type_param,
598     const char* value_param,
599     TypeId fixture_class_id,
600     SetUpTestCaseFunc set_up_tc,
601     TearDownTestCaseFunc tear_down_tc,
602     TestFactoryBase* factory);
603 
604 // If *pstr starts with the given prefix, modifies *pstr to be right
605 // past the prefix and returns true; otherwise leaves *pstr unchanged
606 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
607 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
608 
609 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
610 
611 // State of the definition of a type-parameterized test case.
612 class GTEST_API_ TypedTestCasePState {
613  public:
TypedTestCasePState()614   TypedTestCasePState() : registered_(false) {}
615 
616   // Adds the given test name to defined_test_names_ and return true
617   // if the test case hasn't been registered; otherwise aborts the
618   // program.
AddTestName(const char * file,int line,const char * case_name,const char * test_name)619   bool AddTestName(const char* file, int line, const char* case_name,
620                    const char* test_name) {
621     if (registered_) {
622       fprintf(stderr, "%s Test %s must be defined before "
623               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
624               FormatFileLocation(file, line).c_str(), test_name, case_name);
625       fflush(stderr);
626       posix::Abort();
627     }
628     defined_test_names_.insert(test_name);
629     return true;
630   }
631 
632   // Verifies that registered_tests match the test names in
633   // defined_test_names_; returns registered_tests if successful, or
634   // aborts the program otherwise.
635   const char* VerifyRegisteredTestNames(
636       const char* file, int line, const char* registered_tests);
637 
638  private:
639   bool registered_;
640   ::std::set<const char*> defined_test_names_;
641 };
642 
643 // Skips to the first non-space char after the first comma in 'str';
644 // returns NULL if no comma is found in 'str'.
SkipComma(const char * str)645 inline const char* SkipComma(const char* str) {
646   const char* comma = strchr(str, ',');
647   if (comma == NULL) {
648     return NULL;
649   }
650   while (IsSpace(*(++comma))) {}
651   return comma;
652 }
653 
654 // Returns the prefix of 'str' before the first comma in it; returns
655 // the entire string if it contains no comma.
GetPrefixUntilComma(const char * str)656 inline String GetPrefixUntilComma(const char* str) {
657   const char* comma = strchr(str, ',');
658   return comma == NULL ? String(str) : String(str, comma - str);
659 }
660 
661 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
662 // registers a list of type-parameterized tests with Google Test.  The
663 // return value is insignificant - we just need to return something
664 // such that we can call this function in a namespace scope.
665 //
666 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
667 // template parameter.  It's defined in gtest-type-util.h.
668 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
669 class TypeParameterizedTest {
670  public:
671   // 'index' is the index of the test in the type list 'Types'
672   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
673   // Types).  Valid values for 'index' are [0, N - 1] where N is the
674   // length of Types.
Register(const char * prefix,const char * case_name,const char * test_names,int index)675   static bool Register(const char* prefix, const char* case_name,
676                        const char* test_names, int index) {
677     typedef typename Types::Head Type;
678     typedef Fixture<Type> FixtureClass;
679     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
680 
681     // First, registers the first type-parameterized test in the type
682     // list.
683     MakeAndRegisterTestInfo(
684         String::Format("%s%s%s/%d", prefix, prefix[0] == '\0' ? "" : "/",
685                        case_name, index).c_str(),
686         GetPrefixUntilComma(test_names).c_str(),
687         GetTypeName<Type>().c_str(),
688         NULL,  // No value parameter.
689         GetTypeId<FixtureClass>(),
690         TestClass::SetUpTestCase,
691         TestClass::TearDownTestCase,
692         new TestFactoryImpl<TestClass>);
693 
694     // Next, recurses (at compile time) with the tail of the type list.
695     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
696         ::Register(prefix, case_name, test_names, index + 1);
697   }
698 };
699 
700 // The base case for the compile time recursion.
701 template <GTEST_TEMPLATE_ Fixture, class TestSel>
702 class TypeParameterizedTest<Fixture, TestSel, Types0> {
703  public:
Register(const char *,const char *,const char *,int)704   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
705                        const char* /*test_names*/, int /*index*/) {
706     return true;
707   }
708 };
709 
710 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
711 // registers *all combinations* of 'Tests' and 'Types' with Google
712 // Test.  The return value is insignificant - we just need to return
713 // something such that we can call this function in a namespace scope.
714 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
715 class TypeParameterizedTestCase {
716  public:
Register(const char * prefix,const char * case_name,const char * test_names)717   static bool Register(const char* prefix, const char* case_name,
718                        const char* test_names) {
719     typedef typename Tests::Head Head;
720 
721     // First, register the first test in 'Test' for each type in 'Types'.
722     TypeParameterizedTest<Fixture, Head, Types>::Register(
723         prefix, case_name, test_names, 0);
724 
725     // Next, recurses (at compile time) with the tail of the test list.
726     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
727         ::Register(prefix, case_name, SkipComma(test_names));
728   }
729 };
730 
731 // The base case for the compile time recursion.
732 template <GTEST_TEMPLATE_ Fixture, typename Types>
733 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
734  public:
Register(const char *,const char *,const char *)735   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
736                        const char* /*test_names*/) {
737     return true;
738   }
739 };
740 
741 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
742 
743 // Returns the current OS stack trace as a String.
744 //
745 // The maximum number of stack frames to be included is specified by
746 // the gtest_stack_trace_depth flag.  The skip_count parameter
747 // specifies the number of top frames to be skipped, which doesn't
748 // count against the number of frames to be included.
749 //
750 // For example, if Foo() calls Bar(), which in turn calls
751 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
752 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
753 GTEST_API_ String GetCurrentOsStackTraceExceptTop(UnitTest* unit_test,
754                                                   int skip_count);
755 
756 // Helpers for suppressing warnings on unreachable code or constant
757 // condition.
758 
759 // Always returns true.
760 GTEST_API_ bool AlwaysTrue();
761 
762 // Always returns false.
AlwaysFalse()763 inline bool AlwaysFalse() { return !AlwaysTrue(); }
764 
765 // Helper for suppressing false warning from Clang on a const char*
766 // variable declared in a conditional expression always being NULL in
767 // the else branch.
768 struct GTEST_API_ ConstCharPtr {
ConstCharPtrConstCharPtr769   ConstCharPtr(const char* str) : value(str) {}
770   operator bool() const { return true; }
771   const char* value;
772 };
773 
774 // A simple Linear Congruential Generator for generating random
775 // numbers with a uniform distribution.  Unlike rand() and srand(), it
776 // doesn't use global state (and therefore can't interfere with user
777 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
778 // but it's good enough for our purposes.
779 class GTEST_API_ Random {
780  public:
781   static const UInt32 kMaxRange = 1u << 31;
782 
Random(UInt32 seed)783   explicit Random(UInt32 seed) : state_(seed) {}
784 
Reseed(UInt32 seed)785   void Reseed(UInt32 seed) { state_ = seed; }
786 
787   // Generates a random number from [0, range).  Crashes if 'range' is
788   // 0 or greater than kMaxRange.
789   UInt32 Generate(UInt32 range);
790 
791  private:
792   UInt32 state_;
793   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
794 };
795 
796 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
797 // compiler error iff T1 and T2 are different types.
798 template <typename T1, typename T2>
799 struct CompileAssertTypesEqual;
800 
801 template <typename T>
802 struct CompileAssertTypesEqual<T, T> {
803 };
804 
805 // Removes the reference from a type if it is a reference type,
806 // otherwise leaves it unchanged.  This is the same as
807 // tr1::remove_reference, which is not widely available yet.
808 template <typename T>
809 struct RemoveReference { typedef T type; };  // NOLINT
810 template <typename T>
811 struct RemoveReference<T&> { typedef T type; };  // NOLINT
812 
813 // A handy wrapper around RemoveReference that works when the argument
814 // T depends on template parameters.
815 #define GTEST_REMOVE_REFERENCE_(T) \
816     typename ::testing::internal::RemoveReference<T>::type
817 
818 // Removes const from a type if it is a const type, otherwise leaves
819 // it unchanged.  This is the same as tr1::remove_const, which is not
820 // widely available yet.
821 template <typename T>
822 struct RemoveConst { typedef T type; };  // NOLINT
823 template <typename T>
824 struct RemoveConst<const T> { typedef T type; };  // NOLINT
825 
826 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
827 // definition to fail to remove the const in 'const int[3]' and 'const
828 // char[3][4]'.  The following specialization works around the bug.
829 // However, it causes trouble with GCC and thus needs to be
830 // conditionally compiled.
831 #if defined(_MSC_VER) || defined(__SUNPRO_CC) || defined(__IBMCPP__)
832 template <typename T, size_t N>
833 struct RemoveConst<const T[N]> {
834   typedef typename RemoveConst<T>::type type[N];
835 };
836 #endif
837 
838 // A handy wrapper around RemoveConst that works when the argument
839 // T depends on template parameters.
840 #define GTEST_REMOVE_CONST_(T) \
841     typename ::testing::internal::RemoveConst<T>::type
842 
843 // Turns const U&, U&, const U, and U all into U.
844 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
845     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
846 
847 // Adds reference to a type if it is not a reference type,
848 // otherwise leaves it unchanged.  This is the same as
849 // tr1::add_reference, which is not widely available yet.
850 template <typename T>
851 struct AddReference { typedef T& type; };  // NOLINT
852 template <typename T>
853 struct AddReference<T&> { typedef T& type; };  // NOLINT
854 
855 // A handy wrapper around AddReference that works when the argument T
856 // depends on template parameters.
857 #define GTEST_ADD_REFERENCE_(T) \
858     typename ::testing::internal::AddReference<T>::type
859 
860 // Adds a reference to const on top of T as necessary.  For example,
861 // it transforms
862 //
863 //   char         ==> const char&
864 //   const char   ==> const char&
865 //   char&        ==> const char&
866 //   const char&  ==> const char&
867 //
868 // The argument T must depend on some template parameters.
869 #define GTEST_REFERENCE_TO_CONST_(T) \
870     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
871 
872 // ImplicitlyConvertible<From, To>::value is a compile-time bool
873 // constant that's true iff type From can be implicitly converted to
874 // type To.
875 template <typename From, typename To>
876 class ImplicitlyConvertible {
877  private:
878   // We need the following helper functions only for their types.
879   // They have no implementations.
880 
881   // MakeFrom() is an expression whose type is From.  We cannot simply
882   // use From(), as the type From may not have a public default
883   // constructor.
884   static From MakeFrom();
885 
886   // These two functions are overloaded.  Given an expression
887   // Helper(x), the compiler will pick the first version if x can be
888   // implicitly converted to type To; otherwise it will pick the
889   // second version.
890   //
891   // The first version returns a value of size 1, and the second
892   // version returns a value of size 2.  Therefore, by checking the
893   // size of Helper(x), which can be done at compile time, we can tell
894   // which version of Helper() is used, and hence whether x can be
895   // implicitly converted to type To.
896   static char Helper(To);
897   static char (&Helper(...))[2];  // NOLINT
898 
899   // We have to put the 'public' section after the 'private' section,
900   // or MSVC refuses to compile the code.
901  public:
902   // MSVC warns about implicitly converting from double to int for
903   // possible loss of data, so we need to temporarily disable the
904   // warning.
905 #ifdef _MSC_VER
906 # pragma warning(push)          // Saves the current warning state.
907 # pragma warning(disable:4244)  // Temporarily disables warning 4244.
908 
909   static const bool value =
910       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
911 # pragma warning(pop)           // Restores the warning state.
912 #elif defined(__BORLANDC__)
913   // C++Builder cannot use member overload resolution during template
914   // instantiation.  The simplest workaround is to use its C++0x type traits
915   // functions (C++Builder 2009 and above only).
916   static const bool value = __is_convertible(From, To);
917 #else
918   static const bool value =
919       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
920 #endif  // _MSV_VER
921 };
922 template <typename From, typename To>
923 const bool ImplicitlyConvertible<From, To>::value;
924 
925 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
926 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
927 // of those.
928 template <typename T>
929 struct IsAProtocolMessage
930     : public bool_constant<
931   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
932   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
933 };
934 
935 // When the compiler sees expression IsContainerTest<C>(0), if C is an
936 // STL-style container class, the first overload of IsContainerTest
937 // will be viable (since both C::iterator* and C::const_iterator* are
938 // valid types and NULL can be implicitly converted to them).  It will
939 // be picked over the second overload as 'int' is a perfect match for
940 // the type of argument 0.  If C::iterator or C::const_iterator is not
941 // a valid type, the first overload is not viable, and the second
942 // overload will be picked.  Therefore, we can determine whether C is
943 // a container class by checking the type of IsContainerTest<C>(0).
944 // The value of the expression is insignificant.
945 //
946 // Note that we look for both C::iterator and C::const_iterator.  The
947 // reason is that C++ injects the name of a class as a member of the
948 // class itself (e.g. you can refer to class iterator as either
949 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
950 // only, for example, we would mistakenly think that a class named
951 // iterator is an STL container.
952 //
953 // Also note that the simpler approach of overloading
954 // IsContainerTest(typename C::const_iterator*) and
955 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
956 typedef int IsContainer;
957 template <class C>
958 IsContainer IsContainerTest(int /* dummy */,
959                             typename C::iterator* /* it */ = NULL,
960                             typename C::const_iterator* /* const_it */ = NULL) {
961   return 0;
962 }
963 
964 typedef char IsNotContainer;
965 template <class C>
966 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
967 
968 // EnableIf<condition>::type is void when 'Cond' is true, and
969 // undefined when 'Cond' is false.  To use SFINAE to make a function
970 // overload only apply when a particular expression is true, add
971 // "typename EnableIf<expression>::type* = 0" as the last parameter.
972 template<bool> struct EnableIf;
973 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
974 
975 // Utilities for native arrays.
976 
977 // ArrayEq() compares two k-dimensional native arrays using the
978 // elements' operator==, where k can be any integer >= 0.  When k is
979 // 0, ArrayEq() degenerates into comparing a single pair of values.
980 
981 template <typename T, typename U>
982 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
983 
984 // This generic version is used when k is 0.
985 template <typename T, typename U>
986 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
987 
988 // This overload is used when k >= 1.
989 template <typename T, typename U, size_t N>
990 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
991   return internal::ArrayEq(lhs, N, rhs);
992 }
993 
994 // This helper reduces code bloat.  If we instead put its logic inside
995 // the previous ArrayEq() function, arrays with different sizes would
996 // lead to different copies of the template code.
997 template <typename T, typename U>
998 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
999   for (size_t i = 0; i != size; i++) {
1000     if (!internal::ArrayEq(lhs[i], rhs[i]))
1001       return false;
1002   }
1003   return true;
1004 }
1005 
1006 // Finds the first element in the iterator range [begin, end) that
1007 // equals elem.  Element may be a native array type itself.
1008 template <typename Iter, typename Element>
1009 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1010   for (Iter it = begin; it != end; ++it) {
1011     if (internal::ArrayEq(*it, elem))
1012       return it;
1013   }
1014   return end;
1015 }
1016 
1017 // CopyArray() copies a k-dimensional native array using the elements'
1018 // operator=, where k can be any integer >= 0.  When k is 0,
1019 // CopyArray() degenerates into copying a single value.
1020 
1021 template <typename T, typename U>
1022 void CopyArray(const T* from, size_t size, U* to);
1023 
1024 // This generic version is used when k is 0.
1025 template <typename T, typename U>
1026 inline void CopyArray(const T& from, U* to) { *to = from; }
1027 
1028 // This overload is used when k >= 1.
1029 template <typename T, typename U, size_t N>
1030 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1031   internal::CopyArray(from, N, *to);
1032 }
1033 
1034 // This helper reduces code bloat.  If we instead put its logic inside
1035 // the previous CopyArray() function, arrays with different sizes
1036 // would lead to different copies of the template code.
1037 template <typename T, typename U>
1038 void CopyArray(const T* from, size_t size, U* to) {
1039   for (size_t i = 0; i != size; i++) {
1040     internal::CopyArray(from[i], to + i);
1041   }
1042 }
1043 
1044 // The relation between an NativeArray object (see below) and the
1045 // native array it represents.
1046 enum RelationToSource {
1047   kReference,  // The NativeArray references the native array.
1048   kCopy        // The NativeArray makes a copy of the native array and
1049                // owns the copy.
1050 };
1051 
1052 // Adapts a native array to a read-only STL-style container.  Instead
1053 // of the complete STL container concept, this adaptor only implements
1054 // members useful for Google Mock's container matchers.  New members
1055 // should be added as needed.  To simplify the implementation, we only
1056 // support Element being a raw type (i.e. having no top-level const or
1057 // reference modifier).  It's the client's responsibility to satisfy
1058 // this requirement.  Element can be an array type itself (hence
1059 // multi-dimensional arrays are supported).
1060 template <typename Element>
1061 class NativeArray {
1062  public:
1063   // STL-style container typedefs.
1064   typedef Element value_type;
1065   typedef Element* iterator;
1066   typedef const Element* const_iterator;
1067 
1068   // Constructs from a native array.
1069   NativeArray(const Element* array, size_t count, RelationToSource relation) {
1070     Init(array, count, relation);
1071   }
1072 
1073   // Copy constructor.
1074   NativeArray(const NativeArray& rhs) {
1075     Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
1076   }
1077 
1078   ~NativeArray() {
1079     // Ensures that the user doesn't instantiate NativeArray with a
1080     // const or reference type.
1081     static_cast<void>(StaticAssertTypeEqHelper<Element,
1082         GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
1083     if (relation_to_source_ == kCopy)
1084       delete[] array_;
1085   }
1086 
1087   // STL-style container methods.
1088   size_t size() const { return size_; }
1089   const_iterator begin() const { return array_; }
1090   const_iterator end() const { return array_ + size_; }
1091   bool operator==(const NativeArray& rhs) const {
1092     return size() == rhs.size() &&
1093         ArrayEq(begin(), size(), rhs.begin());
1094   }
1095 
1096  private:
1097   // Initializes this object; makes a copy of the input array if
1098   // 'relation' is kCopy.
1099   void Init(const Element* array, size_t a_size, RelationToSource relation) {
1100     if (relation == kReference) {
1101       array_ = array;
1102     } else {
1103       Element* const copy = new Element[a_size];
1104       CopyArray(array, a_size, copy);
1105       array_ = copy;
1106     }
1107     size_ = a_size;
1108     relation_to_source_ = relation;
1109   }
1110 
1111   const Element* array_;
1112   size_t size_;
1113   RelationToSource relation_to_source_;
1114 
1115   GTEST_DISALLOW_ASSIGN_(NativeArray);
1116 };
1117 
1118 }  // namespace internal
1119 }  // namespace testing
1120 
1121 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1122   ::testing::internal::AssertHelper(result_type, file, line, message) \
1123     = ::testing::Message()
1124 
1125 #define GTEST_MESSAGE_(message, result_type) \
1126   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1127 
1128 #define GTEST_FATAL_FAILURE_(message) \
1129   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1130 
1131 #define GTEST_NONFATAL_FAILURE_(message) \
1132   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1133 
1134 #define GTEST_SUCCESS_(message) \
1135   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1136 
1137 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
1138 // statement if it returns or throws (or doesn't return or throw in some
1139 // situations).
1140 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1141   if (::testing::internal::AlwaysTrue()) { statement; }
1142 
1143 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1144   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1145   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1146     bool gtest_caught_expected = false; \
1147     try { \
1148       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1149     } \
1150     catch (expected_exception const&) { \
1151       gtest_caught_expected = true; \
1152     } \
1153     catch (...) { \
1154       gtest_msg.value = \
1155           "Expected: " #statement " throws an exception of type " \
1156           #expected_exception ".\n  Actual: it throws a different type."; \
1157       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1158     } \
1159     if (!gtest_caught_expected) { \
1160       gtest_msg.value = \
1161           "Expected: " #statement " throws an exception of type " \
1162           #expected_exception ".\n  Actual: it throws nothing."; \
1163       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1164     } \
1165   } else \
1166     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1167       fail(gtest_msg.value)
1168 
1169 #define GTEST_TEST_NO_THROW_(statement, fail) \
1170   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1171   if (::testing::internal::AlwaysTrue()) { \
1172     try { \
1173       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1174     } \
1175     catch (...) { \
1176       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1177     } \
1178   } else \
1179     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1180       fail("Expected: " #statement " doesn't throw an exception.\n" \
1181            "  Actual: it throws.")
1182 
1183 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1184   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1185   if (::testing::internal::AlwaysTrue()) { \
1186     bool gtest_caught_any = false; \
1187     try { \
1188       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1189     } \
1190     catch (...) { \
1191       gtest_caught_any = true; \
1192     } \
1193     if (!gtest_caught_any) { \
1194       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1195     } \
1196   } else \
1197     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1198       fail("Expected: " #statement " throws an exception.\n" \
1199            "  Actual: it doesn't.")
1200 
1201 
1202 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1203 // either a boolean expression or an AssertionResult. text is a textual
1204 // represenation of expression as it was passed into the EXPECT_TRUE.
1205 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1206   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1207   if (const ::testing::AssertionResult gtest_ar_ = \
1208       ::testing::AssertionResult(expression)) \
1209     ; \
1210   else \
1211     fail(::testing::internal::GetBoolAssertionFailureMessage(\
1212         gtest_ar_, text, #actual, #expected).c_str())
1213 
1214 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1215   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1216   if (::testing::internal::AlwaysTrue()) { \
1217     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1218     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1219     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1220       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1221     } \
1222   } else \
1223     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1224       fail("Expected: " #statement " doesn't generate new fatal " \
1225            "failures in the current thread.\n" \
1226            "  Actual: it does.")
1227 
1228 // Expands to the name of the class that implements the given test.
1229 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1230   test_case_name##_##test_name##_Test
1231 
1232 // Helper macro for defining tests.
1233 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1234 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1235  public:\
1236   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1237  private:\
1238   virtual void TestBody();\
1239   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1240   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1241       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1242 };\
1243 \
1244 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1245   ::test_info_ =\
1246     ::testing::internal::MakeAndRegisterTestInfo(\
1247         #test_case_name, #test_name, NULL, NULL, \
1248         (parent_id), \
1249         parent_class::SetUpTestCase, \
1250         parent_class::TearDownTestCase, \
1251         new ::testing::internal::TestFactoryImpl<\
1252             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1253 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1254 
1255 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1256