• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "compiler/glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29 #include "main/shaderobj.h"
30 
31 static ir_rvalue *
32 convert_component(ir_rvalue *src, const glsl_type *desired_type);
33 
34 static unsigned
process_parameters(exec_list * instructions,exec_list * actual_parameters,exec_list * parameters,struct _mesa_glsl_parse_state * state)35 process_parameters(exec_list *instructions, exec_list *actual_parameters,
36                    exec_list *parameters,
37                    struct _mesa_glsl_parse_state *state)
38 {
39    unsigned count = 0;
40 
41    foreach_list_typed(ast_node, ast, link, parameters) {
42       /* We need to process the parameters first in order to know if we can
43        * raise or not a unitialized warning. Calling set_is_lhs silence the
44        * warning for now. Raising the warning or not will be checked at
45        * verify_parameter_modes.
46        */
47       ast->set_is_lhs(true);
48       ir_rvalue *result = ast->hir(instructions, state);
49 
50       ir_constant *const constant = result->constant_expression_value();
51       if (constant != NULL)
52          result = constant;
53 
54       actual_parameters->push_tail(result);
55       count++;
56    }
57 
58    return count;
59 }
60 
61 
62 /**
63  * Generate a source prototype for a function signature
64  *
65  * \param return_type Return type of the function.  May be \c NULL.
66  * \param name        Name of the function.
67  * \param parameters  List of \c ir_instruction nodes representing the
68  *                    parameter list for the function.  This may be either a
69  *                    formal (\c ir_variable) or actual (\c ir_rvalue)
70  *                    parameter list.  Only the type is used.
71  *
72  * \return
73  * A ralloced string representing the prototype of the function.
74  */
75 char *
prototype_string(const glsl_type * return_type,const char * name,exec_list * parameters)76 prototype_string(const glsl_type *return_type, const char *name,
77                  exec_list *parameters)
78 {
79    char *str = NULL;
80 
81    if (return_type != NULL)
82       str = ralloc_asprintf(NULL, "%s ", return_type->name);
83 
84    ralloc_asprintf_append(&str, "%s(", name);
85 
86    const char *comma = "";
87    foreach_in_list(const ir_variable, param, parameters) {
88       ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89       comma = ", ";
90    }
91 
92    ralloc_strcat(&str, ")");
93    return str;
94 }
95 
96 static bool
verify_image_parameter(YYLTYPE * loc,_mesa_glsl_parse_state * state,const ir_variable * formal,const ir_variable * actual)97 verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
98                        const ir_variable *formal, const ir_variable *actual)
99 {
100    /**
101     * From the ARB_shader_image_load_store specification:
102     *
103     * "The values of image variables qualified with coherent,
104     *  volatile, restrict, readonly, or writeonly may not be passed
105     *  to functions whose formal parameters lack such
106     *  qualifiers. [...] It is legal to have additional qualifiers
107     *  on a formal parameter, but not to have fewer."
108     */
109    if (actual->data.image_coherent && !formal->data.image_coherent) {
110       _mesa_glsl_error(loc, state,
111                        "function call parameter `%s' drops "
112                        "`coherent' qualifier", formal->name);
113       return false;
114    }
115 
116    if (actual->data.image_volatile && !formal->data.image_volatile) {
117       _mesa_glsl_error(loc, state,
118                        "function call parameter `%s' drops "
119                        "`volatile' qualifier", formal->name);
120       return false;
121    }
122 
123    if (actual->data.image_restrict && !formal->data.image_restrict) {
124       _mesa_glsl_error(loc, state,
125                        "function call parameter `%s' drops "
126                        "`restrict' qualifier", formal->name);
127       return false;
128    }
129 
130    if (actual->data.image_read_only && !formal->data.image_read_only) {
131       _mesa_glsl_error(loc, state,
132                        "function call parameter `%s' drops "
133                        "`readonly' qualifier", formal->name);
134       return false;
135    }
136 
137    if (actual->data.image_write_only && !formal->data.image_write_only) {
138       _mesa_glsl_error(loc, state,
139                        "function call parameter `%s' drops "
140                        "`writeonly' qualifier", formal->name);
141       return false;
142    }
143 
144    return true;
145 }
146 
147 static bool
verify_first_atomic_parameter(YYLTYPE * loc,_mesa_glsl_parse_state * state,ir_variable * var)148 verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
149                               ir_variable *var)
150 {
151    if (!var ||
152        (!var->is_in_shader_storage_block() &&
153         var->data.mode != ir_var_shader_shared)) {
154       _mesa_glsl_error(loc, state, "First argument to atomic function "
155                        "must be a buffer or shared variable");
156       return false;
157    }
158    return true;
159 }
160 
161 static bool
is_atomic_function(const char * func_name)162 is_atomic_function(const char *func_name)
163 {
164    return !strcmp(func_name, "atomicAdd") ||
165           !strcmp(func_name, "atomicMin") ||
166           !strcmp(func_name, "atomicMax") ||
167           !strcmp(func_name, "atomicAnd") ||
168           !strcmp(func_name, "atomicOr") ||
169           !strcmp(func_name, "atomicXor") ||
170           !strcmp(func_name, "atomicExchange") ||
171           !strcmp(func_name, "atomicCompSwap");
172 }
173 
174 /**
175  * Verify that 'out' and 'inout' actual parameters are lvalues.  Also, verify
176  * that 'const_in' formal parameters (an extension in our IR) correspond to
177  * ir_constant actual parameters.
178  */
179 static bool
verify_parameter_modes(_mesa_glsl_parse_state * state,ir_function_signature * sig,exec_list & actual_ir_parameters,exec_list & actual_ast_parameters)180 verify_parameter_modes(_mesa_glsl_parse_state *state,
181                        ir_function_signature *sig,
182                        exec_list &actual_ir_parameters,
183                        exec_list &actual_ast_parameters)
184 {
185    exec_node *actual_ir_node  = actual_ir_parameters.get_head_raw();
186    exec_node *actual_ast_node = actual_ast_parameters.get_head_raw();
187 
188    foreach_in_list(const ir_variable, formal, &sig->parameters) {
189       /* The lists must be the same length. */
190       assert(!actual_ir_node->is_tail_sentinel());
191       assert(!actual_ast_node->is_tail_sentinel());
192 
193       const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
194       const ast_expression *const actual_ast =
195          exec_node_data(ast_expression, actual_ast_node, link);
196 
197       /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
198        * FIXME: 0:0(0).
199        */
200       YYLTYPE loc = actual_ast->get_location();
201 
202       /* Verify that 'const_in' parameters are ir_constants. */
203       if (formal->data.mode == ir_var_const_in &&
204           actual->ir_type != ir_type_constant) {
205          _mesa_glsl_error(&loc, state,
206                           "parameter `in %s' must be a constant expression",
207                           formal->name);
208          return false;
209       }
210 
211       /* Verify that shader_in parameters are shader inputs */
212       if (formal->data.must_be_shader_input) {
213          const ir_rvalue *val = actual;
214 
215          /* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */
216          if (val->ir_type == ir_type_swizzle) {
217             if (!state->is_version(440, 0)) {
218                _mesa_glsl_error(&loc, state,
219                                 "parameter `%s` must not be swizzled",
220                                 formal->name);
221                return false;
222             }
223             val = ((ir_swizzle *)val)->val;
224          }
225 
226          while (val->ir_type == ir_type_dereference_array) {
227             val = ((ir_dereference_array *)val)->array;
228          }
229 
230          if (!val->as_dereference_variable() ||
231              val->variable_referenced()->data.mode != ir_var_shader_in) {
232             _mesa_glsl_error(&loc, state,
233                              "parameter `%s` must be a shader input",
234                              formal->name);
235             return false;
236          }
237       }
238 
239       /* Verify that 'out' and 'inout' actual parameters are lvalues. */
240       if (formal->data.mode == ir_var_function_out
241           || formal->data.mode == ir_var_function_inout) {
242          const char *mode = NULL;
243          switch (formal->data.mode) {
244          case ir_var_function_out:   mode = "out";   break;
245          case ir_var_function_inout: mode = "inout"; break;
246          default:                    assert(false);  break;
247          }
248 
249          /* This AST-based check catches errors like f(i++).  The IR-based
250           * is_lvalue() is insufficient because the actual parameter at the
251           * IR-level is just a temporary value, which is an l-value.
252           */
253          if (actual_ast->non_lvalue_description != NULL) {
254             _mesa_glsl_error(&loc, state,
255                              "function parameter '%s %s' references a %s",
256                              mode, formal->name,
257                              actual_ast->non_lvalue_description);
258             return false;
259          }
260 
261          ir_variable *var = actual->variable_referenced();
262 
263          if (var && formal->data.mode == ir_var_function_inout) {
264             if ((var->data.mode == ir_var_auto ||
265                  var->data.mode == ir_var_shader_out) &&
266                 !var->data.assigned &&
267                 !is_gl_identifier(var->name)) {
268                _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
269                                   var->name);
270             }
271          }
272 
273          if (var)
274             var->data.assigned = true;
275 
276          if (var && var->data.read_only) {
277             _mesa_glsl_error(&loc, state,
278                              "function parameter '%s %s' references the "
279                              "read-only variable '%s'",
280                              mode, formal->name,
281                              actual->variable_referenced()->name);
282             return false;
283          } else if (!actual->is_lvalue()) {
284             _mesa_glsl_error(&loc, state,
285                              "function parameter '%s %s' is not an lvalue",
286                              mode, formal->name);
287             return false;
288          }
289       } else {
290          assert(formal->data.mode == ir_var_function_in ||
291                 formal->data.mode == ir_var_const_in);
292          ir_variable *var = actual->variable_referenced();
293          if (var) {
294             if ((var->data.mode == ir_var_auto ||
295                  var->data.mode == ir_var_shader_out) &&
296                 !var->data.assigned &&
297                 !is_gl_identifier(var->name)) {
298                _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
299                                   var->name);
300             }
301          }
302       }
303 
304       if (formal->type->is_image() &&
305           actual->variable_referenced()) {
306          if (!verify_image_parameter(&loc, state, formal,
307                                      actual->variable_referenced()))
308             return false;
309       }
310 
311       actual_ir_node  = actual_ir_node->next;
312       actual_ast_node = actual_ast_node->next;
313    }
314 
315    /* The first parameter of atomic functions must be a buffer variable */
316    const char *func_name = sig->function_name();
317    bool is_atomic = is_atomic_function(func_name);
318    if (is_atomic) {
319       const ir_rvalue *const actual =
320          (ir_rvalue *) actual_ir_parameters.get_head_raw();
321 
322       const ast_expression *const actual_ast =
323          exec_node_data(ast_expression,
324                         actual_ast_parameters.get_head_raw(), link);
325       YYLTYPE loc = actual_ast->get_location();
326 
327       if (!verify_first_atomic_parameter(&loc, state,
328                                          actual->variable_referenced())) {
329          return false;
330       }
331    }
332 
333    return true;
334 }
335 
336 static void
fix_parameter(void * mem_ctx,ir_rvalue * actual,const glsl_type * formal_type,exec_list * before_instructions,exec_list * after_instructions,bool parameter_is_inout)337 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
338               exec_list *before_instructions, exec_list *after_instructions,
339               bool parameter_is_inout)
340 {
341    ir_expression *const expr = actual->as_expression();
342 
343    /* If the types match exactly and the parameter is not a vector-extract,
344     * nothing needs to be done to fix the parameter.
345     */
346    if (formal_type == actual->type
347        && (expr == NULL || expr->operation != ir_binop_vector_extract))
348       return;
349 
350    /* To convert an out parameter, we need to create a temporary variable to
351     * hold the value before conversion, and then perform the conversion after
352     * the function call returns.
353     *
354     * This has the effect of transforming code like this:
355     *
356     *   void f(out int x);
357     *   float value;
358     *   f(value);
359     *
360     * Into IR that's equivalent to this:
361     *
362     *   void f(out int x);
363     *   float value;
364     *   int out_parameter_conversion;
365     *   f(out_parameter_conversion);
366     *   value = float(out_parameter_conversion);
367     *
368     * If the parameter is an ir_expression of ir_binop_vector_extract,
369     * additional conversion is needed in the post-call re-write.
370     */
371    ir_variable *tmp =
372       new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
373 
374    before_instructions->push_tail(tmp);
375 
376    /* If the parameter is an inout parameter, copy the value of the actual
377     * parameter to the new temporary.  Note that no type conversion is allowed
378     * here because inout parameters must match types exactly.
379     */
380    if (parameter_is_inout) {
381       /* Inout parameters should never require conversion, since that would
382        * require an implicit conversion to exist both to and from the formal
383        * parameter type, and there are no bidirectional implicit conversions.
384        */
385       assert (actual->type == formal_type);
386 
387       ir_dereference_variable *const deref_tmp_1 =
388          new(mem_ctx) ir_dereference_variable(tmp);
389       ir_assignment *const assignment =
390          new(mem_ctx) ir_assignment(deref_tmp_1, actual);
391       before_instructions->push_tail(assignment);
392    }
393 
394    /* Replace the parameter in the call with a dereference of the new
395     * temporary.
396     */
397    ir_dereference_variable *const deref_tmp_2 =
398       new(mem_ctx) ir_dereference_variable(tmp);
399    actual->replace_with(deref_tmp_2);
400 
401 
402    /* Copy the temporary variable to the actual parameter with optional
403     * type conversion applied.
404     */
405    ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
406    if (actual->type != formal_type)
407       rhs = convert_component(rhs, actual->type);
408 
409    ir_rvalue *lhs = actual;
410    if (expr != NULL && expr->operation == ir_binop_vector_extract) {
411       lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx,
412                                                                        NULL),
413                                               expr->operands[1]->clone(mem_ctx,
414                                                                        NULL));
415    }
416 
417    ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
418    after_instructions->push_tail(assignment_2);
419 }
420 
421 /**
422  * Generate a function call.
423  *
424  * For non-void functions, this returns a dereference of the temporary
425  * variable which stores the return value for the call.  For void functions,
426  * this returns NULL.
427  */
428 static ir_rvalue *
generate_call(exec_list * instructions,ir_function_signature * sig,exec_list * actual_parameters,ir_variable * sub_var,ir_rvalue * array_idx,struct _mesa_glsl_parse_state * state,bool inline_immediately)429 generate_call(exec_list *instructions, ir_function_signature *sig,
430               exec_list *actual_parameters,
431               ir_variable *sub_var,
432               ir_rvalue *array_idx,
433               struct _mesa_glsl_parse_state *state,
434               bool inline_immediately)
435 {
436    void *ctx = state;
437    exec_list post_call_conversions;
438 
439    /* Perform implicit conversion of arguments.  For out parameters, we need
440     * to place them in a temporary variable and do the conversion after the
441     * call takes place.  Since we haven't emitted the call yet, we'll place
442     * the post-call conversions in a temporary exec_list, and emit them later.
443     */
444    foreach_two_lists(formal_node, &sig->parameters,
445                      actual_node, actual_parameters) {
446       ir_rvalue *actual = (ir_rvalue *) actual_node;
447       ir_variable *formal = (ir_variable *) formal_node;
448 
449       if (formal->type->is_numeric() || formal->type->is_boolean()) {
450          switch (formal->data.mode) {
451          case ir_var_const_in:
452          case ir_var_function_in: {
453             ir_rvalue *converted
454                = convert_component(actual, formal->type);
455             actual->replace_with(converted);
456             break;
457          }
458          case ir_var_function_out:
459          case ir_var_function_inout:
460             fix_parameter(ctx, actual, formal->type,
461                           instructions, &post_call_conversions,
462                           formal->data.mode == ir_var_function_inout);
463             break;
464          default:
465             assert (!"Illegal formal parameter mode");
466             break;
467          }
468       }
469    }
470 
471    /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
472     *
473     *     "Initializers for const declarations must be formed from literal
474     *     values, other const variables (not including function call
475     *     paramaters), or expressions of these.
476     *
477     *     Constructors may be used in such expressions, but function calls may
478     *     not."
479     *
480     * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
481     *
482     *     "A constant expression is one of
483     *
484     *         ...
485     *
486     *         - a built-in function call whose arguments are all constant
487     *           expressions, with the exception of the texture lookup
488     *           functions, the noise functions, and ftransform. The built-in
489     *           functions dFdx, dFdy, and fwidth must return 0 when evaluated
490     *           inside an initializer with an argument that is a constant
491     *           expression."
492     *
493     * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
494     *
495     *     "A constant expression is one of
496     *
497     *         ...
498     *
499     *         - a built-in function call whose arguments are all constant
500     *           expressions, with the exception of the texture lookup
501     *           functions."
502     *
503     * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
504     *
505     *     "A constant expression is one of
506     *
507     *         ...
508     *
509     *         - a built-in function call whose arguments are all constant
510     *           expressions, with the exception of the texture lookup
511     *           functions.  The built-in functions dFdx, dFdy, and fwidth must
512     *           return 0 when evaluated inside an initializer with an argument
513     *           that is a constant expression."
514     *
515     * If the function call is a constant expression, don't generate any
516     * instructions; just generate an ir_constant.
517     */
518    if (state->is_version(120, 100)) {
519       ir_constant *value = sig->constant_expression_value(actual_parameters,
520                                                           NULL);
521       if (value != NULL) {
522          return value;
523       }
524    }
525 
526    ir_dereference_variable *deref = NULL;
527    if (!sig->return_type->is_void()) {
528       /* Create a new temporary to hold the return value. */
529       char *const name = ir_variable::temporaries_allocate_names
530          ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
531          : NULL;
532 
533       ir_variable *var;
534 
535       var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
536       instructions->push_tail(var);
537 
538       ralloc_free(name);
539 
540       deref = new(ctx) ir_dereference_variable(var);
541    }
542 
543    ir_call *call = new(ctx) ir_call(sig, deref,
544                                     actual_parameters, sub_var, array_idx);
545    instructions->push_tail(call);
546    if (inline_immediately) {
547       call->generate_inline(call);
548       call->remove();
549    }
550 
551    /* Also emit any necessary out-parameter conversions. */
552    instructions->append_list(&post_call_conversions);
553 
554    return deref ? deref->clone(ctx, NULL) : NULL;
555 }
556 
557 /**
558  * Given a function name and parameter list, find the matching signature.
559  */
560 static ir_function_signature *
match_function_by_name(const char * name,exec_list * actual_parameters,struct _mesa_glsl_parse_state * state)561 match_function_by_name(const char *name,
562                        exec_list *actual_parameters,
563                        struct _mesa_glsl_parse_state *state)
564 {
565    ir_function *f = state->symbols->get_function(name);
566    ir_function_signature *local_sig = NULL;
567    ir_function_signature *sig = NULL;
568 
569    /* Is the function hidden by a record type constructor? */
570    if (state->symbols->get_type(name))
571       return sig; /* no match */
572 
573    /* Is the function hidden by a variable (impossible in 1.10)? */
574    if (!state->symbols->separate_function_namespace
575        && state->symbols->get_variable(name))
576       return sig; /* no match */
577 
578    if (f != NULL) {
579       /* In desktop GL, the presence of a user-defined signature hides any
580        * built-in signatures, so we must ignore them.  In contrast, in ES2
581        * user-defined signatures add new overloads, so we must consider them.
582        */
583       bool allow_builtins = state->es_shader || !f->has_user_signature();
584 
585       /* Look for a match in the local shader.  If exact, we're done. */
586       bool is_exact = false;
587       sig = local_sig = f->matching_signature(state, actual_parameters,
588                                               allow_builtins, &is_exact);
589       if (is_exact)
590          return sig;
591 
592       if (!allow_builtins)
593          return sig;
594    }
595 
596    /* Local shader has no exact candidates; check the built-ins. */
597    _mesa_glsl_initialize_builtin_functions();
598    sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
599    return sig;
600 }
601 
602 static ir_function_signature *
match_subroutine_by_name(const char * name,exec_list * actual_parameters,struct _mesa_glsl_parse_state * state,ir_variable ** var_r)603 match_subroutine_by_name(const char *name,
604                          exec_list *actual_parameters,
605                          struct _mesa_glsl_parse_state *state,
606                          ir_variable **var_r)
607 {
608    void *ctx = state;
609    ir_function_signature *sig = NULL;
610    ir_function *f, *found = NULL;
611    const char *new_name;
612    ir_variable *var;
613    bool is_exact = false;
614 
615    new_name =
616       ralloc_asprintf(ctx, "%s_%s",
617                       _mesa_shader_stage_to_subroutine_prefix(state->stage),
618                       name);
619    var = state->symbols->get_variable(new_name);
620    if (!var)
621       return NULL;
622 
623    for (int i = 0; i < state->num_subroutine_types; i++) {
624       f = state->subroutine_types[i];
625       if (strcmp(f->name, var->type->without_array()->name))
626          continue;
627       found = f;
628       break;
629    }
630 
631    if (!found)
632       return NULL;
633    *var_r = var;
634    sig = found->matching_signature(state, actual_parameters,
635                                    false, &is_exact);
636    return sig;
637 }
638 
639 static ir_rvalue *
generate_array_index(void * mem_ctx,exec_list * instructions,struct _mesa_glsl_parse_state * state,YYLTYPE loc,const ast_expression * array,ast_expression * idx,const char ** function_name,exec_list * actual_parameters)640 generate_array_index(void *mem_ctx, exec_list *instructions,
641                      struct _mesa_glsl_parse_state *state, YYLTYPE loc,
642                      const ast_expression *array, ast_expression *idx,
643                      const char **function_name, exec_list *actual_parameters)
644 {
645    if (array->oper == ast_array_index) {
646       /* This handles arrays of arrays */
647       ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
648                                                     state, loc,
649                                                     array->subexpressions[0],
650                                                     array->subexpressions[1],
651                                                     function_name,
652                                                     actual_parameters);
653       ir_rvalue *outer_array_idx = idx->hir(instructions, state);
654 
655       YYLTYPE index_loc = idx->get_location();
656       return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
657                                           outer_array_idx, loc,
658                                           index_loc);
659    } else {
660       ir_variable *sub_var = NULL;
661       *function_name = array->primary_expression.identifier;
662 
663       match_subroutine_by_name(*function_name, actual_parameters,
664                                state, &sub_var);
665 
666       ir_rvalue *outer_array_idx = idx->hir(instructions, state);
667       return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
668    }
669 }
670 
671 static void
print_function_prototypes(_mesa_glsl_parse_state * state,YYLTYPE * loc,ir_function * f)672 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
673                           ir_function *f)
674 {
675    if (f == NULL)
676       return;
677 
678    foreach_in_list(ir_function_signature, sig, &f->signatures) {
679       if (sig->is_builtin() && !sig->is_builtin_available(state))
680          continue;
681 
682       char *str = prototype_string(sig->return_type, f->name,
683                                    &sig->parameters);
684       _mesa_glsl_error(loc, state, "   %s", str);
685       ralloc_free(str);
686    }
687 }
688 
689 /**
690  * Raise a "no matching function" error, listing all possible overloads the
691  * compiler considered so developers can figure out what went wrong.
692  */
693 static void
no_matching_function_error(const char * name,YYLTYPE * loc,exec_list * actual_parameters,_mesa_glsl_parse_state * state)694 no_matching_function_error(const char *name,
695                            YYLTYPE *loc,
696                            exec_list *actual_parameters,
697                            _mesa_glsl_parse_state *state)
698 {
699    gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
700 
701    if (state->symbols->get_function(name) == NULL
702        && (!state->uses_builtin_functions
703            || sh->symbols->get_function(name) == NULL)) {
704       _mesa_glsl_error(loc, state, "no function with name '%s'", name);
705    } else {
706       char *str = prototype_string(NULL, name, actual_parameters);
707       _mesa_glsl_error(loc, state,
708                        "no matching function for call to `%s';"
709                        " candidates are:",
710                        str);
711       ralloc_free(str);
712 
713       print_function_prototypes(state, loc,
714                                 state->symbols->get_function(name));
715 
716       if (state->uses_builtin_functions) {
717          print_function_prototypes(state, loc,
718                                    sh->symbols->get_function(name));
719       }
720    }
721 }
722 
723 /**
724  * Perform automatic type conversion of constructor parameters
725  *
726  * This implements the rules in the "Conversion and Scalar Constructors"
727  * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
728  */
729 static ir_rvalue *
convert_component(ir_rvalue * src,const glsl_type * desired_type)730 convert_component(ir_rvalue *src, const glsl_type *desired_type)
731 {
732    void *ctx = ralloc_parent(src);
733    const unsigned a = desired_type->base_type;
734    const unsigned b = src->type->base_type;
735    ir_expression *result = NULL;
736 
737    if (src->type->is_error())
738       return src;
739 
740    assert(a <= GLSL_TYPE_BOOL);
741    assert(b <= GLSL_TYPE_BOOL);
742 
743    if (a == b)
744       return src;
745 
746    switch (a) {
747    case GLSL_TYPE_UINT:
748       switch (b) {
749       case GLSL_TYPE_INT:
750          result = new(ctx) ir_expression(ir_unop_i2u, src);
751          break;
752       case GLSL_TYPE_FLOAT:
753          result = new(ctx) ir_expression(ir_unop_f2u, src);
754          break;
755       case GLSL_TYPE_BOOL:
756          result = new(ctx) ir_expression(ir_unop_i2u,
757                                          new(ctx) ir_expression(ir_unop_b2i,
758                                                                 src));
759          break;
760       case GLSL_TYPE_DOUBLE:
761          result = new(ctx) ir_expression(ir_unop_d2u, src);
762          break;
763       }
764       break;
765    case GLSL_TYPE_INT:
766       switch (b) {
767       case GLSL_TYPE_UINT:
768          result = new(ctx) ir_expression(ir_unop_u2i, src);
769          break;
770       case GLSL_TYPE_FLOAT:
771          result = new(ctx) ir_expression(ir_unop_f2i, src);
772          break;
773       case GLSL_TYPE_BOOL:
774          result = new(ctx) ir_expression(ir_unop_b2i, src);
775          break;
776       case GLSL_TYPE_DOUBLE:
777          result = new(ctx) ir_expression(ir_unop_d2i, src);
778          break;
779       }
780       break;
781    case GLSL_TYPE_FLOAT:
782       switch (b) {
783       case GLSL_TYPE_UINT:
784          result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
785          break;
786       case GLSL_TYPE_INT:
787          result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
788          break;
789       case GLSL_TYPE_BOOL:
790          result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
791          break;
792       case GLSL_TYPE_DOUBLE:
793          result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
794          break;
795       }
796       break;
797    case GLSL_TYPE_BOOL:
798       switch (b) {
799       case GLSL_TYPE_UINT:
800          result = new(ctx) ir_expression(ir_unop_i2b,
801                                          new(ctx) ir_expression(ir_unop_u2i,
802                                                                 src));
803          break;
804       case GLSL_TYPE_INT:
805          result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
806          break;
807       case GLSL_TYPE_FLOAT:
808          result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
809          break;
810       case GLSL_TYPE_DOUBLE:
811          result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
812          break;
813       }
814       break;
815    case GLSL_TYPE_DOUBLE:
816       switch (b) {
817       case GLSL_TYPE_INT:
818          result = new(ctx) ir_expression(ir_unop_i2d, src);
819          break;
820       case GLSL_TYPE_UINT:
821          result = new(ctx) ir_expression(ir_unop_u2d, src);
822          break;
823       case GLSL_TYPE_BOOL:
824          result = new(ctx) ir_expression(ir_unop_f2d,
825                                          new(ctx) ir_expression(ir_unop_b2f,
826                                                                 src));
827          break;
828       case GLSL_TYPE_FLOAT:
829          result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
830          break;
831       }
832    }
833 
834    assert(result != NULL);
835    assert(result->type == desired_type);
836 
837    /* Try constant folding; it may fold in the conversion we just added. */
838    ir_constant *const constant = result->constant_expression_value();
839    return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
840 }
841 
842 
843 /**
844  * Perform automatic type and constant conversion of constructor parameters
845  *
846  * This implements the rules in the "Implicit Conversions" rules, not the
847  * "Conversion and Scalar Constructors".
848  *
849  * After attempting the implicit conversion, an attempt to convert into a
850  * constant valued expression is also done.
851  *
852  * The \c from \c ir_rvalue is converted "in place".
853  *
854  * \param from   Operand that is being converted
855  * \param to     Base type the operand will be converted to
856  * \param state  GLSL compiler state
857  *
858  * \return
859  * If the attempt to convert into a constant expression succeeds, \c true is
860  * returned. Otherwise \c false is returned.
861  */
862 static bool
implicitly_convert_component(ir_rvalue * & from,const glsl_base_type to,struct _mesa_glsl_parse_state * state)863 implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to,
864                              struct _mesa_glsl_parse_state *state)
865 {
866    ir_rvalue *result = from;
867 
868    if (to != from->type->base_type) {
869       const glsl_type *desired_type =
870          glsl_type::get_instance(to,
871                                  from->type->vector_elements,
872                                  from->type->matrix_columns);
873 
874       if (from->type->can_implicitly_convert_to(desired_type, state)) {
875          /* Even though convert_component() implements the constructor
876           * conversion rules (not the implicit conversion rules), its safe
877           * to use it here because we already checked that the implicit
878           * conversion is legal.
879           */
880          result = convert_component(from, desired_type);
881       }
882    }
883 
884    ir_rvalue *const constant = result->constant_expression_value();
885 
886    if (constant != NULL)
887       result = constant;
888 
889    if (from != result) {
890       from->replace_with(result);
891       from = result;
892    }
893 
894    return constant != NULL;
895 }
896 
897 
898 /**
899  * Dereference a specific component from a scalar, vector, or matrix
900  */
901 static ir_rvalue *
dereference_component(ir_rvalue * src,unsigned component)902 dereference_component(ir_rvalue *src, unsigned component)
903 {
904    void *ctx = ralloc_parent(src);
905    assert(component < src->type->components());
906 
907    /* If the source is a constant, just create a new constant instead of a
908     * dereference of the existing constant.
909     */
910    ir_constant *constant = src->as_constant();
911    if (constant)
912       return new(ctx) ir_constant(constant, component);
913 
914    if (src->type->is_scalar()) {
915       return src;
916    } else if (src->type->is_vector()) {
917       return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
918    } else {
919       assert(src->type->is_matrix());
920 
921       /* Dereference a row of the matrix, then call this function again to get
922        * a specific element from that row.
923        */
924       const int c = component / src->type->column_type()->vector_elements;
925       const int r = component % src->type->column_type()->vector_elements;
926       ir_constant *const col_index = new(ctx) ir_constant(c);
927       ir_dereference *const col = new(ctx) ir_dereference_array(src,
928                                                                 col_index);
929 
930       col->type = src->type->column_type();
931 
932       return dereference_component(col, r);
933    }
934 
935    assert(!"Should not get here.");
936    return NULL;
937 }
938 
939 
940 static ir_rvalue *
process_vec_mat_constructor(exec_list * instructions,const glsl_type * constructor_type,YYLTYPE * loc,exec_list * parameters,struct _mesa_glsl_parse_state * state)941 process_vec_mat_constructor(exec_list *instructions,
942                             const glsl_type *constructor_type,
943                             YYLTYPE *loc, exec_list *parameters,
944                             struct _mesa_glsl_parse_state *state)
945 {
946    void *ctx = state;
947 
948    /* The ARB_shading_language_420pack spec says:
949     *
950     * "If an initializer is a list of initializers enclosed in curly braces,
951     *  the variable being declared must be a vector, a matrix, an array, or a
952     *  structure.
953     *
954     *      int i = { 1 }; // illegal, i is not an aggregate"
955     */
956    if (constructor_type->vector_elements <= 1) {
957       _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
958                        "matrices, arrays, and structs");
959       return ir_rvalue::error_value(ctx);
960    }
961 
962    exec_list actual_parameters;
963    const unsigned parameter_count =
964       process_parameters(instructions, &actual_parameters, parameters, state);
965 
966    if (parameter_count == 0
967        || (constructor_type->is_vector() &&
968            constructor_type->vector_elements != parameter_count)
969        || (constructor_type->is_matrix() &&
970            constructor_type->matrix_columns != parameter_count)) {
971       _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
972                        constructor_type->is_vector() ? "vector" : "matrix",
973                        constructor_type->vector_elements);
974       return ir_rvalue::error_value(ctx);
975    }
976 
977    bool all_parameters_are_constant = true;
978 
979    /* Type cast each parameter and, if possible, fold constants. */
980    foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
981       /* Apply implicit conversions (not the scalar constructor rules, see the
982        * spec quote above!) and attempt to convert the parameter to a constant
983        * valued expression. After doing so, track whether or not all the
984        * parameters to the constructor are trivially constant valued
985        * expressions.
986        */
987       all_parameters_are_constant &=
988          implicitly_convert_component(ir, constructor_type->base_type, state);
989 
990       if (constructor_type->is_matrix()) {
991          if (ir->type != constructor_type->column_type()) {
992             _mesa_glsl_error(loc, state, "type error in matrix constructor: "
993                              "expected: %s, found %s",
994                              constructor_type->column_type()->name,
995                              ir->type->name);
996             return ir_rvalue::error_value(ctx);
997          }
998       } else if (ir->type != constructor_type->get_scalar_type()) {
999          _mesa_glsl_error(loc, state, "type error in vector constructor: "
1000                           "expected: %s, found %s",
1001                           constructor_type->get_scalar_type()->name,
1002                           ir->type->name);
1003          return ir_rvalue::error_value(ctx);
1004       }
1005    }
1006 
1007    if (all_parameters_are_constant)
1008       return new(ctx) ir_constant(constructor_type, &actual_parameters);
1009 
1010    ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
1011                                            ir_var_temporary);
1012    instructions->push_tail(var);
1013 
1014    int i = 0;
1015 
1016    foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1017       ir_instruction *assignment = NULL;
1018 
1019       if (var->type->is_matrix()) {
1020          ir_rvalue *lhs =
1021             new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1022          assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
1023       } else {
1024          /* use writemask rather than index for vector */
1025          assert(var->type->is_vector());
1026          assert(i < 4);
1027          ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1028          assignment = new(ctx) ir_assignment(lhs, rhs, NULL,
1029                                              (unsigned)(1 << i));
1030       }
1031 
1032       instructions->push_tail(assignment);
1033 
1034       i++;
1035    }
1036 
1037    return new(ctx) ir_dereference_variable(var);
1038 }
1039 
1040 
1041 static ir_rvalue *
process_array_constructor(exec_list * instructions,const glsl_type * constructor_type,YYLTYPE * loc,exec_list * parameters,struct _mesa_glsl_parse_state * state)1042 process_array_constructor(exec_list *instructions,
1043                           const glsl_type *constructor_type,
1044                           YYLTYPE *loc, exec_list *parameters,
1045                           struct _mesa_glsl_parse_state *state)
1046 {
1047    void *ctx = state;
1048    /* Array constructors come in two forms: sized and unsized.  Sized array
1049     * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
1050     * variables.  In this case the number of parameters must exactly match the
1051     * specified size of the array.
1052     *
1053     * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
1054     * are vec4 variables.  In this case the size of the array being constructed
1055     * is determined by the number of parameters.
1056     *
1057     * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
1058     *
1059     *    "There must be exactly the same number of arguments as the size of
1060     *    the array being constructed. If no size is present in the
1061     *    constructor, then the array is explicitly sized to the number of
1062     *    arguments provided. The arguments are assigned in order, starting at
1063     *    element 0, to the elements of the constructed array. Each argument
1064     *    must be the same type as the element type of the array, or be a type
1065     *    that can be converted to the element type of the array according to
1066     *    Section 4.1.10 "Implicit Conversions.""
1067     */
1068    exec_list actual_parameters;
1069    const unsigned parameter_count =
1070       process_parameters(instructions, &actual_parameters, parameters, state);
1071    bool is_unsized_array = constructor_type->is_unsized_array();
1072 
1073    if ((parameter_count == 0) ||
1074        (!is_unsized_array && (constructor_type->length != parameter_count))) {
1075       const unsigned min_param = is_unsized_array
1076          ? 1 : constructor_type->length;
1077 
1078       _mesa_glsl_error(loc, state, "array constructor must have %s %u "
1079                        "parameter%s",
1080                        is_unsized_array ? "at least" : "exactly",
1081                        min_param, (min_param <= 1) ? "" : "s");
1082       return ir_rvalue::error_value(ctx);
1083    }
1084 
1085    if (is_unsized_array) {
1086       constructor_type =
1087          glsl_type::get_array_instance(constructor_type->fields.array,
1088                                        parameter_count);
1089       assert(constructor_type != NULL);
1090       assert(constructor_type->length == parameter_count);
1091    }
1092 
1093    bool all_parameters_are_constant = true;
1094    const glsl_type *element_type = constructor_type->fields.array;
1095 
1096    /* Type cast each parameter and, if possible, fold constants. */
1097    foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1098       /* Apply implicit conversions (not the scalar constructor rules, see the
1099        * spec quote above!) and attempt to convert the parameter to a constant
1100        * valued expression. After doing so, track whether or not all the
1101        * parameters to the constructor are trivially constant valued
1102        * expressions.
1103        */
1104       all_parameters_are_constant &=
1105          implicitly_convert_component(ir, element_type->base_type, state);
1106 
1107       if (constructor_type->fields.array->is_unsized_array()) {
1108          /* As the inner parameters of the constructor are created without
1109           * knowledge of each other we need to check to make sure unsized
1110           * parameters of unsized constructors all end up with the same size.
1111           *
1112           * e.g we make sure to fail for a constructor like this:
1113           * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
1114           *                       vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
1115           *                       vec4[](vec4(0.0), vec4(1.0)));
1116           */
1117          if (element_type->is_unsized_array()) {
1118             /* This is the first parameter so just get the type */
1119             element_type = ir->type;
1120          } else if (element_type != ir->type) {
1121             _mesa_glsl_error(loc, state, "type error in array constructor: "
1122                              "expected: %s, found %s",
1123                              element_type->name,
1124                              ir->type->name);
1125             return ir_rvalue::error_value(ctx);
1126          }
1127       } else if (ir->type != constructor_type->fields.array) {
1128          _mesa_glsl_error(loc, state, "type error in array constructor: "
1129                           "expected: %s, found %s",
1130                           constructor_type->fields.array->name,
1131                           ir->type->name);
1132          return ir_rvalue::error_value(ctx);
1133       } else {
1134          element_type = ir->type;
1135       }
1136    }
1137 
1138    if (constructor_type->fields.array->is_unsized_array()) {
1139       constructor_type =
1140          glsl_type::get_array_instance(element_type,
1141                                        parameter_count);
1142       assert(constructor_type != NULL);
1143       assert(constructor_type->length == parameter_count);
1144    }
1145 
1146    if (all_parameters_are_constant)
1147       return new(ctx) ir_constant(constructor_type, &actual_parameters);
1148 
1149    ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
1150                                            ir_var_temporary);
1151    instructions->push_tail(var);
1152 
1153    int i = 0;
1154    foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1155       ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
1156                                                      new(ctx) ir_constant(i));
1157 
1158       ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
1159       instructions->push_tail(assignment);
1160 
1161       i++;
1162    }
1163 
1164    return new(ctx) ir_dereference_variable(var);
1165 }
1166 
1167 
1168 /**
1169  * Determine if a list consists of a single scalar r-value
1170  */
1171 bool
single_scalar_parameter(exec_list * parameters)1172 single_scalar_parameter(exec_list *parameters)
1173 {
1174    const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw();
1175    assert(((ir_rvalue *)p)->as_rvalue() != NULL);
1176 
1177    return (p->type->is_scalar() && p->next->is_tail_sentinel());
1178 }
1179 
1180 
1181 /**
1182  * Generate inline code for a vector constructor
1183  *
1184  * The generated constructor code will consist of a temporary variable
1185  * declaration of the same type as the constructor.  A sequence of assignments
1186  * from constructor parameters to the temporary will follow.
1187  *
1188  * \return
1189  * An \c ir_dereference_variable of the temprorary generated in the constructor
1190  * body.
1191  */
1192 ir_rvalue *
emit_inline_vector_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * ctx)1193 emit_inline_vector_constructor(const glsl_type *type,
1194                                exec_list *instructions,
1195                                exec_list *parameters,
1196                                void *ctx)
1197 {
1198    assert(!parameters->is_empty());
1199 
1200    ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
1201    instructions->push_tail(var);
1202 
1203    /* There are three kinds of vector constructors.
1204     *
1205     *  - Construct a vector from a single scalar by replicating that scalar to
1206     *    all components of the vector.
1207     *
1208     *  - Construct a vector from at least a matrix. This case should already
1209     *    have been taken care of in ast_function_expression::hir by breaking
1210     *    down the matrix into a series of column vectors.
1211     *
1212     *  - Construct a vector from an arbirary combination of vectors and
1213     *    scalars.  The components of the constructor parameters are assigned
1214     *    to the vector in order until the vector is full.
1215     */
1216    const unsigned lhs_components = type->components();
1217    if (single_scalar_parameter(parameters)) {
1218       ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw();
1219       ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
1220                                            lhs_components);
1221       ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
1222       const unsigned mask = (1U << lhs_components) - 1;
1223 
1224       assert(rhs->type == lhs->type);
1225 
1226       ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
1227       instructions->push_tail(inst);
1228    } else {
1229       unsigned base_component = 0;
1230       unsigned base_lhs_component = 0;
1231       ir_constant_data data;
1232       unsigned constant_mask = 0, constant_components = 0;
1233 
1234       memset(&data, 0, sizeof(data));
1235 
1236       foreach_in_list(ir_rvalue, param, parameters) {
1237          unsigned rhs_components = param->type->components();
1238 
1239          /* Do not try to assign more components to the vector than it has! */
1240          if ((rhs_components + base_lhs_component) > lhs_components) {
1241             rhs_components = lhs_components - base_lhs_component;
1242          }
1243 
1244          const ir_constant *const c = param->as_constant();
1245          if (c != NULL) {
1246             for (unsigned i = 0; i < rhs_components; i++) {
1247                switch (c->type->base_type) {
1248                case GLSL_TYPE_UINT:
1249                   data.u[i + base_component] = c->get_uint_component(i);
1250                   break;
1251                case GLSL_TYPE_INT:
1252                   data.i[i + base_component] = c->get_int_component(i);
1253                   break;
1254                case GLSL_TYPE_FLOAT:
1255                   data.f[i + base_component] = c->get_float_component(i);
1256                   break;
1257                case GLSL_TYPE_DOUBLE:
1258                   data.d[i + base_component] = c->get_double_component(i);
1259                   break;
1260                case GLSL_TYPE_BOOL:
1261                   data.b[i + base_component] = c->get_bool_component(i);
1262                   break;
1263                default:
1264                   assert(!"Should not get here.");
1265                   break;
1266                }
1267             }
1268 
1269             /* Mask of fields to be written in the assignment. */
1270             constant_mask |=
1271                ((1U << rhs_components) - 1) << base_lhs_component;
1272             constant_components += rhs_components;
1273 
1274             base_component += rhs_components;
1275          }
1276          /* Advance the component index by the number of components
1277           * that were just assigned.
1278           */
1279          base_lhs_component += rhs_components;
1280       }
1281 
1282       if (constant_mask != 0) {
1283          ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1284          const glsl_type *rhs_type =
1285             glsl_type::get_instance(var->type->base_type,
1286                                     constant_components,
1287                                     1);
1288          ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
1289 
1290          ir_instruction *inst =
1291             new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
1292          instructions->push_tail(inst);
1293       }
1294 
1295       base_component = 0;
1296       foreach_in_list(ir_rvalue, param, parameters) {
1297          unsigned rhs_components = param->type->components();
1298 
1299          /* Do not try to assign more components to the vector than it has! */
1300          if ((rhs_components + base_component) > lhs_components) {
1301             rhs_components = lhs_components - base_component;
1302          }
1303 
1304          /* If we do not have any components left to copy, break out of the
1305           * loop. This can happen when initializing a vec4 with a mat3 as the
1306           * mat3 would have been broken into a series of column vectors.
1307           */
1308          if (rhs_components == 0) {
1309             break;
1310          }
1311 
1312          const ir_constant *const c = param->as_constant();
1313          if (c == NULL) {
1314             /* Mask of fields to be written in the assignment. */
1315             const unsigned write_mask = ((1U << rhs_components) - 1)
1316                << base_component;
1317 
1318             ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1319 
1320             /* Generate a swizzle so that LHS and RHS sizes match. */
1321             ir_rvalue *rhs =
1322                new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1323 
1324             ir_instruction *inst =
1325                new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1326             instructions->push_tail(inst);
1327          }
1328 
1329          /* Advance the component index by the number of components that were
1330           * just assigned.
1331           */
1332          base_component += rhs_components;
1333       }
1334    }
1335    return new(ctx) ir_dereference_variable(var);
1336 }
1337 
1338 
1339 /**
1340  * Generate assignment of a portion of a vector to a portion of a matrix column
1341  *
1342  * \param src_base  First component of the source to be used in assignment
1343  * \param column    Column of destination to be assiged
1344  * \param row_base  First component of the destination column to be assigned
1345  * \param count     Number of components to be assigned
1346  *
1347  * \note
1348  * \c src_base + \c count must be less than or equal to the number of
1349  * components in the source vector.
1350  */
1351 ir_instruction *
assign_to_matrix_column(ir_variable * var,unsigned column,unsigned row_base,ir_rvalue * src,unsigned src_base,unsigned count,void * mem_ctx)1352 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1353                         ir_rvalue *src, unsigned src_base, unsigned count,
1354                         void *mem_ctx)
1355 {
1356    ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1357    ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var,
1358                                                                   col_idx);
1359 
1360    assert(column_ref->type->components() >= (row_base + count));
1361    assert(src->type->components() >= (src_base + count));
1362 
1363    /* Generate a swizzle that extracts the number of components from the source
1364     * that are to be assigned to the column of the matrix.
1365     */
1366    if (count < src->type->vector_elements) {
1367       src = new(mem_ctx) ir_swizzle(src,
1368                                     src_base + 0, src_base + 1,
1369                                     src_base + 2, src_base + 3,
1370                                     count);
1371    }
1372 
1373    /* Mask of fields to be written in the assignment. */
1374    const unsigned write_mask = ((1U << count) - 1) << row_base;
1375 
1376    return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1377 }
1378 
1379 
1380 /**
1381  * Generate inline code for a matrix constructor
1382  *
1383  * The generated constructor code will consist of a temporary variable
1384  * declaration of the same type as the constructor.  A sequence of assignments
1385  * from constructor parameters to the temporary will follow.
1386  *
1387  * \return
1388  * An \c ir_dereference_variable of the temprorary generated in the constructor
1389  * body.
1390  */
1391 ir_rvalue *
emit_inline_matrix_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * ctx)1392 emit_inline_matrix_constructor(const glsl_type *type,
1393                                exec_list *instructions,
1394                                exec_list *parameters,
1395                                void *ctx)
1396 {
1397    assert(!parameters->is_empty());
1398 
1399    ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1400    instructions->push_tail(var);
1401 
1402    /* There are three kinds of matrix constructors.
1403     *
1404     *  - Construct a matrix from a single scalar by replicating that scalar to
1405     *    along the diagonal of the matrix and setting all other components to
1406     *    zero.
1407     *
1408     *  - Construct a matrix from an arbirary combination of vectors and
1409     *    scalars.  The components of the constructor parameters are assigned
1410     *    to the matrix in column-major order until the matrix is full.
1411     *
1412     *  - Construct a matrix from a single matrix.  The source matrix is copied
1413     *    to the upper left portion of the constructed matrix, and the remaining
1414     *    elements take values from the identity matrix.
1415     */
1416    ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw();
1417    if (single_scalar_parameter(parameters)) {
1418       /* Assign the scalar to the X component of a vec4, and fill the remaining
1419        * components with zero.
1420        */
1421       glsl_base_type param_base_type = first_param->type->base_type;
1422       assert(param_base_type == GLSL_TYPE_FLOAT ||
1423              param_base_type == GLSL_TYPE_DOUBLE);
1424       ir_variable *rhs_var =
1425          new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
1426                               "mat_ctor_vec",
1427                               ir_var_temporary);
1428       instructions->push_tail(rhs_var);
1429 
1430       ir_constant_data zero;
1431       for (unsigned i = 0; i < 4; i++)
1432          if (param_base_type == GLSL_TYPE_FLOAT)
1433             zero.f[i] = 0.0;
1434          else
1435             zero.d[i] = 0.0;
1436 
1437       ir_instruction *inst =
1438          new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1439                                 new(ctx) ir_constant(rhs_var->type, &zero),
1440                                 NULL);
1441       instructions->push_tail(inst);
1442 
1443       ir_dereference *const rhs_ref =
1444          new(ctx) ir_dereference_variable(rhs_var);
1445 
1446       inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1447       instructions->push_tail(inst);
1448 
1449       /* Assign the temporary vector to each column of the destination matrix
1450        * with a swizzle that puts the X component on the diagonal of the
1451        * matrix.  In some cases this may mean that the X component does not
1452        * get assigned into the column at all (i.e., when the matrix has more
1453        * columns than rows).
1454        */
1455       static const unsigned rhs_swiz[4][4] = {
1456          { 0, 1, 1, 1 },
1457          { 1, 0, 1, 1 },
1458          { 1, 1, 0, 1 },
1459          { 1, 1, 1, 0 }
1460       };
1461 
1462       const unsigned cols_to_init = MIN2(type->matrix_columns,
1463                                          type->vector_elements);
1464       for (unsigned i = 0; i < cols_to_init; i++) {
1465          ir_constant *const col_idx = new(ctx) ir_constant(i);
1466          ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1467                                                                   col_idx);
1468 
1469          ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1470          ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1471                                                     type->vector_elements);
1472 
1473          inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1474          instructions->push_tail(inst);
1475       }
1476 
1477       for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1478          ir_constant *const col_idx = new(ctx) ir_constant(i);
1479          ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1480                                                                   col_idx);
1481 
1482          ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1483          ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1484                                                     type->vector_elements);
1485 
1486          inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1487          instructions->push_tail(inst);
1488       }
1489    } else if (first_param->type->is_matrix()) {
1490       /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1491        *
1492        *     "If a matrix is constructed from a matrix, then each component
1493        *     (column i, row j) in the result that has a corresponding
1494        *     component (column i, row j) in the argument will be initialized
1495        *     from there. All other components will be initialized to the
1496        *     identity matrix. If a matrix argument is given to a matrix
1497        *     constructor, it is an error to have any other arguments."
1498        */
1499       assert(first_param->next->is_tail_sentinel());
1500       ir_rvalue *const src_matrix = first_param;
1501 
1502       /* If the source matrix is smaller, pre-initialize the relavent parts of
1503        * the destination matrix to the identity matrix.
1504        */
1505       if ((src_matrix->type->matrix_columns < var->type->matrix_columns) ||
1506           (src_matrix->type->vector_elements < var->type->vector_elements)) {
1507 
1508          /* If the source matrix has fewer rows, every column of the
1509           * destination must be initialized.  Otherwise only the columns in
1510           * the destination that do not exist in the source must be
1511           * initialized.
1512           */
1513          unsigned col =
1514             (src_matrix->type->vector_elements < var->type->vector_elements)
1515             ? 0 : src_matrix->type->matrix_columns;
1516 
1517          const glsl_type *const col_type = var->type->column_type();
1518          for (/* empty */; col < var->type->matrix_columns; col++) {
1519             ir_constant_data ident;
1520 
1521             if (!col_type->is_double()) {
1522                ident.f[0] = 0.0f;
1523                ident.f[1] = 0.0f;
1524                ident.f[2] = 0.0f;
1525                ident.f[3] = 0.0f;
1526                ident.f[col] = 1.0f;
1527             } else {
1528                ident.d[0] = 0.0;
1529                ident.d[1] = 0.0;
1530                ident.d[2] = 0.0;
1531                ident.d[3] = 0.0;
1532                ident.d[col] = 1.0;
1533             }
1534 
1535             ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1536 
1537             ir_rvalue *const lhs =
1538                new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1539 
1540             ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1541             instructions->push_tail(inst);
1542          }
1543       }
1544 
1545       /* Assign columns from the source matrix to the destination matrix.
1546        *
1547        * Since the parameter will be used in the RHS of multiple assignments,
1548        * generate a temporary and copy the paramter there.
1549        */
1550       ir_variable *const rhs_var =
1551          new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1552                               ir_var_temporary);
1553       instructions->push_tail(rhs_var);
1554 
1555       ir_dereference *const rhs_var_ref =
1556          new(ctx) ir_dereference_variable(rhs_var);
1557       ir_instruction *const inst =
1558          new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1559       instructions->push_tail(inst);
1560 
1561       const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1562                                      var->type->vector_elements);
1563       const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1564                                      var->type->matrix_columns);
1565 
1566       unsigned swiz[4] = { 0, 0, 0, 0 };
1567       for (unsigned i = 1; i < last_row; i++)
1568          swiz[i] = i;
1569 
1570       const unsigned write_mask = (1U << last_row) - 1;
1571 
1572       for (unsigned i = 0; i < last_col; i++) {
1573          ir_dereference *const lhs =
1574             new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1575          ir_rvalue *const rhs_col =
1576             new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1577 
1578          /* If one matrix has columns that are smaller than the columns of the
1579           * other matrix, wrap the column access of the larger with a swizzle
1580           * so that the LHS and RHS of the assignment have the same size (and
1581           * therefore have the same type).
1582           *
1583           * It would be perfectly valid to unconditionally generate the
1584           * swizzles, this this will typically result in a more compact IR
1585           * tree.
1586           */
1587          ir_rvalue *rhs;
1588          if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1589             rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1590          } else {
1591             rhs = rhs_col;
1592          }
1593 
1594          ir_instruction *inst =
1595             new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1596          instructions->push_tail(inst);
1597       }
1598    } else {
1599       const unsigned cols = type->matrix_columns;
1600       const unsigned rows = type->vector_elements;
1601       unsigned remaining_slots = rows * cols;
1602       unsigned col_idx = 0;
1603       unsigned row_idx = 0;
1604 
1605       foreach_in_list(ir_rvalue, rhs, parameters) {
1606          unsigned rhs_components = rhs->type->components();
1607          unsigned rhs_base = 0;
1608 
1609          if (remaining_slots == 0)
1610             break;
1611 
1612          /* Since the parameter might be used in the RHS of two assignments,
1613           * generate a temporary and copy the paramter there.
1614           */
1615          ir_variable *rhs_var =
1616             new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1617          instructions->push_tail(rhs_var);
1618 
1619          ir_dereference *rhs_var_ref =
1620             new(ctx) ir_dereference_variable(rhs_var);
1621          ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1622          instructions->push_tail(inst);
1623 
1624          do {
1625             /* Assign the current parameter to as many components of the matrix
1626              * as it will fill.
1627              *
1628              * NOTE: A single vector parameter can span two matrix columns.  A
1629              * single vec4, for example, can completely fill a mat2.
1630              */
1631             unsigned count = MIN2(rows - row_idx,
1632                                   rhs_components - rhs_base);
1633 
1634             rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1635             ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1636                                                            row_idx,
1637                                                            rhs_var_ref,
1638                                                            rhs_base,
1639                                                            count, ctx);
1640             instructions->push_tail(inst);
1641             rhs_base += count;
1642             row_idx += count;
1643             remaining_slots -= count;
1644 
1645             /* Sometimes, there is still data left in the parameters and
1646              * components left to be set in the destination but in other
1647              * column.
1648              */
1649             if (row_idx >= rows) {
1650                row_idx = 0;
1651                col_idx++;
1652             }
1653          } while(remaining_slots > 0 && rhs_base < rhs_components);
1654       }
1655    }
1656 
1657    return new(ctx) ir_dereference_variable(var);
1658 }
1659 
1660 
1661 ir_rvalue *
emit_inline_record_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * mem_ctx)1662 emit_inline_record_constructor(const glsl_type *type,
1663                                exec_list *instructions,
1664                                exec_list *parameters,
1665                                void *mem_ctx)
1666 {
1667    ir_variable *const var =
1668       new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1669    ir_dereference_variable *const d =
1670       new(mem_ctx) ir_dereference_variable(var);
1671 
1672    instructions->push_tail(var);
1673 
1674    exec_node *node = parameters->get_head_raw();
1675    for (unsigned i = 0; i < type->length; i++) {
1676       assert(!node->is_tail_sentinel());
1677 
1678       ir_dereference *const lhs =
1679          new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1680                                             type->fields.structure[i].name);
1681 
1682       ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1683       assert(rhs != NULL);
1684 
1685       ir_instruction *const assign =
1686          new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1687 
1688       instructions->push_tail(assign);
1689       node = node->next;
1690    }
1691 
1692    return d;
1693 }
1694 
1695 
1696 static ir_rvalue *
process_record_constructor(exec_list * instructions,const glsl_type * constructor_type,YYLTYPE * loc,exec_list * parameters,struct _mesa_glsl_parse_state * state)1697 process_record_constructor(exec_list *instructions,
1698                            const glsl_type *constructor_type,
1699                            YYLTYPE *loc, exec_list *parameters,
1700                            struct _mesa_glsl_parse_state *state)
1701 {
1702    void *ctx = state;
1703    /* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec:
1704     *
1705     *    "The arguments to the constructor will be used to set the structure's
1706     *     fields, in order, using one argument per field. Each argument must
1707     *     be the same type as the field it sets, or be a type that can be
1708     *     converted to the field's type according to Section 4.1.10 “Implicit
1709     *     Conversions.”"
1710     *
1711     * From page 35 (page 41 of the PDF) of the GLSL 4.20 spec:
1712     *
1713     *    "In all cases, the innermost initializer (i.e., not a list of
1714     *     initializers enclosed in curly braces) applied to an object must
1715     *     have the same type as the object being initialized or be a type that
1716     *     can be converted to the object's type according to section 4.1.10
1717     *     "Implicit Conversions". In the latter case, an implicit conversion
1718     *     will be done on the initializer before the assignment is done."
1719     */
1720    exec_list actual_parameters;
1721 
1722    const unsigned parameter_count =
1723          process_parameters(instructions, &actual_parameters, parameters,
1724                             state);
1725 
1726    if (parameter_count != constructor_type->length) {
1727       _mesa_glsl_error(loc, state,
1728                        "%s parameters in constructor for `%s'",
1729                        parameter_count > constructor_type->length
1730                        ? "too many": "insufficient",
1731                        constructor_type->name);
1732       return ir_rvalue::error_value(ctx);
1733    }
1734 
1735    bool all_parameters_are_constant = true;
1736 
1737    int i = 0;
1738    /* Type cast each parameter and, if possible, fold constants. */
1739    foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1740 
1741       const glsl_struct_field *struct_field =
1742          &constructor_type->fields.structure[i];
1743 
1744       /* Apply implicit conversions (not the scalar constructor rules, see the
1745        * spec quote above!) and attempt to convert the parameter to a constant
1746        * valued expression. After doing so, track whether or not all the
1747        * parameters to the constructor are trivially constant valued
1748        * expressions.
1749        */
1750       all_parameters_are_constant &=
1751          implicitly_convert_component(ir, struct_field->type->base_type,
1752                                       state);
1753 
1754       if (ir->type != struct_field->type) {
1755          _mesa_glsl_error(loc, state,
1756                           "parameter type mismatch in constructor for `%s.%s' "
1757                           "(%s vs %s)",
1758                           constructor_type->name,
1759                           struct_field->name,
1760                           ir->type->name,
1761                           struct_field->type->name);
1762          return ir_rvalue::error_value(ctx);
1763       }
1764 
1765       i++;
1766    }
1767 
1768    if (all_parameters_are_constant) {
1769       return new(ctx) ir_constant(constructor_type, &actual_parameters);
1770    } else {
1771       return emit_inline_record_constructor(constructor_type, instructions,
1772                                             &actual_parameters, state);
1773    }
1774 }
1775 
1776 ir_rvalue *
handle_method(exec_list * instructions,struct _mesa_glsl_parse_state * state)1777 ast_function_expression::handle_method(exec_list *instructions,
1778                                        struct _mesa_glsl_parse_state *state)
1779 {
1780    const ast_expression *field = subexpressions[0];
1781    ir_rvalue *op;
1782    ir_rvalue *result;
1783    void *ctx = state;
1784    /* Handle "method calls" in GLSL 1.20 - namely, array.length() */
1785    YYLTYPE loc = get_location();
1786    state->check_version(120, 300, &loc, "methods not supported");
1787 
1788    const char *method;
1789    method = field->primary_expression.identifier;
1790 
1791    /* This would prevent to raise "uninitialized variable" warnings when
1792     * calling array.length.
1793     */
1794    field->subexpressions[0]->set_is_lhs(true);
1795    op = field->subexpressions[0]->hir(instructions, state);
1796    if (strcmp(method, "length") == 0) {
1797       if (!this->expressions.is_empty()) {
1798          _mesa_glsl_error(&loc, state, "length method takes no arguments");
1799          goto fail;
1800       }
1801 
1802       if (op->type->is_array()) {
1803          if (op->type->is_unsized_array()) {
1804             if (!state->has_shader_storage_buffer_objects()) {
1805                _mesa_glsl_error(&loc, state,
1806                                 "length called on unsized array"
1807                                 " only available with"
1808                                 " ARB_shader_storage_buffer_object");
1809             }
1810             /* Calculate length of an unsized array in run-time */
1811             result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length,
1812                                             op);
1813          } else {
1814             result = new(ctx) ir_constant(op->type->array_size());
1815          }
1816       } else if (op->type->is_vector()) {
1817          if (state->has_420pack()) {
1818             /* .length() returns int. */
1819             result = new(ctx) ir_constant((int) op->type->vector_elements);
1820          } else {
1821             _mesa_glsl_error(&loc, state, "length method on matrix only"
1822                              " available with ARB_shading_language_420pack");
1823             goto fail;
1824          }
1825       } else if (op->type->is_matrix()) {
1826          if (state->has_420pack()) {
1827             /* .length() returns int. */
1828             result = new(ctx) ir_constant((int) op->type->matrix_columns);
1829          } else {
1830             _mesa_glsl_error(&loc, state, "length method on matrix only"
1831                              " available with ARB_shading_language_420pack");
1832             goto fail;
1833          }
1834       } else {
1835          _mesa_glsl_error(&loc, state, "length called on scalar.");
1836          goto fail;
1837       }
1838    } else {
1839       _mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
1840       goto fail;
1841    }
1842    return result;
1843  fail:
1844    return ir_rvalue::error_value(ctx);
1845 }
1846 
1847 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)1848 ast_function_expression::hir(exec_list *instructions,
1849                              struct _mesa_glsl_parse_state *state)
1850 {
1851    void *ctx = state;
1852    /* There are three sorts of function calls.
1853     *
1854     * 1. constructors - The first subexpression is an ast_type_specifier.
1855     * 2. methods - Only the .length() method of array types.
1856     * 3. functions - Calls to regular old functions.
1857     *
1858     */
1859    if (is_constructor()) {
1860       const ast_type_specifier *type =
1861          (ast_type_specifier *) subexpressions[0];
1862       YYLTYPE loc = type->get_location();
1863       const char *name;
1864 
1865       const glsl_type *const constructor_type = type->glsl_type(& name, state);
1866 
1867       /* constructor_type can be NULL if a variable with the same name as the
1868        * structure has come into scope.
1869        */
1870       if (constructor_type == NULL) {
1871          _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1872                           "may be shadowed by a variable with the same name)",
1873                           type->type_name);
1874          return ir_rvalue::error_value(ctx);
1875       }
1876 
1877 
1878       /* Constructors for opaque types are illegal.
1879        */
1880       if (constructor_type->contains_opaque()) {
1881          _mesa_glsl_error(& loc, state, "cannot construct opaque type `%s'",
1882                           constructor_type->name);
1883          return ir_rvalue::error_value(ctx);
1884       }
1885 
1886       if (constructor_type->is_subroutine()) {
1887          _mesa_glsl_error(& loc, state,
1888                           "subroutine name cannot be a constructor `%s'",
1889                           constructor_type->name);
1890          return ir_rvalue::error_value(ctx);
1891       }
1892 
1893       if (constructor_type->is_array()) {
1894          if (!state->check_version(120, 300, &loc,
1895                                    "array constructors forbidden")) {
1896             return ir_rvalue::error_value(ctx);
1897          }
1898 
1899          return process_array_constructor(instructions, constructor_type,
1900                                           & loc, &this->expressions, state);
1901       }
1902 
1903 
1904       /* There are two kinds of constructor calls.  Constructors for arrays and
1905        * structures must have the exact number of arguments with matching types
1906        * in the correct order.  These constructors follow essentially the same
1907        * type matching rules as functions.
1908        *
1909        * Constructors for built-in language types, such as mat4 and vec2, are
1910        * free form.  The only requirements are that the parameters must provide
1911        * enough values of the correct scalar type and that no arguments are
1912        * given past the last used argument.
1913        *
1914        * When using the C-style initializer syntax from GLSL 4.20, constructors
1915        * must have the exact number of arguments with matching types in the
1916        * correct order.
1917        */
1918       if (constructor_type->is_record()) {
1919          return process_record_constructor(instructions, constructor_type,
1920                                            &loc, &this->expressions,
1921                                            state);
1922       }
1923 
1924       if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1925          return ir_rvalue::error_value(ctx);
1926 
1927       /* Total number of components of the type being constructed. */
1928       const unsigned type_components = constructor_type->components();
1929 
1930       /* Number of components from parameters that have actually been
1931        * consumed.  This is used to perform several kinds of error checking.
1932        */
1933       unsigned components_used = 0;
1934 
1935       unsigned matrix_parameters = 0;
1936       unsigned nonmatrix_parameters = 0;
1937       exec_list actual_parameters;
1938 
1939       foreach_list_typed(ast_node, ast, link, &this->expressions) {
1940          ir_rvalue *result = ast->hir(instructions, state);
1941 
1942          /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1943           *
1944           *    "It is an error to provide extra arguments beyond this
1945           *    last used argument."
1946           */
1947          if (components_used >= type_components) {
1948             _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1949                              "constructor",
1950                              constructor_type->name);
1951             return ir_rvalue::error_value(ctx);
1952          }
1953 
1954          if (!result->type->is_numeric() && !result->type->is_boolean()) {
1955             _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1956                              "non-numeric data type",
1957                              constructor_type->name);
1958             return ir_rvalue::error_value(ctx);
1959          }
1960 
1961          /* Count the number of matrix and nonmatrix parameters.  This
1962           * is used below to enforce some of the constructor rules.
1963           */
1964          if (result->type->is_matrix())
1965             matrix_parameters++;
1966          else
1967             nonmatrix_parameters++;
1968 
1969          actual_parameters.push_tail(result);
1970          components_used += result->type->components();
1971       }
1972 
1973       /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1974        *
1975        *    "It is an error to construct matrices from other matrices. This
1976        *    is reserved for future use."
1977        */
1978       if (matrix_parameters > 0
1979           && constructor_type->is_matrix()
1980           && !state->check_version(120, 100, &loc,
1981                                    "cannot construct `%s' from a matrix",
1982                                    constructor_type->name)) {
1983          return ir_rvalue::error_value(ctx);
1984       }
1985 
1986       /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1987        *
1988        *    "If a matrix argument is given to a matrix constructor, it is
1989        *    an error to have any other arguments."
1990        */
1991       if ((matrix_parameters > 0)
1992           && ((matrix_parameters + nonmatrix_parameters) > 1)
1993           && constructor_type->is_matrix()) {
1994          _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1995                           "matrix must be only parameter",
1996                           constructor_type->name);
1997          return ir_rvalue::error_value(ctx);
1998       }
1999 
2000       /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2001        *
2002        *    "In these cases, there must be enough components provided in the
2003        *    arguments to provide an initializer for every component in the
2004        *    constructed value."
2005        */
2006       if (components_used < type_components && components_used != 1
2007           && matrix_parameters == 0) {
2008          _mesa_glsl_error(& loc, state, "too few components to construct "
2009                           "`%s'",
2010                           constructor_type->name);
2011          return ir_rvalue::error_value(ctx);
2012       }
2013 
2014       /* Matrices can never be consumed as is by any constructor but matrix
2015        * constructors. If the constructor type is not matrix, always break the
2016        * matrix up into a series of column vectors.
2017        */
2018       if (!constructor_type->is_matrix()) {
2019          foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
2020             if (!matrix->type->is_matrix())
2021                continue;
2022 
2023             /* Create a temporary containing the matrix. */
2024             ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
2025                                                     ir_var_temporary);
2026             instructions->push_tail(var);
2027             instructions->push_tail(
2028                new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
2029                                       matrix, NULL));
2030             var->constant_value = matrix->constant_expression_value();
2031 
2032             /* Replace the matrix with dereferences of its columns. */
2033             for (int i = 0; i < matrix->type->matrix_columns; i++) {
2034                matrix->insert_before(
2035                   new (ctx) ir_dereference_array(var,
2036                                                  new(ctx) ir_constant(i)));
2037             }
2038             matrix->remove();
2039          }
2040       }
2041 
2042       bool all_parameters_are_constant = true;
2043 
2044       /* Type cast each parameter and, if possible, fold constants.*/
2045       foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
2046          const glsl_type *desired_type =
2047             glsl_type::get_instance(constructor_type->base_type,
2048                                     ir->type->vector_elements,
2049                                     ir->type->matrix_columns);
2050          ir_rvalue *result = convert_component(ir, desired_type);
2051 
2052          /* Attempt to convert the parameter to a constant valued expression.
2053           * After doing so, track whether or not all the parameters to the
2054           * constructor are trivially constant valued expressions.
2055           */
2056          ir_rvalue *const constant = result->constant_expression_value();
2057 
2058          if (constant != NULL)
2059             result = constant;
2060          else
2061             all_parameters_are_constant = false;
2062 
2063          if (result != ir) {
2064             ir->replace_with(result);
2065          }
2066       }
2067 
2068       /* If all of the parameters are trivially constant, create a
2069        * constant representing the complete collection of parameters.
2070        */
2071       if (all_parameters_are_constant) {
2072          return new(ctx) ir_constant(constructor_type, &actual_parameters);
2073       } else if (constructor_type->is_scalar()) {
2074          return dereference_component((ir_rvalue *)
2075                                       actual_parameters.get_head_raw(),
2076                                       0);
2077       } else if (constructor_type->is_vector()) {
2078          return emit_inline_vector_constructor(constructor_type,
2079                                                instructions,
2080                                                &actual_parameters,
2081                                                ctx);
2082       } else {
2083          assert(constructor_type->is_matrix());
2084          return emit_inline_matrix_constructor(constructor_type,
2085                                                instructions,
2086                                                &actual_parameters,
2087                                                ctx);
2088       }
2089    } else if (subexpressions[0]->oper == ast_field_selection) {
2090       return handle_method(instructions, state);
2091    } else {
2092       const ast_expression *id = subexpressions[0];
2093       const char *func_name = NULL;
2094       YYLTYPE loc = get_location();
2095       exec_list actual_parameters;
2096       ir_variable *sub_var = NULL;
2097       ir_rvalue *array_idx = NULL;
2098 
2099       process_parameters(instructions, &actual_parameters, &this->expressions,
2100                          state);
2101 
2102       if (id->oper == ast_array_index) {
2103          array_idx = generate_array_index(ctx, instructions, state, loc,
2104                                           id->subexpressions[0],
2105                                           id->subexpressions[1], &func_name,
2106                                           &actual_parameters);
2107       } else if (id->oper == ast_identifier) {
2108          func_name = id->primary_expression.identifier;
2109       } else {
2110          _mesa_glsl_error(&loc, state, "function name is not an identifier");
2111       }
2112 
2113       /* an error was emitted earlier */
2114       if (!func_name)
2115          return ir_rvalue::error_value(ctx);
2116 
2117       ir_function_signature *sig =
2118          match_function_by_name(func_name, &actual_parameters, state);
2119 
2120       ir_rvalue *value = NULL;
2121       if (sig == NULL) {
2122          sig = match_subroutine_by_name(func_name, &actual_parameters,
2123                                         state, &sub_var);
2124       }
2125 
2126       if (sig == NULL) {
2127          no_matching_function_error(func_name, &loc,
2128                                     &actual_parameters, state);
2129          value = ir_rvalue::error_value(ctx);
2130       } else if (!verify_parameter_modes(state, sig,
2131                                          actual_parameters,
2132                                          this->expressions)) {
2133          /* an error has already been emitted */
2134          value = ir_rvalue::error_value(ctx);
2135       } else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) {
2136          /* ftransform refers to global variables, and we don't have any code
2137           * for remapping the variable references in the built-in shader.
2138           */
2139          ir_variable *mvp =
2140             state->symbols->get_variable("gl_ModelViewProjectionMatrix");
2141          ir_variable *vtx = state->symbols->get_variable("gl_Vertex");
2142          value = new(ctx) ir_expression(ir_binop_mul, glsl_type::vec4_type,
2143                                         new(ctx) ir_dereference_variable(mvp),
2144                                         new(ctx) ir_dereference_variable(vtx));
2145       } else {
2146          if (state->stage == MESA_SHADER_TESS_CTRL &&
2147              sig->is_builtin() && strcmp(func_name, "barrier") == 0) {
2148             if (state->current_function == NULL ||
2149                 strcmp(state->current_function->function_name(), "main") != 0) {
2150                _mesa_glsl_error(&loc, state,
2151                                 "barrier() may only be used in main()");
2152             }
2153 
2154             if (state->found_return) {
2155                _mesa_glsl_error(&loc, state,
2156                                 "barrier() may not be used after return");
2157             }
2158 
2159             if (instructions != &state->current_function->body) {
2160                _mesa_glsl_error(&loc, state,
2161                                 "barrier() may not be used in control flow");
2162             }
2163          }
2164 
2165          value = generate_call(instructions, sig, &actual_parameters, sub_var,
2166                                array_idx, state, sig->is_builtin());
2167          if (!value) {
2168             ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type,
2169                                                           "void_var",
2170                                                           ir_var_temporary);
2171             instructions->push_tail(tmp);
2172             value = new(ctx) ir_dereference_variable(tmp);
2173          }
2174       }
2175 
2176       return value;
2177    }
2178 
2179    unreachable("not reached");
2180 }
2181 
2182 bool
has_sequence_subexpression() const2183 ast_function_expression::has_sequence_subexpression() const
2184 {
2185    foreach_list_typed(const ast_node, ast, link, &this->expressions) {
2186       if (ast->has_sequence_subexpression())
2187          return true;
2188    }
2189 
2190    return false;
2191 }
2192 
2193 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2194 ast_aggregate_initializer::hir(exec_list *instructions,
2195                                struct _mesa_glsl_parse_state *state)
2196 {
2197    void *ctx = state;
2198    YYLTYPE loc = this->get_location();
2199 
2200    if (!this->constructor_type) {
2201       _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
2202       return ir_rvalue::error_value(ctx);
2203    }
2204    const glsl_type *const constructor_type = this->constructor_type;
2205 
2206    if (!state->has_420pack()) {
2207       _mesa_glsl_error(&loc, state, "C-style initialization requires the "
2208                        "GL_ARB_shading_language_420pack extension");
2209       return ir_rvalue::error_value(ctx);
2210    }
2211 
2212    if (constructor_type->is_array()) {
2213       return process_array_constructor(instructions, constructor_type, &loc,
2214                                        &this->expressions, state);
2215    }
2216 
2217    if (constructor_type->is_record()) {
2218       return process_record_constructor(instructions, constructor_type, &loc,
2219                                         &this->expressions, state);
2220    }
2221 
2222    return process_vec_mat_constructor(instructions, constructor_type, &loc,
2223                                       &this->expressions, state);
2224 }
2225