• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "ir.h"
25 #include "ir_builder.h"
26 #include "ir_optimization.h"
27 #include "ir_hierarchical_visitor.h"
28 #include "program/prog_instruction.h"
29 #include "program/prog_statevars.h"
30 #include "util/bitscan.h"
31 
32 using namespace ir_builder;
33 
34 #define imm1(x) new(mem_ctx) ir_constant((float) (x), 1)
35 #define imm3(x) new(mem_ctx) ir_constant((float) (x), 3)
36 
37 static ir_rvalue *
blend_multiply(ir_variable * src,ir_variable * dst)38 blend_multiply(ir_variable *src, ir_variable *dst)
39 {
40    /* f(Cs,Cd) = Cs*Cd */
41    return mul(src, dst);
42 }
43 
44 static ir_rvalue *
blend_screen(ir_variable * src,ir_variable * dst)45 blend_screen(ir_variable *src, ir_variable *dst)
46 {
47    /* f(Cs,Cd) = Cs+Cd-Cs*Cd */
48    return sub(add(src, dst), mul(src, dst));
49 }
50 
51 static ir_rvalue *
blend_overlay(ir_variable * src,ir_variable * dst)52 blend_overlay(ir_variable *src, ir_variable *dst)
53 {
54    void *mem_ctx = ralloc_parent(src);
55 
56    /* f(Cs,Cd) = 2*Cs*Cd, if Cd <= 0.5
57     *            1-2*(1-Cs)*(1-Cd), otherwise
58     */
59    ir_rvalue *rule_1 = mul(imm3(2), mul(src, dst));
60    ir_rvalue *rule_2 =
61       sub(imm3(1), mul(imm3(2), mul(sub(imm3(1), src), sub(imm3(1), dst))));
62    return csel(lequal(dst, imm3(0.5f)), rule_1, rule_2);
63 }
64 
65 static ir_rvalue *
blend_darken(ir_variable * src,ir_variable * dst)66 blend_darken(ir_variable *src, ir_variable *dst)
67 {
68    /* f(Cs,Cd) = min(Cs,Cd) */
69    return min2(src, dst);
70 }
71 
72 static ir_rvalue *
blend_lighten(ir_variable * src,ir_variable * dst)73 blend_lighten(ir_variable *src, ir_variable *dst)
74 {
75    /* f(Cs,Cd) = max(Cs,Cd) */
76    return max2(src, dst);
77 }
78 
79 static ir_rvalue *
blend_colordodge(ir_variable * src,ir_variable * dst)80 blend_colordodge(ir_variable *src, ir_variable *dst)
81 {
82    void *mem_ctx = ralloc_parent(src);
83 
84    /* f(Cs,Cd) =
85     *   0, if Cd <= 0
86     *   min(1,Cd/(1-Cs)), if Cd > 0 and Cs < 1
87     *   1, if Cd > 0 and Cs >= 1
88     */
89    return csel(lequal(dst, imm3(0)), imm3(0),
90                csel(gequal(src, imm3(1)), imm3(1),
91                     min2(imm3(1), div(dst, sub(imm3(1), src)))));
92 }
93 
94 static ir_rvalue *
blend_colorburn(ir_variable * src,ir_variable * dst)95 blend_colorburn(ir_variable *src, ir_variable *dst)
96 {
97    void *mem_ctx = ralloc_parent(src);
98 
99    /* f(Cs,Cd) =
100     *   1, if Cd >= 1
101     *   1 - min(1,(1-Cd)/Cs), if Cd < 1 and Cs > 0
102     *   0, if Cd < 1 and Cs <= 0
103     */
104    return csel(gequal(dst, imm3(1)), imm3(1),
105                csel(lequal(src, imm3(0)), imm3(0),
106                     sub(imm3(1), min2(imm3(1), div(sub(imm3(1), dst), src)))));
107 }
108 
109 static ir_rvalue *
blend_hardlight(ir_variable * src,ir_variable * dst)110 blend_hardlight(ir_variable *src, ir_variable *dst)
111 {
112    void *mem_ctx = ralloc_parent(src);
113 
114    /* f(Cs,Cd) = 2*Cs*Cd, if Cs <= 0.5
115     *            1-2*(1-Cs)*(1-Cd), otherwise
116     */
117    ir_rvalue *rule_1 = mul(imm3(2), mul(src, dst));
118    ir_rvalue *rule_2 =
119       sub(imm3(1), mul(imm3(2), mul(sub(imm3(1), src), sub(imm3(1), dst))));
120    return csel(lequal(src, imm3(0.5f)), rule_1, rule_2);
121 }
122 
123 static ir_rvalue *
blend_softlight(ir_variable * src,ir_variable * dst)124 blend_softlight(ir_variable *src, ir_variable *dst)
125 {
126    void *mem_ctx = ralloc_parent(src);
127 
128    /* f(Cs,Cd) =
129     *   Cd-(1-2*Cs)*Cd*(1-Cd),
130     *     if Cs <= 0.5
131     *   Cd+(2*Cs-1)*Cd*((16*Cd-12)*Cd+3),
132     *     if Cs > 0.5 and Cd <= 0.25
133     *   Cd+(2*Cs-1)*(sqrt(Cd)-Cd),
134     *     if Cs > 0.5 and Cd > 0.25
135     *
136     * We can simplify this to
137     *
138     * f(Cs,Cd) = Cd+(2*Cs-1)*g(Cs,Cd) where
139     * g(Cs,Cd) = Cd*Cd-Cd             if Cs <= 0.5
140     *            Cd*((16*Cd-12)*Cd+3) if Cs > 0.5 and Cd <= 0.25
141     *            sqrt(Cd)-Cd,         otherwise
142     */
143    ir_rvalue *factor_1 = mul(dst, sub(imm3(1), dst));
144    ir_rvalue *factor_2 =
145       mul(dst, add(mul(sub(mul(imm3(16), dst), imm3(12)), dst), imm3(3)));
146    ir_rvalue *factor_3 = sub(sqrt(dst), dst);
147    ir_rvalue *factor = csel(lequal(src, imm3(0.5f)), factor_1,
148                             csel(lequal(dst, imm3(0.25f)),
149                                         factor_2, factor_3));
150    return add(dst, mul(sub(mul(imm3(2), src), imm3(1)), factor));
151 }
152 
153 static ir_rvalue *
blend_difference(ir_variable * src,ir_variable * dst)154 blend_difference(ir_variable *src, ir_variable *dst)
155 {
156    return abs(sub(dst, src));
157 }
158 
159 static ir_rvalue *
blend_exclusion(ir_variable * src,ir_variable * dst)160 blend_exclusion(ir_variable *src, ir_variable *dst)
161 {
162    void *mem_ctx = ralloc_parent(src);
163 
164    return add(src, sub(dst, mul(imm3(2), mul(src, dst))));
165 }
166 
167 /* Return the minimum of a vec3's components */
168 static ir_rvalue *
minv3(ir_variable * v)169 minv3(ir_variable *v)
170 {
171    return min2(min2(swizzle_x(v), swizzle_y(v)), swizzle_z(v));
172 }
173 
174 /* Return the maximum of a vec3's components */
175 static ir_rvalue *
maxv3(ir_variable * v)176 maxv3(ir_variable *v)
177 {
178    return max2(max2(swizzle_x(v), swizzle_y(v)), swizzle_z(v));
179 }
180 
181 static ir_rvalue *
lumv3(ir_variable * c)182 lumv3(ir_variable *c)
183 {
184    ir_constant_data data;
185    data.f[0] = 0.30;
186    data.f[1] = 0.59;
187    data.f[2] = 0.11;
188 
189    void *mem_ctx = ralloc_parent(c);
190 
191    /* dot(c, vec3(0.30, 0.59, 0.11)) */
192    return dot(c, new(mem_ctx) ir_constant(glsl_type::vec3_type, &data));
193 }
194 
195 static ir_rvalue *
satv3(ir_variable * c)196 satv3(ir_variable *c)
197 {
198    return sub(maxv3(c), minv3(c));
199 }
200 
201 /* Take the base RGB color <cbase> and override its luminosity with that
202  * of the RGB color <clum>.
203  *
204  * This follows the equations given in the ES 3.2 (June 15th, 2016)
205  * specification.  Revision 16 of GL_KHR_blend_equation_advanced and
206  * revision 9 of GL_NV_blend_equation_advanced specify a different set
207  * of equations.  Older revisions match ES 3.2's text, and dEQP expects
208  * the ES 3.2 rules implemented here.
209  */
210 static void
set_lum(ir_factory * f,ir_variable * color,ir_variable * cbase,ir_variable * clum)211 set_lum(ir_factory *f,
212         ir_variable *color,
213         ir_variable *cbase,
214         ir_variable *clum)
215 {
216    void *mem_ctx = f->mem_ctx;
217    f->emit(assign(color, add(cbase, sub(lumv3(clum), lumv3(cbase)))));
218 
219    ir_variable *llum = f->make_temp(glsl_type::float_type, "__blend_lum");
220    ir_variable *mincol = f->make_temp(glsl_type::float_type, "__blend_mincol");
221    ir_variable *maxcol = f->make_temp(glsl_type::float_type, "__blend_maxcol");
222 
223    f->emit(assign(llum, lumv3(color)));
224    f->emit(assign(mincol, minv3(color)));
225    f->emit(assign(maxcol, maxv3(color)));
226 
227    f->emit(if_tree(less(mincol, imm1(0)),
228                    assign(color, add(llum, div(mul(sub(color, llum), llum),
229                                                sub(llum, mincol)))),
230                    if_tree(greater(maxcol, imm1(1)),
231                            assign(color, add(llum, div(mul(sub(color, llum),
232                                                            sub(imm3(1), llum)),
233                                                        sub(maxcol, llum)))))));
234 
235 }
236 
237 /* Take the base RGB color <cbase> and override its saturation with
238  * that of the RGB color <csat>.  The override the luminosity of the
239  * result with that of the RGB color <clum>.
240  */
241 static void
set_lum_sat(ir_factory * f,ir_variable * color,ir_variable * cbase,ir_variable * csat,ir_variable * clum)242 set_lum_sat(ir_factory *f,
243             ir_variable *color,
244             ir_variable *cbase,
245             ir_variable *csat,
246             ir_variable *clum)
247 {
248    void *mem_ctx = f->mem_ctx;
249 
250    ir_rvalue *minbase = minv3(cbase);
251    ir_rvalue *ssat = satv3(csat);
252 
253    ir_variable *sbase = f->make_temp(glsl_type::float_type, "__blend_sbase");
254    f->emit(assign(sbase, satv3(cbase)));
255 
256    /* Equivalent (modulo rounding errors) to setting the
257     * smallest (R,G,B) component to 0, the largest to <ssat>,
258     * and interpolating the "middle" component based on its
259     * original value relative to the smallest/largest.
260     */
261    f->emit(if_tree(greater(sbase, imm1(0)),
262                    assign(color, div(mul(sub(cbase, minbase), ssat), sbase)),
263                    assign(color, imm3(0))));
264    set_lum(f, color, color, clum);
265 }
266 
267 static ir_rvalue *
is_mode(ir_variable * mode,enum gl_advanced_blend_mode q)268 is_mode(ir_variable *mode, enum gl_advanced_blend_mode q)
269 {
270    return equal(mode, new(ralloc_parent(mode)) ir_constant(unsigned(q)));
271 }
272 
273 static ir_variable *
calc_blend_result(ir_factory f,ir_variable * mode,ir_variable * fb,ir_rvalue * blend_src,GLbitfield blend_qualifiers)274 calc_blend_result(ir_factory f,
275                   ir_variable *mode,
276                   ir_variable *fb,
277                   ir_rvalue *blend_src,
278                   GLbitfield blend_qualifiers)
279 {
280    void *mem_ctx = f.mem_ctx;
281    ir_variable *result = f.make_temp(glsl_type::vec4_type, "__blend_result");
282 
283    /* Save blend_src to a temporary so we can reference it multiple times. */
284    ir_variable *src = f.make_temp(glsl_type::vec4_type, "__blend_src");
285    f.emit(assign(src, blend_src));
286 
287    /* If we're not doing advanced blending, just write the original value. */
288    ir_if *if_blending = new(mem_ctx) ir_if(is_mode(mode, BLEND_NONE));
289    f.emit(if_blending);
290    if_blending->then_instructions.push_tail(assign(result, src));
291 
292    f.instructions = &if_blending->else_instructions;
293 
294    /* (Rs', Gs', Bs') =
295     *   (0, 0, 0),              if As == 0
296     *   (Rs/As, Gs/As, Bs/As),  otherwise
297     */
298    ir_variable *src_rgb = f.make_temp(glsl_type::vec3_type, "__blend_src_rgb");
299    ir_variable *src_alpha = f.make_temp(glsl_type::float_type, "__blend_src_a");
300 
301    /* (Rd', Gd', Bd') =
302     *   (0, 0, 0),              if Ad == 0
303     *   (Rd/Ad, Gd/Ad, Bd/Ad),  otherwise
304     */
305    ir_variable *dst_rgb = f.make_temp(glsl_type::vec3_type, "__blend_dst_rgb");
306    ir_variable *dst_alpha = f.make_temp(glsl_type::float_type, "__blend_dst_a");
307 
308    f.emit(assign(dst_alpha, swizzle_w(fb)));
309    f.emit(if_tree(equal(dst_alpha, imm1(0)),
310                      assign(dst_rgb, imm3(0)),
311                      assign(dst_rgb, csel(equal(swizzle_xyz(fb),
312                                                 swizzle(fb, SWIZZLE_WWWW, 3)),
313                                           imm3(1),
314                                           div(swizzle_xyz(fb), dst_alpha)))));
315 
316    f.emit(assign(src_alpha, swizzle_w(src)));
317    f.emit(if_tree(equal(src_alpha, imm1(0)),
318                      assign(src_rgb, imm3(0)),
319                      assign(src_rgb, csel(equal(swizzle_xyz(src),
320                                                 swizzle(src, SWIZZLE_WWWW, 3)),
321                                           imm3(1),
322                                           div(swizzle_xyz(src), src_alpha)))));
323 
324    ir_variable *factor = f.make_temp(glsl_type::vec3_type, "__blend_factor");
325 
326    ir_factory casefactory = f;
327 
328    unsigned choices = blend_qualifiers;
329    while (choices) {
330       enum gl_advanced_blend_mode choice = (enum gl_advanced_blend_mode)
331          (1u << u_bit_scan(&choices));
332 
333       ir_if *iff = new(mem_ctx) ir_if(is_mode(mode, choice));
334       casefactory.emit(iff);
335       casefactory.instructions = &iff->then_instructions;
336 
337       ir_rvalue *val = NULL;
338 
339       switch (choice) {
340       case BLEND_MULTIPLY:
341          val = blend_multiply(src_rgb, dst_rgb);
342          break;
343       case BLEND_SCREEN:
344          val = blend_screen(src_rgb, dst_rgb);
345          break;
346       case BLEND_OVERLAY:
347          val = blend_overlay(src_rgb, dst_rgb);
348          break;
349       case BLEND_DARKEN:
350          val = blend_darken(src_rgb, dst_rgb);
351          break;
352       case BLEND_LIGHTEN:
353          val = blend_lighten(src_rgb, dst_rgb);
354          break;
355       case BLEND_COLORDODGE:
356          val = blend_colordodge(src_rgb, dst_rgb);
357          break;
358       case BLEND_COLORBURN:
359          val = blend_colorburn(src_rgb, dst_rgb);
360          break;
361       case BLEND_HARDLIGHT:
362          val = blend_hardlight(src_rgb, dst_rgb);
363          break;
364       case BLEND_SOFTLIGHT:
365          val = blend_softlight(src_rgb, dst_rgb);
366          break;
367       case BLEND_DIFFERENCE:
368          val = blend_difference(src_rgb, dst_rgb);
369          break;
370       case BLEND_EXCLUSION:
371          val = blend_exclusion(src_rgb, dst_rgb);
372          break;
373       case BLEND_HSL_HUE:
374          set_lum_sat(&casefactory, factor, src_rgb, dst_rgb, dst_rgb);
375          break;
376       case BLEND_HSL_SATURATION:
377          set_lum_sat(&casefactory, factor, dst_rgb, src_rgb, dst_rgb);
378          break;
379       case BLEND_HSL_COLOR:
380          set_lum(&casefactory, factor, src_rgb, dst_rgb);
381          break;
382       case BLEND_HSL_LUMINOSITY:
383          set_lum(&casefactory, factor, dst_rgb, src_rgb);
384          break;
385       case BLEND_NONE:
386       case BLEND_ALL:
387          unreachable("not real cases");
388       }
389 
390       if (val)
391          casefactory.emit(assign(factor, val));
392 
393       casefactory.instructions = &iff->else_instructions;
394    }
395 
396    /* p0(As,Ad) = As*Ad
397     * p1(As,Ad) = As*(1-Ad)
398     * p2(As,Ad) = Ad*(1-As)
399     */
400    ir_variable *p0 = f.make_temp(glsl_type::float_type, "__blend_p0");
401    ir_variable *p1 = f.make_temp(glsl_type::float_type, "__blend_p1");
402    ir_variable *p2 = f.make_temp(glsl_type::float_type, "__blend_p2");
403 
404    f.emit(assign(p0, mul(src_alpha, dst_alpha)));
405    f.emit(assign(p1, mul(src_alpha, sub(imm1(1), dst_alpha))));
406    f.emit(assign(p2, mul(dst_alpha, sub(imm1(1), src_alpha))));
407 
408    /* R = f(Rs',Rd')*p0(As,Ad) + Y*Rs'*p1(As,Ad) + Z*Rd'*p2(As,Ad)
409     * G = f(Gs',Gd')*p0(As,Ad) + Y*Gs'*p1(As,Ad) + Z*Gd'*p2(As,Ad)
410     * B = f(Bs',Bd')*p0(As,Ad) + Y*Bs'*p1(As,Ad) + Z*Bd'*p2(As,Ad)
411     * A =          X*p0(As,Ad) +     Y*p1(As,Ad) +     Z*p2(As,Ad)
412     *
413     * <X, Y, Z> is always <1, 1, 1>, so we can ignore it.
414     *
415     * In vector form, this is:
416     * RGB = factor * p0 + Cs * p1 + Cd * p2
417     *   A = p0 + p1 + p2
418     */
419    f.emit(assign(result,
420                  add(add(mul(factor, p0), mul(src_rgb, p1)), mul(dst_rgb, p2)),
421                  WRITEMASK_XYZ));
422    f.emit(assign(result, add(add(p0, p1), p2), WRITEMASK_W));
423 
424    return result;
425 }
426 
427 /**
428  * Dereference var, or var[0] if it's an array.
429  */
430 static ir_dereference *
deref_output(ir_variable * var)431 deref_output(ir_variable *var)
432 {
433    void *mem_ctx = ralloc_parent(var);
434 
435    ir_dereference *val = new(mem_ctx) ir_dereference_variable(var);
436    if (val->type->is_array()) {
437       ir_constant *index = new(mem_ctx) ir_constant(0);
438       val = new(mem_ctx) ir_dereference_array(val, index);
439    }
440 
441    return val;
442 }
443 
444 static ir_function_signature *
get_main(gl_linked_shader * sh)445 get_main(gl_linked_shader *sh)
446 {
447    ir_function_signature *sig = NULL;
448    /* We can't use _mesa_get_main_function_signature() because we don't
449     * have a symbol table at this point.  Just go find main() by hand.
450     */
451    foreach_in_list(ir_instruction, ir, sh->ir) {
452       ir_function *f = ir->as_function();
453       if (f && strcmp(f->name, "main") == 0) {
454          exec_list void_parameters;
455          sig = f->matching_signature(NULL, &void_parameters, false);
456          break;
457       }
458    }
459    assert(sig != NULL); /* main() must exist */
460    return sig;
461 }
462 
463 bool
lower_blend_equation_advanced(struct gl_linked_shader * sh)464 lower_blend_equation_advanced(struct gl_linked_shader *sh)
465 {
466    if (sh->Program->sh.fs.BlendSupport == 0)
467       return false;
468 
469    /* Lower early returns in main() so there's a single exit point
470     * where we can insert our lowering code.
471     */
472    do_lower_jumps(sh->ir, false, false, true, false, false);
473 
474    void *mem_ctx = ralloc_parent(sh->ir);
475 
476    ir_variable *fb = new(mem_ctx) ir_variable(glsl_type::vec4_type,
477                                               "__blend_fb_fetch",
478                                               ir_var_shader_out);
479    fb->data.location = FRAG_RESULT_DATA0;
480    fb->data.read_only = 1;
481    fb->data.fb_fetch_output = 1;
482    fb->data.how_declared = ir_var_hidden;
483 
484    ir_variable *mode = new(mem_ctx) ir_variable(glsl_type::uint_type,
485                                                 "gl_AdvancedBlendModeMESA",
486                                                 ir_var_uniform);
487    mode->data.how_declared = ir_var_hidden;
488    mode->allocate_state_slots(1);
489    ir_state_slot *slot0 = &mode->get_state_slots()[0];
490    slot0->swizzle = SWIZZLE_XXXX;
491    slot0->tokens[0] = STATE_INTERNAL;
492    slot0->tokens[1] = STATE_ADVANCED_BLENDING_MODE;
493    for (int i = 2; i < STATE_LENGTH; i++)
494       slot0->tokens[i] = 0;
495 
496    sh->ir->push_head(fb);
497    sh->ir->push_head(mode);
498 
499    /* Gather any output variables referring to render target 0.
500     *
501     * ARB_enhanced_layouts irritatingly allows the shader to specify
502     * multiple output variables for the same render target, each of
503     * which writes a subset of the components, starting at location_frac.
504     * The variables can't overlap, thankfully.
505     */
506    ir_variable *outputs[4] = { NULL, NULL, NULL, NULL };
507    foreach_in_list(ir_instruction, ir, sh->ir) {
508       ir_variable *var = ir->as_variable();
509       if (!var || var->data.mode != ir_var_shader_out)
510          continue;
511 
512       if (var->data.location == FRAG_RESULT_DATA0 ||
513           var->data.location == FRAG_RESULT_COLOR) {
514          const int components = var->type->without_array()->vector_elements;
515 
516          for (int i = 0; i < components; i++) {
517             outputs[var->data.location_frac + i] = var;
518          }
519       }
520    }
521 
522    /* Combine values written to outputs into a single RGBA blend source.
523     * We assign <0, 0, 0, 1> to any components with no corresponding output.
524     */
525    ir_rvalue *blend_source;
526    if (outputs[0] && outputs[0]->type->without_array()->vector_elements == 4) {
527       blend_source = deref_output(outputs[0]);
528    } else {
529       ir_rvalue *blend_comps[4];
530       for (int i = 0; i < 4; i++) {
531          ir_variable *var = outputs[i];
532          if (var) {
533             blend_comps[i] = swizzle(deref_output(outputs[i]),
534                                      i - outputs[i]->data.location_frac, 1);
535          } else {
536             blend_comps[i] = new(mem_ctx) ir_constant(i < 3 ? 0.0f : 1.0f);
537          }
538       }
539 
540       blend_source =
541          new(mem_ctx) ir_expression(ir_quadop_vector, glsl_type::vec4_type,
542                                     blend_comps[0], blend_comps[1],
543                                     blend_comps[2], blend_comps[3]);
544    }
545 
546    ir_function_signature *main = get_main(sh);
547    ir_factory f(&main->body, mem_ctx);
548 
549    ir_variable *result_dest =
550       calc_blend_result(f, mode, fb, blend_source,
551                         sh->Program->sh.fs.BlendSupport);
552 
553    /* Copy the result back to the original values.  It would be simpler
554     * to demote the program's output variables, and create a new vec4
555     * output for our result, but this pass runs before we create the
556     * ARB_program_interface_query resource list.  So we have to leave
557     * the original outputs in place and use them.
558     */
559    for (int i = 0; i < 4; i++) {
560       if (!outputs[i])
561          continue;
562 
563       f.emit(assign(deref_output(outputs[i]), swizzle(result_dest, i, 1),
564                     1 << i));
565    }
566 
567    validate_ir_tree(sh->ir);
568    return true;
569 }
570