• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1TGSI
2====
3
4TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5for describing shaders. Since Gallium is inherently shaderful, shaders are
6an important part of the API. TGSI is the only intermediate representation
7used by all drivers.
8
9Basics
10------
11
12All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13floating-point four-component vectors. An opcode may have up to one
14destination register, known as *dst*, and between zero and three source
15registers, called *src0* through *src2*, or simply *src* if there is only
16one.
17
18Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19components as integers. Other instructions permit using registers as
20two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22When an instruction has a scalar result, the result is usually copied into
23each of the components of *dst*. When this happens, the result is said to be
24*replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26Modifiers
27^^^^^^^^^^^^^^^
28
29TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31For inputs which have a floating point type, both absolute value and negation
32modifiers are supported (with absolute value being applied first).
33TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35For inputs which have signed or unsigned type only the negate modifier is
36supported.
37
38Instruction Set
39---------------
40
41Core ISA
42^^^^^^^^^^^^^^^^^^^^^^^^^
43
44These opcodes are guaranteed to be available regardless of the driver being
45used.
46
47.. opcode:: ARL - Address Register Load
48
49.. math::
50
51  dst.x = (int) \lfloor src.x\rfloor
52
53  dst.y = (int) \lfloor src.y\rfloor
54
55  dst.z = (int) \lfloor src.z\rfloor
56
57  dst.w = (int) \lfloor src.w\rfloor
58
59
60.. opcode:: MOV - Move
61
62.. math::
63
64  dst.x = src.x
65
66  dst.y = src.y
67
68  dst.z = src.z
69
70  dst.w = src.w
71
72
73.. opcode:: LIT - Light Coefficients
74
75.. math::
76
77  dst.x &= 1 \\
78  dst.y &= max(src.x, 0) \\
79  dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80  dst.w &= 1
81
82
83.. opcode:: RCP - Reciprocal
84
85This instruction replicates its result.
86
87.. math::
88
89  dst = \frac{1}{src.x}
90
91
92.. opcode:: RSQ - Reciprocal Square Root
93
94This instruction replicates its result. The results are undefined for src <= 0.
95
96.. math::
97
98  dst = \frac{1}{\sqrt{src.x}}
99
100
101.. opcode:: SQRT - Square Root
102
103This instruction replicates its result. The results are undefined for src < 0.
104
105.. math::
106
107  dst = {\sqrt{src.x}}
108
109
110.. opcode:: EXP - Approximate Exponential Base 2
111
112.. math::
113
114  dst.x &= 2^{\lfloor src.x\rfloor} \\
115  dst.y &= src.x - \lfloor src.x\rfloor \\
116  dst.z &= 2^{src.x} \\
117  dst.w &= 1
118
119
120.. opcode:: LOG - Approximate Logarithm Base 2
121
122.. math::
123
124  dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125  dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126  dst.z &= \log_2{|src.x|} \\
127  dst.w &= 1
128
129
130.. opcode:: MUL - Multiply
131
132.. math::
133
134  dst.x = src0.x \times src1.x
135
136  dst.y = src0.y \times src1.y
137
138  dst.z = src0.z \times src1.z
139
140  dst.w = src0.w \times src1.w
141
142
143.. opcode:: ADD - Add
144
145.. math::
146
147  dst.x = src0.x + src1.x
148
149  dst.y = src0.y + src1.y
150
151  dst.z = src0.z + src1.z
152
153  dst.w = src0.w + src1.w
154
155
156.. opcode:: DP3 - 3-component Dot Product
157
158This instruction replicates its result.
159
160.. math::
161
162  dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165.. opcode:: DP4 - 4-component Dot Product
166
167This instruction replicates its result.
168
169.. math::
170
171  dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174.. opcode:: DST - Distance Vector
175
176.. math::
177
178  dst.x &= 1\\
179  dst.y &= src0.y \times src1.y\\
180  dst.z &= src0.z\\
181  dst.w &= src1.w
182
183
184.. opcode:: MIN - Minimum
185
186.. math::
187
188  dst.x = min(src0.x, src1.x)
189
190  dst.y = min(src0.y, src1.y)
191
192  dst.z = min(src0.z, src1.z)
193
194  dst.w = min(src0.w, src1.w)
195
196
197.. opcode:: MAX - Maximum
198
199.. math::
200
201  dst.x = max(src0.x, src1.x)
202
203  dst.y = max(src0.y, src1.y)
204
205  dst.z = max(src0.z, src1.z)
206
207  dst.w = max(src0.w, src1.w)
208
209
210.. opcode:: SLT - Set On Less Than
211
212.. math::
213
214  dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216  dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218  dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220  dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223.. opcode:: SGE - Set On Greater Equal Than
224
225.. math::
226
227  dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229  dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231  dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233  dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236.. opcode:: MAD - Multiply And Add
237
238.. math::
239
240  dst.x = src0.x \times src1.x + src2.x
241
242  dst.y = src0.y \times src1.y + src2.y
243
244  dst.z = src0.z \times src1.z + src2.z
245
246  dst.w = src0.w \times src1.w + src2.w
247
248
249.. opcode:: SUB - Subtract
250
251.. math::
252
253  dst.x = src0.x - src1.x
254
255  dst.y = src0.y - src1.y
256
257  dst.z = src0.z - src1.z
258
259  dst.w = src0.w - src1.w
260
261
262.. opcode:: LRP - Linear Interpolate
263
264.. math::
265
266  dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268  dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270  dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272  dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275.. opcode:: FMA - Fused Multiply-Add
276
277Perform a * b + c with no intermediate rounding step.
278
279.. math::
280
281  dst.x = src0.x \times src1.x + src2.x
282
283  dst.y = src0.y \times src1.y + src2.y
284
285  dst.z = src0.z \times src1.z + src2.z
286
287  dst.w = src0.w \times src1.w + src2.w
288
289
290.. opcode:: DP2A - 2-component Dot Product And Add
291
292.. math::
293
294  dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
295
296  dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
297
298  dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
299
300  dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
301
302
303.. opcode:: FRC - Fraction
304
305.. math::
306
307  dst.x = src.x - \lfloor src.x\rfloor
308
309  dst.y = src.y - \lfloor src.y\rfloor
310
311  dst.z = src.z - \lfloor src.z\rfloor
312
313  dst.w = src.w - \lfloor src.w\rfloor
314
315
316.. opcode:: CLAMP - Clamp
317
318.. math::
319
320  dst.x = clamp(src0.x, src1.x, src2.x)
321
322  dst.y = clamp(src0.y, src1.y, src2.y)
323
324  dst.z = clamp(src0.z, src1.z, src2.z)
325
326  dst.w = clamp(src0.w, src1.w, src2.w)
327
328
329.. opcode:: FLR - Floor
330
331.. math::
332
333  dst.x = \lfloor src.x\rfloor
334
335  dst.y = \lfloor src.y\rfloor
336
337  dst.z = \lfloor src.z\rfloor
338
339  dst.w = \lfloor src.w\rfloor
340
341
342.. opcode:: ROUND - Round
343
344.. math::
345
346  dst.x = round(src.x)
347
348  dst.y = round(src.y)
349
350  dst.z = round(src.z)
351
352  dst.w = round(src.w)
353
354
355.. opcode:: EX2 - Exponential Base 2
356
357This instruction replicates its result.
358
359.. math::
360
361  dst = 2^{src.x}
362
363
364.. opcode:: LG2 - Logarithm Base 2
365
366This instruction replicates its result.
367
368.. math::
369
370  dst = \log_2{src.x}
371
372
373.. opcode:: POW - Power
374
375This instruction replicates its result.
376
377.. math::
378
379  dst = src0.x^{src1.x}
380
381.. opcode:: XPD - Cross Product
382
383.. math::
384
385  dst.x = src0.y \times src1.z - src1.y \times src0.z
386
387  dst.y = src0.z \times src1.x - src1.z \times src0.x
388
389  dst.z = src0.x \times src1.y - src1.x \times src0.y
390
391  dst.w = 1
392
393
394.. opcode:: ABS - Absolute
395
396.. math::
397
398  dst.x = |src.x|
399
400  dst.y = |src.y|
401
402  dst.z = |src.z|
403
404  dst.w = |src.w|
405
406
407.. opcode:: DPH - Homogeneous Dot Product
408
409This instruction replicates its result.
410
411.. math::
412
413  dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
414
415
416.. opcode:: COS - Cosine
417
418This instruction replicates its result.
419
420.. math::
421
422  dst = \cos{src.x}
423
424
425.. opcode:: DDX, DDX_FINE - Derivative Relative To X
426
427The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
428advertised. When it is, the fine version guarantees one derivative per row
429while DDX is allowed to be the same for the entire 2x2 quad.
430
431.. math::
432
433  dst.x = partialx(src.x)
434
435  dst.y = partialx(src.y)
436
437  dst.z = partialx(src.z)
438
439  dst.w = partialx(src.w)
440
441
442.. opcode:: DDY, DDY_FINE - Derivative Relative To Y
443
444The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
445advertised. When it is, the fine version guarantees one derivative per column
446while DDY is allowed to be the same for the entire 2x2 quad.
447
448.. math::
449
450  dst.x = partialy(src.x)
451
452  dst.y = partialy(src.y)
453
454  dst.z = partialy(src.z)
455
456  dst.w = partialy(src.w)
457
458
459.. opcode:: PK2H - Pack Two 16-bit Floats
460
461This instruction replicates its result.
462
463.. math::
464
465  dst = f32\_to\_f16(src.x) | f32\_to\_f16(src.y) << 16
466
467
468.. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
469
470  TBD
471
472
473.. opcode:: PK4B - Pack Four Signed 8-bit Scalars
474
475  TBD
476
477
478.. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
479
480  TBD
481
482
483.. opcode:: SEQ - Set On Equal
484
485.. math::
486
487  dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
488
489  dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
490
491  dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
492
493  dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
494
495
496.. opcode:: SGT - Set On Greater Than
497
498.. math::
499
500  dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
501
502  dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
503
504  dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
505
506  dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
507
508
509.. opcode:: SIN - Sine
510
511This instruction replicates its result.
512
513.. math::
514
515  dst = \sin{src.x}
516
517
518.. opcode:: SLE - Set On Less Equal Than
519
520.. math::
521
522  dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
523
524  dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
525
526  dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
527
528  dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
529
530
531.. opcode:: SNE - Set On Not Equal
532
533.. math::
534
535  dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
536
537  dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
538
539  dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
540
541  dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
542
543
544.. opcode:: TEX - Texture Lookup
545
546  for array textures src0.y contains the slice for 1D,
547  and src0.z contain the slice for 2D.
548
549  for shadow textures with no arrays (and not cube map),
550  src0.z contains the reference value.
551
552  for shadow textures with arrays, src0.z contains
553  the reference value for 1D arrays, and src0.w contains
554  the reference value for 2D arrays and cube maps.
555
556  for cube map array shadow textures, the reference value
557  cannot be passed in src0.w, and TEX2 must be used instead.
558
559.. math::
560
561  coord = src0
562
563  shadow_ref = src0.z or src0.w (optional)
564
565  unit = src1
566
567  dst = texture\_sample(unit, coord, shadow_ref)
568
569
570.. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
571
572  this is the same as TEX, but uses another reg to encode the
573  reference value.
574
575.. math::
576
577  coord = src0
578
579  shadow_ref = src1.x
580
581  unit = src2
582
583  dst = texture\_sample(unit, coord, shadow_ref)
584
585
586
587
588.. opcode:: TXD - Texture Lookup with Derivatives
589
590.. math::
591
592  coord = src0
593
594  ddx = src1
595
596  ddy = src2
597
598  unit = src3
599
600  dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
601
602
603.. opcode:: TXP - Projective Texture Lookup
604
605.. math::
606
607  coord.x = src0.x / src0.w
608
609  coord.y = src0.y / src0.w
610
611  coord.z = src0.z / src0.w
612
613  coord.w = src0.w
614
615  unit = src1
616
617  dst = texture\_sample(unit, coord)
618
619
620.. opcode:: UP2H - Unpack Two 16-Bit Floats
621
622.. math::
623
624  dst.x = f16\_to\_f32(src0.x \& 0xffff)
625
626  dst.y = f16\_to\_f32(src0.x >> 16)
627
628  dst.z = f16\_to\_f32(src0.x \& 0xffff)
629
630  dst.w = f16\_to\_f32(src0.x >> 16)
631
632.. note::
633
634   Considered for removal.
635
636.. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
637
638  TBD
639
640.. note::
641
642   Considered for removal.
643
644.. opcode:: UP4B - Unpack Four Signed 8-Bit Values
645
646  TBD
647
648.. note::
649
650   Considered for removal.
651
652.. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
653
654  TBD
655
656.. note::
657
658   Considered for removal.
659
660
661.. opcode:: ARR - Address Register Load With Round
662
663.. math::
664
665  dst.x = (int) round(src.x)
666
667  dst.y = (int) round(src.y)
668
669  dst.z = (int) round(src.z)
670
671  dst.w = (int) round(src.w)
672
673
674.. opcode:: SSG - Set Sign
675
676.. math::
677
678  dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
679
680  dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
681
682  dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
683
684  dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
685
686
687.. opcode:: CMP - Compare
688
689.. math::
690
691  dst.x = (src0.x < 0) ? src1.x : src2.x
692
693  dst.y = (src0.y < 0) ? src1.y : src2.y
694
695  dst.z = (src0.z < 0) ? src1.z : src2.z
696
697  dst.w = (src0.w < 0) ? src1.w : src2.w
698
699
700.. opcode:: KILL_IF - Conditional Discard
701
702  Conditional discard.  Allowed in fragment shaders only.
703
704.. math::
705
706  if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
707    discard
708  endif
709
710
711.. opcode:: KILL - Discard
712
713  Unconditional discard.  Allowed in fragment shaders only.
714
715
716.. opcode:: SCS - Sine Cosine
717
718.. math::
719
720  dst.x = \cos{src.x}
721
722  dst.y = \sin{src.x}
723
724  dst.z = 0
725
726  dst.w = 1
727
728
729.. opcode:: TXB - Texture Lookup With Bias
730
731  for cube map array textures and shadow cube maps, the bias value
732  cannot be passed in src0.w, and TXB2 must be used instead.
733
734  if the target is a shadow texture, the reference value is always
735  in src.z (this prevents shadow 3d and shadow 2d arrays from
736  using this instruction, but this is not needed).
737
738.. math::
739
740  coord.x = src0.x
741
742  coord.y = src0.y
743
744  coord.z = src0.z
745
746  coord.w = none
747
748  bias = src0.w
749
750  unit = src1
751
752  dst = texture\_sample(unit, coord, bias)
753
754
755.. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
756
757  this is the same as TXB, but uses another reg to encode the
758  lod bias value for cube map arrays and shadow cube maps.
759  Presumably shadow 2d arrays and shadow 3d targets could use
760  this encoding too, but this is not legal.
761
762  shadow cube map arrays are neither possible nor required.
763
764.. math::
765
766  coord = src0
767
768  bias = src1.x
769
770  unit = src2
771
772  dst = texture\_sample(unit, coord, bias)
773
774
775.. opcode:: DIV - Divide
776
777.. math::
778
779  dst.x = \frac{src0.x}{src1.x}
780
781  dst.y = \frac{src0.y}{src1.y}
782
783  dst.z = \frac{src0.z}{src1.z}
784
785  dst.w = \frac{src0.w}{src1.w}
786
787
788.. opcode:: DP2 - 2-component Dot Product
789
790This instruction replicates its result.
791
792.. math::
793
794  dst = src0.x \times src1.x + src0.y \times src1.y
795
796
797.. opcode:: TXL - Texture Lookup With explicit LOD
798
799  for cube map array textures, the explicit lod value
800  cannot be passed in src0.w, and TXL2 must be used instead.
801
802  if the target is a shadow texture, the reference value is always
803  in src.z (this prevents shadow 3d / 2d array / cube targets from
804  using this instruction, but this is not needed).
805
806.. math::
807
808  coord.x = src0.x
809
810  coord.y = src0.y
811
812  coord.z = src0.z
813
814  coord.w = none
815
816  lod = src0.w
817
818  unit = src1
819
820  dst = texture\_sample(unit, coord, lod)
821
822
823.. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
824
825  this is the same as TXL, but uses another reg to encode the
826  explicit lod value.
827  Presumably shadow 3d / 2d array / cube targets could use
828  this encoding too, but this is not legal.
829
830  shadow cube map arrays are neither possible nor required.
831
832.. math::
833
834  coord = src0
835
836  lod = src1.x
837
838  unit = src2
839
840  dst = texture\_sample(unit, coord, lod)
841
842
843.. opcode:: PUSHA - Push Address Register On Stack
844
845  push(src.x)
846  push(src.y)
847  push(src.z)
848  push(src.w)
849
850.. note::
851
852   Considered for cleanup.
853
854.. note::
855
856   Considered for removal.
857
858.. opcode:: POPA - Pop Address Register From Stack
859
860  dst.w = pop()
861  dst.z = pop()
862  dst.y = pop()
863  dst.x = pop()
864
865.. note::
866
867   Considered for cleanup.
868
869.. note::
870
871   Considered for removal.
872
873
874.. opcode:: CALLNZ - Subroutine Call If Not Zero
875
876   TBD
877
878.. note::
879
880   Considered for cleanup.
881
882.. note::
883
884   Considered for removal.
885
886
887Compute ISA
888^^^^^^^^^^^^^^^^^^^^^^^^
889
890These opcodes are primarily provided for special-use computational shaders.
891Support for these opcodes indicated by a special pipe capability bit (TBD).
892
893XXX doesn't look like most of the opcodes really belong here.
894
895.. opcode:: CEIL - Ceiling
896
897.. math::
898
899  dst.x = \lceil src.x\rceil
900
901  dst.y = \lceil src.y\rceil
902
903  dst.z = \lceil src.z\rceil
904
905  dst.w = \lceil src.w\rceil
906
907
908.. opcode:: TRUNC - Truncate
909
910.. math::
911
912  dst.x = trunc(src.x)
913
914  dst.y = trunc(src.y)
915
916  dst.z = trunc(src.z)
917
918  dst.w = trunc(src.w)
919
920
921.. opcode:: MOD - Modulus
922
923.. math::
924
925  dst.x = src0.x \bmod src1.x
926
927  dst.y = src0.y \bmod src1.y
928
929  dst.z = src0.z \bmod src1.z
930
931  dst.w = src0.w \bmod src1.w
932
933
934.. opcode:: UARL - Integer Address Register Load
935
936  Moves the contents of the source register, assumed to be an integer, into the
937  destination register, which is assumed to be an address (ADDR) register.
938
939
940.. opcode:: SAD - Sum Of Absolute Differences
941
942.. math::
943
944  dst.x = |src0.x - src1.x| + src2.x
945
946  dst.y = |src0.y - src1.y| + src2.y
947
948  dst.z = |src0.z - src1.z| + src2.z
949
950  dst.w = |src0.w - src1.w| + src2.w
951
952
953.. opcode:: TXF - Texel Fetch
954
955  As per NV_gpu_shader4, extract a single texel from a specified texture
956  image. The source sampler may not be a CUBE or SHADOW.  src 0 is a
957  four-component signed integer vector used to identify the single texel
958  accessed. 3 components + level.  Just like texture instructions, an optional
959  offset vector is provided, which is subject to various driver restrictions
960  (regarding range, source of offsets).
961  TXF(uint_vec coord, int_vec offset).
962
963
964.. opcode:: TXQ - Texture Size Query
965
966  As per NV_gpu_program4, retrieve the dimensions of the texture depending on
967  the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
968  depth), 1D array (width, layers), 2D array (width, height, layers).
969  Also return the number of accessible levels (last_level - first_level + 1)
970  in W.
971
972  For components which don't return a resource dimension, their value
973  is undefined.
974
975.. math::
976
977  lod = src0.x
978
979  dst.x = texture\_width(unit, lod)
980
981  dst.y = texture\_height(unit, lod)
982
983  dst.z = texture\_depth(unit, lod)
984
985  dst.w = texture\_levels(unit)
986
987
988.. opcode:: TXQS - Texture Samples Query
989
990  This retrieves the number of samples in the texture, and stores it
991  into the x component. The other components are undefined.
992
993.. math::
994
995  dst.x = texture\_samples(unit)
996
997
998.. opcode:: TG4 - Texture Gather
999
1000  As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
1001  filtering operation and packs them into a single register.  Only works with
1002  2D, 2D array, cubemaps, and cubemaps arrays.  For 2D textures, only the
1003  addressing modes of the sampler and the top level of any mip pyramid are
1004  used. Set W to zero.  It behaves like the TEX instruction, but a filtered
1005  sample is not generated. The four samples that contribute to filtering are
1006  placed into xyzw in clockwise order, starting with the (u,v) texture
1007  coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
1008  where the magnitude of the deltas are half a texel.
1009
1010  PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
1011  depth compares, single component selection, and a non-constant offset. It
1012  doesn't allow support for the GL independent offset to get i0,j0. This would
1013  require another CAP is hw can do it natively. For now we lower that before
1014  TGSI.
1015
1016.. math::
1017
1018   coord = src0
1019
1020   component = src1
1021
1022   dst = texture\_gather4 (unit, coord, component)
1023
1024(with SM5 - cube array shadow)
1025
1026.. math::
1027
1028   coord = src0
1029
1030   compare = src1
1031
1032   dst = texture\_gather (uint, coord, compare)
1033
1034.. opcode:: LODQ - level of detail query
1035
1036   Compute the LOD information that the texture pipe would use to access the
1037   texture. The Y component contains the computed LOD lambda_prime. The X
1038   component contains the LOD that will be accessed, based on min/max lod's
1039   and mipmap filters.
1040
1041.. math::
1042
1043   coord = src0
1044
1045   dst.xy = lodq(uint, coord);
1046
1047Integer ISA
1048^^^^^^^^^^^^^^^^^^^^^^^^
1049These opcodes are used for integer operations.
1050Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1051
1052
1053.. opcode:: I2F - Signed Integer To Float
1054
1055   Rounding is unspecified (round to nearest even suggested).
1056
1057.. math::
1058
1059  dst.x = (float) src.x
1060
1061  dst.y = (float) src.y
1062
1063  dst.z = (float) src.z
1064
1065  dst.w = (float) src.w
1066
1067
1068.. opcode:: U2F - Unsigned Integer To Float
1069
1070   Rounding is unspecified (round to nearest even suggested).
1071
1072.. math::
1073
1074  dst.x = (float) src.x
1075
1076  dst.y = (float) src.y
1077
1078  dst.z = (float) src.z
1079
1080  dst.w = (float) src.w
1081
1082
1083.. opcode:: F2I - Float to Signed Integer
1084
1085   Rounding is towards zero (truncate).
1086   Values outside signed range (including NaNs) produce undefined results.
1087
1088.. math::
1089
1090  dst.x = (int) src.x
1091
1092  dst.y = (int) src.y
1093
1094  dst.z = (int) src.z
1095
1096  dst.w = (int) src.w
1097
1098
1099.. opcode:: F2U - Float to Unsigned Integer
1100
1101   Rounding is towards zero (truncate).
1102   Values outside unsigned range (including NaNs) produce undefined results.
1103
1104.. math::
1105
1106  dst.x = (unsigned) src.x
1107
1108  dst.y = (unsigned) src.y
1109
1110  dst.z = (unsigned) src.z
1111
1112  dst.w = (unsigned) src.w
1113
1114
1115.. opcode:: UADD - Integer Add
1116
1117   This instruction works the same for signed and unsigned integers.
1118   The low 32bit of the result is returned.
1119
1120.. math::
1121
1122  dst.x = src0.x + src1.x
1123
1124  dst.y = src0.y + src1.y
1125
1126  dst.z = src0.z + src1.z
1127
1128  dst.w = src0.w + src1.w
1129
1130
1131.. opcode:: UMAD - Integer Multiply And Add
1132
1133   This instruction works the same for signed and unsigned integers.
1134   The multiplication returns the low 32bit (as does the result itself).
1135
1136.. math::
1137
1138  dst.x = src0.x \times src1.x + src2.x
1139
1140  dst.y = src0.y \times src1.y + src2.y
1141
1142  dst.z = src0.z \times src1.z + src2.z
1143
1144  dst.w = src0.w \times src1.w + src2.w
1145
1146
1147.. opcode:: UMUL - Integer Multiply
1148
1149   This instruction works the same for signed and unsigned integers.
1150   The low 32bit of the result is returned.
1151
1152.. math::
1153
1154  dst.x = src0.x \times src1.x
1155
1156  dst.y = src0.y \times src1.y
1157
1158  dst.z = src0.z \times src1.z
1159
1160  dst.w = src0.w \times src1.w
1161
1162
1163.. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1164
1165   The high 32bits of the multiplication of 2 signed integers are returned.
1166
1167.. math::
1168
1169  dst.x = (src0.x \times src1.x) >> 32
1170
1171  dst.y = (src0.y \times src1.y) >> 32
1172
1173  dst.z = (src0.z \times src1.z) >> 32
1174
1175  dst.w = (src0.w \times src1.w) >> 32
1176
1177
1178.. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1179
1180   The high 32bits of the multiplication of 2 unsigned integers are returned.
1181
1182.. math::
1183
1184  dst.x = (src0.x \times src1.x) >> 32
1185
1186  dst.y = (src0.y \times src1.y) >> 32
1187
1188  dst.z = (src0.z \times src1.z) >> 32
1189
1190  dst.w = (src0.w \times src1.w) >> 32
1191
1192
1193.. opcode:: IDIV - Signed Integer Division
1194
1195   TBD: behavior for division by zero.
1196
1197.. math::
1198
1199  dst.x = src0.x \ src1.x
1200
1201  dst.y = src0.y \ src1.y
1202
1203  dst.z = src0.z \ src1.z
1204
1205  dst.w = src0.w \ src1.w
1206
1207
1208.. opcode:: UDIV - Unsigned Integer Division
1209
1210   For division by zero, 0xffffffff is returned.
1211
1212.. math::
1213
1214  dst.x = src0.x \ src1.x
1215
1216  dst.y = src0.y \ src1.y
1217
1218  dst.z = src0.z \ src1.z
1219
1220  dst.w = src0.w \ src1.w
1221
1222
1223.. opcode:: UMOD - Unsigned Integer Remainder
1224
1225   If second arg is zero, 0xffffffff is returned.
1226
1227.. math::
1228
1229  dst.x = src0.x \ src1.x
1230
1231  dst.y = src0.y \ src1.y
1232
1233  dst.z = src0.z \ src1.z
1234
1235  dst.w = src0.w \ src1.w
1236
1237
1238.. opcode:: NOT - Bitwise Not
1239
1240.. math::
1241
1242  dst.x = \sim src.x
1243
1244  dst.y = \sim src.y
1245
1246  dst.z = \sim src.z
1247
1248  dst.w = \sim src.w
1249
1250
1251.. opcode:: AND - Bitwise And
1252
1253.. math::
1254
1255  dst.x = src0.x \& src1.x
1256
1257  dst.y = src0.y \& src1.y
1258
1259  dst.z = src0.z \& src1.z
1260
1261  dst.w = src0.w \& src1.w
1262
1263
1264.. opcode:: OR - Bitwise Or
1265
1266.. math::
1267
1268  dst.x = src0.x | src1.x
1269
1270  dst.y = src0.y | src1.y
1271
1272  dst.z = src0.z | src1.z
1273
1274  dst.w = src0.w | src1.w
1275
1276
1277.. opcode:: XOR - Bitwise Xor
1278
1279.. math::
1280
1281  dst.x = src0.x \oplus src1.x
1282
1283  dst.y = src0.y \oplus src1.y
1284
1285  dst.z = src0.z \oplus src1.z
1286
1287  dst.w = src0.w \oplus src1.w
1288
1289
1290.. opcode:: IMAX - Maximum of Signed Integers
1291
1292.. math::
1293
1294  dst.x = max(src0.x, src1.x)
1295
1296  dst.y = max(src0.y, src1.y)
1297
1298  dst.z = max(src0.z, src1.z)
1299
1300  dst.w = max(src0.w, src1.w)
1301
1302
1303.. opcode:: UMAX - Maximum of Unsigned Integers
1304
1305.. math::
1306
1307  dst.x = max(src0.x, src1.x)
1308
1309  dst.y = max(src0.y, src1.y)
1310
1311  dst.z = max(src0.z, src1.z)
1312
1313  dst.w = max(src0.w, src1.w)
1314
1315
1316.. opcode:: IMIN - Minimum of Signed Integers
1317
1318.. math::
1319
1320  dst.x = min(src0.x, src1.x)
1321
1322  dst.y = min(src0.y, src1.y)
1323
1324  dst.z = min(src0.z, src1.z)
1325
1326  dst.w = min(src0.w, src1.w)
1327
1328
1329.. opcode:: UMIN - Minimum of Unsigned Integers
1330
1331.. math::
1332
1333  dst.x = min(src0.x, src1.x)
1334
1335  dst.y = min(src0.y, src1.y)
1336
1337  dst.z = min(src0.z, src1.z)
1338
1339  dst.w = min(src0.w, src1.w)
1340
1341
1342.. opcode:: SHL - Shift Left
1343
1344   The shift count is masked with 0x1f before the shift is applied.
1345
1346.. math::
1347
1348  dst.x = src0.x << (0x1f \& src1.x)
1349
1350  dst.y = src0.y << (0x1f \& src1.y)
1351
1352  dst.z = src0.z << (0x1f \& src1.z)
1353
1354  dst.w = src0.w << (0x1f \& src1.w)
1355
1356
1357.. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1358
1359   The shift count is masked with 0x1f before the shift is applied.
1360
1361.. math::
1362
1363  dst.x = src0.x >> (0x1f \& src1.x)
1364
1365  dst.y = src0.y >> (0x1f \& src1.y)
1366
1367  dst.z = src0.z >> (0x1f \& src1.z)
1368
1369  dst.w = src0.w >> (0x1f \& src1.w)
1370
1371
1372.. opcode:: USHR - Logical Shift Right
1373
1374   The shift count is masked with 0x1f before the shift is applied.
1375
1376.. math::
1377
1378  dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1379
1380  dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1381
1382  dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1383
1384  dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1385
1386
1387.. opcode:: UCMP - Integer Conditional Move
1388
1389.. math::
1390
1391  dst.x = src0.x ? src1.x : src2.x
1392
1393  dst.y = src0.y ? src1.y : src2.y
1394
1395  dst.z = src0.z ? src1.z : src2.z
1396
1397  dst.w = src0.w ? src1.w : src2.w
1398
1399
1400
1401.. opcode:: ISSG - Integer Set Sign
1402
1403.. math::
1404
1405  dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1406
1407  dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1408
1409  dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1410
1411  dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1412
1413
1414
1415.. opcode:: FSLT - Float Set On Less Than (ordered)
1416
1417   Same comparison as SLT but returns integer instead of 1.0/0.0 float
1418
1419.. math::
1420
1421  dst.x = (src0.x < src1.x) ? \sim 0 : 0
1422
1423  dst.y = (src0.y < src1.y) ? \sim 0 : 0
1424
1425  dst.z = (src0.z < src1.z) ? \sim 0 : 0
1426
1427  dst.w = (src0.w < src1.w) ? \sim 0 : 0
1428
1429
1430.. opcode:: ISLT - Signed Integer Set On Less Than
1431
1432.. math::
1433
1434  dst.x = (src0.x < src1.x) ? \sim 0 : 0
1435
1436  dst.y = (src0.y < src1.y) ? \sim 0 : 0
1437
1438  dst.z = (src0.z < src1.z) ? \sim 0 : 0
1439
1440  dst.w = (src0.w < src1.w) ? \sim 0 : 0
1441
1442
1443.. opcode:: USLT - Unsigned Integer Set On Less Than
1444
1445.. math::
1446
1447  dst.x = (src0.x < src1.x) ? \sim 0 : 0
1448
1449  dst.y = (src0.y < src1.y) ? \sim 0 : 0
1450
1451  dst.z = (src0.z < src1.z) ? \sim 0 : 0
1452
1453  dst.w = (src0.w < src1.w) ? \sim 0 : 0
1454
1455
1456.. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1457
1458   Same comparison as SGE but returns integer instead of 1.0/0.0 float
1459
1460.. math::
1461
1462  dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1463
1464  dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1465
1466  dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1467
1468  dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1469
1470
1471.. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1472
1473.. math::
1474
1475  dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1476
1477  dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1478
1479  dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1480
1481  dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1482
1483
1484.. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1485
1486.. math::
1487
1488  dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1489
1490  dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1491
1492  dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1493
1494  dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1495
1496
1497.. opcode:: FSEQ - Float Set On Equal (ordered)
1498
1499   Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1500
1501.. math::
1502
1503  dst.x = (src0.x == src1.x) ? \sim 0 : 0
1504
1505  dst.y = (src0.y == src1.y) ? \sim 0 : 0
1506
1507  dst.z = (src0.z == src1.z) ? \sim 0 : 0
1508
1509  dst.w = (src0.w == src1.w) ? \sim 0 : 0
1510
1511
1512.. opcode:: USEQ - Integer Set On Equal
1513
1514.. math::
1515
1516  dst.x = (src0.x == src1.x) ? \sim 0 : 0
1517
1518  dst.y = (src0.y == src1.y) ? \sim 0 : 0
1519
1520  dst.z = (src0.z == src1.z) ? \sim 0 : 0
1521
1522  dst.w = (src0.w == src1.w) ? \sim 0 : 0
1523
1524
1525.. opcode:: FSNE - Float Set On Not Equal (unordered)
1526
1527   Same comparison as SNE but returns integer instead of 1.0/0.0 float
1528
1529.. math::
1530
1531  dst.x = (src0.x != src1.x) ? \sim 0 : 0
1532
1533  dst.y = (src0.y != src1.y) ? \sim 0 : 0
1534
1535  dst.z = (src0.z != src1.z) ? \sim 0 : 0
1536
1537  dst.w = (src0.w != src1.w) ? \sim 0 : 0
1538
1539
1540.. opcode:: USNE - Integer Set On Not Equal
1541
1542.. math::
1543
1544  dst.x = (src0.x != src1.x) ? \sim 0 : 0
1545
1546  dst.y = (src0.y != src1.y) ? \sim 0 : 0
1547
1548  dst.z = (src0.z != src1.z) ? \sim 0 : 0
1549
1550  dst.w = (src0.w != src1.w) ? \sim 0 : 0
1551
1552
1553.. opcode:: INEG - Integer Negate
1554
1555  Two's complement.
1556
1557.. math::
1558
1559  dst.x = -src.x
1560
1561  dst.y = -src.y
1562
1563  dst.z = -src.z
1564
1565  dst.w = -src.w
1566
1567
1568.. opcode:: IABS - Integer Absolute Value
1569
1570.. math::
1571
1572  dst.x = |src.x|
1573
1574  dst.y = |src.y|
1575
1576  dst.z = |src.z|
1577
1578  dst.w = |src.w|
1579
1580Bitwise ISA
1581^^^^^^^^^^^
1582These opcodes are used for bit-level manipulation of integers.
1583
1584.. opcode:: IBFE - Signed Bitfield Extract
1585
1586  Like GLSL bitfieldExtract. Extracts a set of bits from the input, and
1587  sign-extends them if the high bit of the extracted window is set.
1588
1589  Pseudocode::
1590
1591    def ibfe(value, offset, bits):
1592      if offset < 0 or bits < 0 or offset + bits > 32:
1593        return undefined
1594      if bits == 0: return 0
1595      # Note: >> sign-extends
1596      return (value << (32 - offset - bits)) >> (32 - bits)
1597
1598.. opcode:: UBFE - Unsigned Bitfield Extract
1599
1600  Like GLSL bitfieldExtract. Extracts a set of bits from the input, without
1601  any sign-extension.
1602
1603  Pseudocode::
1604
1605    def ubfe(value, offset, bits):
1606      if offset < 0 or bits < 0 or offset + bits > 32:
1607        return undefined
1608      if bits == 0: return 0
1609      # Note: >> does not sign-extend
1610      return (value << (32 - offset - bits)) >> (32 - bits)
1611
1612.. opcode:: BFI - Bitfield Insert
1613
1614  Like GLSL bitfieldInsert. Replaces a bit region of 'base' with the low bits
1615  of 'insert'.
1616
1617  Pseudocode::
1618
1619    def bfi(base, insert, offset, bits):
1620      if offset < 0 or bits < 0 or offset + bits > 32:
1621        return undefined
1622      # << defined such that mask == ~0 when bits == 32, offset == 0
1623      mask = ((1 << bits) - 1) << offset
1624      return ((insert << offset) & mask) | (base & ~mask)
1625
1626.. opcode:: BREV - Bitfield Reverse
1627
1628  See SM5 instruction BFREV. Reverses the bits of the argument.
1629
1630.. opcode:: POPC - Population Count
1631
1632  See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1633
1634.. opcode:: LSB - Index of lowest set bit
1635
1636  See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1637  bit of the argument. Returns -1 if none are set.
1638
1639.. opcode:: IMSB - Index of highest non-sign bit
1640
1641  See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1642  non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1643  highest 1 bit for positive numbers). Returns -1 if all bits are the same
1644  (i.e. for inputs 0 and -1).
1645
1646.. opcode:: UMSB - Index of highest set bit
1647
1648  See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1649  set bit of the argument. Returns -1 if none are set.
1650
1651Geometry ISA
1652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1653
1654These opcodes are only supported in geometry shaders; they have no meaning
1655in any other type of shader.
1656
1657.. opcode:: EMIT - Emit
1658
1659  Generate a new vertex for the current primitive into the specified vertex
1660  stream using the values in the output registers.
1661
1662
1663.. opcode:: ENDPRIM - End Primitive
1664
1665  Complete the current primitive in the specified vertex stream (consisting of
1666  the emitted vertices), and start a new one.
1667
1668
1669GLSL ISA
1670^^^^^^^^^^
1671
1672These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1673opcodes is determined by a special capability bit, ``GLSL``.
1674Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1675
1676.. opcode:: CAL - Subroutine Call
1677
1678  push(pc)
1679  pc = target
1680
1681
1682.. opcode:: RET - Subroutine Call Return
1683
1684  pc = pop()
1685
1686
1687.. opcode:: CONT - Continue
1688
1689  Unconditionally moves the point of execution to the instruction after the
1690  last bgnloop. The instruction must appear within a bgnloop/endloop.
1691
1692.. note::
1693
1694   Support for CONT is determined by a special capability bit,
1695   ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1696
1697
1698.. opcode:: BGNLOOP - Begin a Loop
1699
1700  Start a loop. Must have a matching endloop.
1701
1702
1703.. opcode:: BGNSUB - Begin Subroutine
1704
1705  Starts definition of a subroutine. Must have a matching endsub.
1706
1707
1708.. opcode:: ENDLOOP - End a Loop
1709
1710  End a loop started with bgnloop.
1711
1712
1713.. opcode:: ENDSUB - End Subroutine
1714
1715  Ends definition of a subroutine.
1716
1717
1718.. opcode:: NOP - No Operation
1719
1720  Do nothing.
1721
1722
1723.. opcode:: BRK - Break
1724
1725  Unconditionally moves the point of execution to the instruction after the
1726  next endloop or endswitch. The instruction must appear within a loop/endloop
1727  or switch/endswitch.
1728
1729
1730.. opcode:: BREAKC - Break Conditional
1731
1732  Conditionally moves the point of execution to the instruction after the
1733  next endloop or endswitch. The instruction must appear within a loop/endloop
1734  or switch/endswitch.
1735  Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1736  as an integer register.
1737
1738.. note::
1739
1740   Considered for removal as it's quite inconsistent wrt other opcodes
1741   (could emulate with UIF/BRK/ENDIF).
1742
1743
1744.. opcode:: IF - Float If
1745
1746  Start an IF ... ELSE .. ENDIF block.  Condition evaluates to true if
1747
1748    src0.x != 0.0
1749
1750  where src0.x is interpreted as a floating point register.
1751
1752
1753.. opcode:: UIF - Bitwise If
1754
1755  Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1756
1757    src0.x != 0
1758
1759  where src0.x is interpreted as an integer register.
1760
1761
1762.. opcode:: ELSE - Else
1763
1764  Starts an else block, after an IF or UIF statement.
1765
1766
1767.. opcode:: ENDIF - End If
1768
1769  Ends an IF or UIF block.
1770
1771
1772.. opcode:: SWITCH - Switch
1773
1774   Starts a C-style switch expression. The switch consists of one or multiple
1775   CASE statements, and at most one DEFAULT statement. Execution of a statement
1776   ends when a BRK is hit, but just like in C falling through to other cases
1777   without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1778   just as last statement, and fallthrough is allowed into/from it.
1779   CASE src arguments are evaluated at bit level against the SWITCH src argument.
1780
1781   Example::
1782
1783     SWITCH src[0].x
1784     CASE src[0].x
1785     (some instructions here)
1786     (optional BRK here)
1787     DEFAULT
1788     (some instructions here)
1789     (optional BRK here)
1790     CASE src[0].x
1791     (some instructions here)
1792     (optional BRK here)
1793     ENDSWITCH
1794
1795
1796.. opcode:: CASE - Switch case
1797
1798   This represents a switch case label. The src arg must be an integer immediate.
1799
1800
1801.. opcode:: DEFAULT - Switch default
1802
1803   This represents the default case in the switch, which is taken if no other
1804   case matches.
1805
1806
1807.. opcode:: ENDSWITCH - End of switch
1808
1809   Ends a switch expression.
1810
1811
1812Interpolation ISA
1813^^^^^^^^^^^^^^^^^
1814
1815The interpolation instructions allow an input to be interpolated in a
1816different way than its declaration. This corresponds to the GLSL 4.00
1817interpolateAt* functions. The first argument of each of these must come from
1818``TGSI_FILE_INPUT``.
1819
1820.. opcode:: INTERP_CENTROID - Interpolate at the centroid
1821
1822   Interpolates the varying specified by src0 at the centroid
1823
1824.. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1825
1826   Interpolates the varying specified by src0 at the sample id specified by
1827   src1.x (interpreted as an integer)
1828
1829.. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1830
1831   Interpolates the varying specified by src0 at the offset src1.xy from the
1832   pixel center (interpreted as floats)
1833
1834
1835.. _doubleopcodes:
1836
1837Double ISA
1838^^^^^^^^^^^^^^^
1839
1840The double-precision opcodes reinterpret four-component vectors into
1841two-component vectors with doubled precision in each component.
1842
1843.. opcode:: DABS - Absolute
1844
1845  dst.xy = |src0.xy|
1846  dst.zw = |src0.zw|
1847
1848.. opcode:: DADD - Add
1849
1850.. math::
1851
1852  dst.xy = src0.xy + src1.xy
1853
1854  dst.zw = src0.zw + src1.zw
1855
1856.. opcode:: DSEQ - Set on Equal
1857
1858.. math::
1859
1860  dst.x = src0.xy == src1.xy ? \sim 0 : 0
1861
1862  dst.z = src0.zw == src1.zw ? \sim 0 : 0
1863
1864.. opcode:: DSNE - Set on Equal
1865
1866.. math::
1867
1868  dst.x = src0.xy != src1.xy ? \sim 0 : 0
1869
1870  dst.z = src0.zw != src1.zw ? \sim 0 : 0
1871
1872.. opcode:: DSLT - Set on Less than
1873
1874.. math::
1875
1876  dst.x = src0.xy < src1.xy ? \sim 0 : 0
1877
1878  dst.z = src0.zw < src1.zw ? \sim 0 : 0
1879
1880.. opcode:: DSGE - Set on Greater equal
1881
1882.. math::
1883
1884  dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1885
1886  dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1887
1888.. opcode:: DFRAC - Fraction
1889
1890.. math::
1891
1892  dst.xy = src.xy - \lfloor src.xy\rfloor
1893
1894  dst.zw = src.zw - \lfloor src.zw\rfloor
1895
1896.. opcode:: DTRUNC - Truncate
1897
1898.. math::
1899
1900  dst.xy = trunc(src.xy)
1901
1902  dst.zw = trunc(src.zw)
1903
1904.. opcode:: DCEIL - Ceiling
1905
1906.. math::
1907
1908  dst.xy = \lceil src.xy\rceil
1909
1910  dst.zw = \lceil src.zw\rceil
1911
1912.. opcode:: DFLR - Floor
1913
1914.. math::
1915
1916  dst.xy = \lfloor src.xy\rfloor
1917
1918  dst.zw = \lfloor src.zw\rfloor
1919
1920.. opcode:: DROUND - Fraction
1921
1922.. math::
1923
1924  dst.xy = round(src.xy)
1925
1926  dst.zw = round(src.zw)
1927
1928.. opcode:: DSSG - Set Sign
1929
1930.. math::
1931
1932  dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1933
1934  dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1935
1936.. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1937
1938Like the ``frexp()`` routine in many math libraries, this opcode stores the
1939exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1940:math:`dst1 \times 2^{dst0} = src` .
1941
1942.. math::
1943
1944  dst0.xy = exp(src.xy)
1945
1946  dst1.xy = frac(src.xy)
1947
1948  dst0.zw = exp(src.zw)
1949
1950  dst1.zw = frac(src.zw)
1951
1952.. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1953
1954This opcode is the inverse of :opcode:`DFRACEXP`. The second
1955source is an integer.
1956
1957.. math::
1958
1959  dst.xy = src0.xy \times 2^{src1.x}
1960
1961  dst.zw = src0.zw \times 2^{src1.y}
1962
1963.. opcode:: DMIN - Minimum
1964
1965.. math::
1966
1967  dst.xy = min(src0.xy, src1.xy)
1968
1969  dst.zw = min(src0.zw, src1.zw)
1970
1971.. opcode:: DMAX - Maximum
1972
1973.. math::
1974
1975  dst.xy = max(src0.xy, src1.xy)
1976
1977  dst.zw = max(src0.zw, src1.zw)
1978
1979.. opcode:: DMUL - Multiply
1980
1981.. math::
1982
1983  dst.xy = src0.xy \times src1.xy
1984
1985  dst.zw = src0.zw \times src1.zw
1986
1987
1988.. opcode:: DMAD - Multiply And Add
1989
1990.. math::
1991
1992  dst.xy = src0.xy \times src1.xy + src2.xy
1993
1994  dst.zw = src0.zw \times src1.zw + src2.zw
1995
1996
1997.. opcode:: DFMA - Fused Multiply-Add
1998
1999Perform a * b + c with no intermediate rounding step.
2000
2001.. math::
2002
2003  dst.xy = src0.xy \times src1.xy + src2.xy
2004
2005  dst.zw = src0.zw \times src1.zw + src2.zw
2006
2007
2008.. opcode:: DDIV - Divide
2009
2010.. math::
2011
2012  dst.xy = \frac{src0.xy}{src1.xy}
2013
2014  dst.zw = \frac{src0.zw}{src1.zw}
2015
2016
2017.. opcode:: DRCP - Reciprocal
2018
2019.. math::
2020
2021   dst.xy = \frac{1}{src.xy}
2022
2023   dst.zw = \frac{1}{src.zw}
2024
2025.. opcode:: DSQRT - Square Root
2026
2027.. math::
2028
2029   dst.xy = \sqrt{src.xy}
2030
2031   dst.zw = \sqrt{src.zw}
2032
2033.. opcode:: DRSQ - Reciprocal Square Root
2034
2035.. math::
2036
2037   dst.xy = \frac{1}{\sqrt{src.xy}}
2038
2039   dst.zw = \frac{1}{\sqrt{src.zw}}
2040
2041.. opcode:: F2D - Float to Double
2042
2043.. math::
2044
2045   dst.xy = double(src0.x)
2046
2047   dst.zw = double(src0.y)
2048
2049.. opcode:: D2F - Double to Float
2050
2051.. math::
2052
2053   dst.x = float(src0.xy)
2054
2055   dst.y = float(src0.zw)
2056
2057.. opcode:: I2D - Int to Double
2058
2059.. math::
2060
2061   dst.xy = double(src0.x)
2062
2063   dst.zw = double(src0.y)
2064
2065.. opcode:: D2I - Double to Int
2066
2067.. math::
2068
2069   dst.x = int(src0.xy)
2070
2071   dst.y = int(src0.zw)
2072
2073.. opcode:: U2D - Unsigned Int to Double
2074
2075.. math::
2076
2077   dst.xy = double(src0.x)
2078
2079   dst.zw = double(src0.y)
2080
2081.. opcode:: D2U - Double to Unsigned Int
2082
2083.. math::
2084
2085   dst.x = unsigned(src0.xy)
2086
2087   dst.y = unsigned(src0.zw)
2088
208964-bit Integer ISA
2090^^^^^^^^^^^^^^^^^^
2091
2092The 64-bit integer opcodes reinterpret four-component vectors into
2093two-component vectors with 64-bits in each component.
2094
2095.. opcode:: I64ABS - 64-bit Integer Absolute Value
2096
2097  dst.xy = |src0.xy|
2098  dst.zw = |src0.zw|
2099
2100.. opcode:: I64NEG - 64-bit Integer Negate
2101
2102  Two's complement.
2103
2104.. math::
2105
2106  dst.xy = -src.xy
2107  dst.zw = -src.zw
2108
2109.. opcode:: I64SSG - 64-bit Integer Set Sign
2110
2111.. math::
2112
2113  dst.xy = (src0.xy < 0) ? -1 : (src0.xy > 0) ? 1 : 0
2114  dst.zw = (src0.zw < 0) ? -1 : (src0.zw > 0) ? 1 : 0
2115
2116.. opcode:: U64ADD - 64-bit Integer Add
2117
2118.. math::
2119
2120  dst.xy = src0.xy + src1.xy
2121  dst.zw = src0.zw + src1.zw
2122
2123.. opcode:: U64MUL - 64-bit Integer Multiply
2124
2125.. math::
2126
2127  dst.xy = src0.xy * src1.xy
2128  dst.zw = src0.zw * src1.zw
2129
2130.. opcode:: U64SEQ - 64-bit Integer Set on Equal
2131
2132.. math::
2133
2134  dst.x = src0.xy == src1.xy ? \sim 0 : 0
2135  dst.z = src0.zw == src1.zw ? \sim 0 : 0
2136
2137.. opcode:: U64SNE - 64-bit Integer Set on Not Equal
2138
2139.. math::
2140
2141  dst.x = src0.xy != src1.xy ? \sim 0 : 0
2142  dst.z = src0.zw != src1.zw ? \sim 0 : 0
2143
2144.. opcode:: U64SLT - 64-bit Unsigned Integer Set on Less Than
2145
2146.. math::
2147
2148  dst.x = src0.xy < src1.xy ? \sim 0 : 0
2149  dst.z = src0.zw < src1.zw ? \sim 0 : 0
2150
2151.. opcode:: U64SGE - 64-bit Unsigned Integer Set on Greater Equal
2152
2153.. math::
2154
2155  dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2156  dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2157
2158.. opcode:: I64SLT - 64-bit Signed Integer Set on Less Than
2159
2160.. math::
2161
2162  dst.x = src0.xy < src1.xy ? \sim 0 : 0
2163  dst.z = src0.zw < src1.zw ? \sim 0 : 0
2164
2165.. opcode:: I64SGE - 64-bit Signed Integer Set on Greater Equal
2166
2167.. math::
2168
2169  dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2170  dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2171
2172.. opcode:: I64MIN - Minimum of 64-bit Signed Integers
2173
2174.. math::
2175
2176  dst.xy = min(src0.xy, src1.xy)
2177  dst.zw = min(src0.zw, src1.zw)
2178
2179.. opcode:: U64MIN - Minimum of 64-bit Unsigned Integers
2180
2181.. math::
2182
2183  dst.xy = min(src0.xy, src1.xy)
2184  dst.zw = min(src0.zw, src1.zw)
2185
2186.. opcode:: I64MAX - Maximum of 64-bit Signed Integers
2187
2188.. math::
2189
2190  dst.xy = max(src0.xy, src1.xy)
2191  dst.zw = max(src0.zw, src1.zw)
2192
2193.. opcode:: U64MAX - Maximum of 64-bit Unsigned Integers
2194
2195.. math::
2196
2197  dst.xy = max(src0.xy, src1.xy)
2198  dst.zw = max(src0.zw, src1.zw)
2199
2200.. opcode:: U64SHL - Shift Left 64-bit Unsigned Integer
2201
2202   The shift count is masked with 0x3f before the shift is applied.
2203
2204.. math::
2205
2206  dst.xy = src0.xy << (0x3f \& src1.x)
2207  dst.zw = src0.zw << (0x3f \& src1.y)
2208
2209.. opcode:: I64SHR - Arithmetic Shift Right (of 64-bit Signed Integer)
2210
2211   The shift count is masked with 0x3f before the shift is applied.
2212
2213.. math::
2214
2215  dst.xy = src0.xy >> (0x3f \& src1.x)
2216  dst.zw = src0.zw >> (0x3f \& src1.y)
2217
2218.. opcode:: U64SHR - Logical Shift Right (of 64-bit Unsigned Integer)
2219
2220   The shift count is masked with 0x3f before the shift is applied.
2221
2222.. math::
2223
2224  dst.xy = src0.xy >> (unsigned) (0x3f \& src1.x)
2225  dst.zw = src0.zw >> (unsigned) (0x3f \& src1.y)
2226
2227.. opcode:: I64DIV - 64-bit Signed Integer Division
2228
2229.. math::
2230
2231  dst.xy = src0.xy \ src1.xy
2232  dst.zw = src0.zw \ src1.zw
2233
2234.. opcode:: U64DIV - 64-bit Unsigned Integer Division
2235
2236.. math::
2237
2238  dst.xy = src0.xy \ src1.xy
2239  dst.zw = src0.zw \ src1.zw
2240
2241.. opcode:: U64MOD - 64-bit Unsigned Integer Remainder
2242
2243.. math::
2244
2245  dst.xy = src0.xy \bmod src1.xy
2246  dst.zw = src0.zw \bmod src1.zw
2247
2248.. opcode:: I64MOD - 64-bit Signed Integer Remainder
2249
2250.. math::
2251
2252  dst.xy = src0.xy \bmod src1.xy
2253  dst.zw = src0.zw \bmod src1.zw
2254
2255.. opcode:: F2U64 - Float to 64-bit Unsigned Int
2256
2257.. math::
2258
2259   dst.xy = (uint64_t) src0.x
2260   dst.zw = (uint64_t) src0.y
2261
2262.. opcode:: F2I64 - Float to 64-bit Int
2263
2264.. math::
2265
2266   dst.xy = (int64_t) src0.x
2267   dst.zw = (int64_t) src0.y
2268
2269.. opcode:: U2I64 - Unsigned Integer to 64-bit Integer
2270
2271   This is a zero extension.
2272
2273.. math::
2274
2275   dst.xy = (uint64_t) src0.x
2276   dst.zw = (uint64_t) src0.y
2277
2278.. opcode:: I2I64 - Signed Integer to 64-bit Integer
2279
2280   This is a sign extension.
2281
2282.. math::
2283
2284   dst.xy = (int64_t) src0.x
2285   dst.zw = (int64_t) src0.y
2286
2287.. opcode:: D2U64 - Double to 64-bit Unsigned Int
2288
2289.. math::
2290
2291   dst.xy = (uint64_t) src0.xy
2292   dst.zw = (uint64_t) src0.zw
2293
2294.. opcode:: D2I64 - Double to 64-bit Int
2295
2296.. math::
2297
2298   dst.xy = (int64_t) src0.xy
2299   dst.zw = (int64_t) src0.zw
2300
2301.. opcode:: U642F - 64-bit unsigned integer to float
2302
2303.. math::
2304
2305   dst.x = (float) src0.xy
2306   dst.y = (float) src0.zw
2307
2308.. opcode:: I642F - 64-bit Int to Float
2309
2310.. math::
2311
2312   dst.x = (float) src0.xy
2313   dst.y = (float) src0.zw
2314
2315.. opcode:: U642D - 64-bit unsigned integer to double
2316
2317.. math::
2318
2319   dst.xy = (double) src0.xy
2320   dst.zw = (double) src0.zw
2321
2322.. opcode:: I642D - 64-bit Int to double
2323
2324.. math::
2325
2326   dst.xy = (double) src0.xy
2327   dst.zw = (double) src0.zw
2328
2329.. _samplingopcodes:
2330
2331Resource Sampling Opcodes
2332^^^^^^^^^^^^^^^^^^^^^^^^^
2333
2334Those opcodes follow very closely semantics of the respective Direct3D
2335instructions. If in doubt double check Direct3D documentation.
2336Note that the swizzle on SVIEW (src1) determines texel swizzling
2337after lookup.
2338
2339.. opcode:: SAMPLE
2340
2341  Using provided address, sample data from the specified texture using the
2342  filtering mode identified by the given sampler. The source data may come from
2343  any resource type other than buffers.
2344
2345  Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2346
2347  Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2348
2349.. opcode:: SAMPLE_I
2350
2351  Simplified alternative to the SAMPLE instruction.  Using the provided
2352  integer address, SAMPLE_I fetches data from the specified sampler view
2353  without any filtering.  The source data may come from any resource type
2354  other than CUBE.
2355
2356  Syntax: ``SAMPLE_I dst, address, sampler_view``
2357
2358  Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2359
2360  The 'address' is specified as unsigned integers. If the 'address' is out of
2361  range [0...(# texels - 1)] the result of the fetch is always 0 in all
2362  components.  As such the instruction doesn't honor address wrap modes, in
2363  cases where that behavior is desirable 'SAMPLE' instruction should be used.
2364  address.w always provides an unsigned integer mipmap level. If the value is
2365  out of the range then the instruction always returns 0 in all components.
2366  address.yz are ignored for buffers and 1d textures.  address.z is ignored
2367  for 1d texture arrays and 2d textures.
2368
2369  For 1D texture arrays address.y provides the array index (also as unsigned
2370  integer). If the value is out of the range of available array indices
2371  [0... (array size - 1)] then the opcode always returns 0 in all components.
2372  For 2D texture arrays address.z provides the array index, otherwise it
2373  exhibits the same behavior as in the case for 1D texture arrays.  The exact
2374  semantics of the source address are presented in the table below:
2375
2376  +---------------------------+----+-----+-----+---------+
2377  | resource type             | X  |  Y  |  Z  |    W    |
2378  +===========================+====+=====+=====+=========+
2379  | ``PIPE_BUFFER``           | x  |     |     | ignored |
2380  +---------------------------+----+-----+-----+---------+
2381  | ``PIPE_TEXTURE_1D``       | x  |     |     |   mpl   |
2382  +---------------------------+----+-----+-----+---------+
2383  | ``PIPE_TEXTURE_2D``       | x  |  y  |     |   mpl   |
2384  +---------------------------+----+-----+-----+---------+
2385  | ``PIPE_TEXTURE_3D``       | x  |  y  |  z  |   mpl   |
2386  +---------------------------+----+-----+-----+---------+
2387  | ``PIPE_TEXTURE_RECT``     | x  |  y  |     |   mpl   |
2388  +---------------------------+----+-----+-----+---------+
2389  | ``PIPE_TEXTURE_CUBE``     | not allowed as source    |
2390  +---------------------------+----+-----+-----+---------+
2391  | ``PIPE_TEXTURE_1D_ARRAY`` | x  | idx |     |   mpl   |
2392  +---------------------------+----+-----+-----+---------+
2393  | ``PIPE_TEXTURE_2D_ARRAY`` | x  |  y  | idx |   mpl   |
2394  +---------------------------+----+-----+-----+---------+
2395
2396  Where 'mpl' is a mipmap level and 'idx' is the array index.
2397
2398.. opcode:: SAMPLE_I_MS
2399
2400  Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2401
2402  Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2403
2404.. opcode:: SAMPLE_B
2405
2406  Just like the SAMPLE instruction with the exception that an additional bias
2407  is applied to the level of detail computed as part of the instruction
2408  execution.
2409
2410  Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2411
2412  Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2413
2414.. opcode:: SAMPLE_C
2415
2416  Similar to the SAMPLE instruction but it performs a comparison filter. The
2417  operands to SAMPLE_C are identical to SAMPLE, except that there is an
2418  additional float32 operand, reference value, which must be a register with
2419  single-component, or a scalar literal.  SAMPLE_C makes the hardware use the
2420  current samplers compare_func (in pipe_sampler_state) to compare reference
2421  value against the red component value for the surce resource at each texel
2422  that the currently configured texture filter covers based on the provided
2423  coordinates.
2424
2425  Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2426
2427  Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2428
2429.. opcode:: SAMPLE_C_LZ
2430
2431  Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2432  for level-zero.
2433
2434  Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2435
2436  Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2437
2438
2439.. opcode:: SAMPLE_D
2440
2441  SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2442  the source address in the x direction and the y direction are provided by
2443  extra parameters.
2444
2445  Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2446
2447  Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2448
2449.. opcode:: SAMPLE_L
2450
2451  SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2452  directly as a scalar value, representing no anisotropy.
2453
2454  Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2455
2456  Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2457
2458.. opcode:: GATHER4
2459
2460  Gathers the four texels to be used in a bi-linear filtering operation and
2461  packs them into a single register.  Only works with 2D, 2D array, cubemaps,
2462  and cubemaps arrays.  For 2D textures, only the addressing modes of the
2463  sampler and the top level of any mip pyramid are used. Set W to zero.  It
2464  behaves like the SAMPLE instruction, but a filtered sample is not
2465  generated. The four samples that contribute to filtering are placed into
2466  xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2467  delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2468  magnitude of the deltas are half a texel.
2469
2470
2471.. opcode:: SVIEWINFO
2472
2473  Query the dimensions of a given sampler view.  dst receives width, height,
2474  depth or array size and number of mipmap levels as int4. The dst can have a
2475  writemask which will specify what info is the caller interested in.
2476
2477  Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2478
2479  Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2480
2481  src_mip_level is an unsigned integer scalar. If it's out of range then
2482  returns 0 for width, height and depth/array size but the total number of
2483  mipmap is still returned correctly for the given sampler view.  The returned
2484  width, height and depth values are for the mipmap level selected by the
2485  src_mip_level and are in the number of texels.  For 1d texture array width
2486  is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2487  still in dst.w.  In contrast to d3d10 resinfo, there's no way in the tgsi
2488  instruction encoding to specify the return type (float/rcpfloat/uint), hence
2489  always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2490  resinfo allowing swizzling dst values is ignored (due to the interaction
2491  with rcpfloat modifier which requires some swizzle handling in the state
2492  tracker anyway).
2493
2494.. opcode:: SAMPLE_POS
2495
2496  Query the position of a given sample.  dst receives float4 (x, y, 0, 0)
2497  indicated where the sample is located. If the resource is not a multi-sample
2498  resource and not a render target, the result is 0.
2499
2500.. opcode:: SAMPLE_INFO
2501
2502  dst receives number of samples in x.  If the resource is not a multi-sample
2503  resource and not a render target, the result is 0.
2504
2505
2506.. _resourceopcodes:
2507
2508Resource Access Opcodes
2509^^^^^^^^^^^^^^^^^^^^^^^
2510
2511.. opcode:: LOAD - Fetch data from a shader buffer or image
2512
2513               Syntax: ``LOAD dst, resource, address``
2514
2515               Example: ``LOAD TEMP[0], BUFFER[0], TEMP[1]``
2516
2517               Using the provided integer address, LOAD fetches data
2518               from the specified buffer or texture without any
2519               filtering.
2520
2521               The 'address' is specified as a vector of unsigned
2522               integers.  If the 'address' is out of range the result
2523               is unspecified.
2524
2525               Only the first mipmap level of a resource can be read
2526               from using this instruction.
2527
2528               For 1D or 2D texture arrays, the array index is
2529               provided as an unsigned integer in address.y or
2530               address.z, respectively.  address.yz are ignored for
2531               buffers and 1D textures.  address.z is ignored for 1D
2532               texture arrays and 2D textures.  address.w is always
2533               ignored.
2534
2535               A swizzle suffix may be added to the resource argument
2536               this will cause the resource data to be swizzled accordingly.
2537
2538.. opcode:: STORE - Write data to a shader resource
2539
2540               Syntax: ``STORE resource, address, src``
2541
2542               Example: ``STORE BUFFER[0], TEMP[0], TEMP[1]``
2543
2544               Using the provided integer address, STORE writes data
2545               to the specified buffer or texture.
2546
2547               The 'address' is specified as a vector of unsigned
2548               integers.  If the 'address' is out of range the result
2549               is unspecified.
2550
2551               Only the first mipmap level of a resource can be
2552               written to using this instruction.
2553
2554               For 1D or 2D texture arrays, the array index is
2555               provided as an unsigned integer in address.y or
2556               address.z, respectively.  address.yz are ignored for
2557               buffers and 1D textures.  address.z is ignored for 1D
2558               texture arrays and 2D textures.  address.w is always
2559               ignored.
2560
2561.. opcode:: RESQ - Query information about a resource
2562
2563  Syntax: ``RESQ dst, resource``
2564
2565  Example: ``RESQ TEMP[0], BUFFER[0]``
2566
2567  Returns information about the buffer or image resource. For buffer
2568  resources, the size (in bytes) is returned in the x component. For
2569  image resources, .xyz will contain the width/height/layers of the
2570  image, while .w will contain the number of samples for multi-sampled
2571  images.
2572
2573.. opcode:: FBFETCH - Load data from framebuffer
2574
2575  Syntax: ``FBFETCH dst, output``
2576
2577  Example: ``FBFETCH TEMP[0], OUT[0]``
2578
2579  This is only valid on ``COLOR`` semantic outputs. Returns the color
2580  of the current position in the framebuffer from before this fragment
2581  shader invocation. May return the same value from multiple calls for
2582  a particular output within a single invocation. Note that result may
2583  be undefined if a fragment is drawn multiple times without a blend
2584  barrier in between.
2585
2586
2587.. _threadsyncopcodes:
2588
2589Inter-thread synchronization opcodes
2590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2591
2592These opcodes are intended for communication between threads running
2593within the same compute grid.  For now they're only valid in compute
2594programs.
2595
2596.. opcode:: MFENCE - Memory fence
2597
2598  Syntax: ``MFENCE resource``
2599
2600  Example: ``MFENCE RES[0]``
2601
2602  This opcode forces strong ordering between any memory access
2603  operations that affect the specified resource.  This means that
2604  previous loads and stores (and only those) will be performed and
2605  visible to other threads before the program execution continues.
2606
2607
2608.. opcode:: LFENCE - Load memory fence
2609
2610  Syntax: ``LFENCE resource``
2611
2612  Example: ``LFENCE RES[0]``
2613
2614  Similar to MFENCE, but it only affects the ordering of memory loads.
2615
2616
2617.. opcode:: SFENCE - Store memory fence
2618
2619  Syntax: ``SFENCE resource``
2620
2621  Example: ``SFENCE RES[0]``
2622
2623  Similar to MFENCE, but it only affects the ordering of memory stores.
2624
2625
2626.. opcode:: BARRIER - Thread group barrier
2627
2628  ``BARRIER``
2629
2630  This opcode suspends the execution of the current thread until all
2631  the remaining threads in the working group reach the same point of
2632  the program.  Results are unspecified if any of the remaining
2633  threads terminates or never reaches an executed BARRIER instruction.
2634
2635.. opcode:: MEMBAR - Memory barrier
2636
2637  ``MEMBAR type``
2638
2639  This opcode waits for the completion of all memory accesses based on
2640  the type passed in. The type is an immediate bitfield with the following
2641  meaning:
2642
2643  Bit 0: Shader storage buffers
2644  Bit 1: Atomic buffers
2645  Bit 2: Images
2646  Bit 3: Shared memory
2647  Bit 4: Thread group
2648
2649  These may be passed in in any combination. An implementation is free to not
2650  distinguish between these as it sees fit. However these map to all the
2651  possibilities made available by GLSL.
2652
2653.. _atomopcodes:
2654
2655Atomic opcodes
2656^^^^^^^^^^^^^^
2657
2658These opcodes provide atomic variants of some common arithmetic and
2659logical operations.  In this context atomicity means that another
2660concurrent memory access operation that affects the same memory
2661location is guaranteed to be performed strictly before or after the
2662entire execution of the atomic operation. The resource may be a buffer
2663or an image. In the case of an image, the offset works the same as for
2664``LOAD`` and ``STORE``, specified above. These atomic operations may
2665only be used with 32-bit integer image formats.
2666
2667.. opcode:: ATOMUADD - Atomic integer addition
2668
2669  Syntax: ``ATOMUADD dst, resource, offset, src``
2670
2671  Example: ``ATOMUADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2672
2673  The following operation is performed atomically:
2674
2675.. math::
2676
2677  dst_x = resource[offset]
2678
2679  resource[offset] = dst_x + src_x
2680
2681
2682.. opcode:: ATOMXCHG - Atomic exchange
2683
2684  Syntax: ``ATOMXCHG dst, resource, offset, src``
2685
2686  Example: ``ATOMXCHG TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2687
2688  The following operation is performed atomically:
2689
2690.. math::
2691
2692  dst_x = resource[offset]
2693
2694  resource[offset] = src_x
2695
2696
2697.. opcode:: ATOMCAS - Atomic compare-and-exchange
2698
2699  Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2700
2701  Example: ``ATOMCAS TEMP[0], BUFFER[0], TEMP[1], TEMP[2], TEMP[3]``
2702
2703  The following operation is performed atomically:
2704
2705.. math::
2706
2707  dst_x = resource[offset]
2708
2709  resource[offset] = (dst_x == cmp_x ? src_x : dst_x)
2710
2711
2712.. opcode:: ATOMAND - Atomic bitwise And
2713
2714  Syntax: ``ATOMAND dst, resource, offset, src``
2715
2716  Example: ``ATOMAND TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2717
2718  The following operation is performed atomically:
2719
2720.. math::
2721
2722  dst_x = resource[offset]
2723
2724  resource[offset] = dst_x \& src_x
2725
2726
2727.. opcode:: ATOMOR - Atomic bitwise Or
2728
2729  Syntax: ``ATOMOR dst, resource, offset, src``
2730
2731  Example: ``ATOMOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2732
2733  The following operation is performed atomically:
2734
2735.. math::
2736
2737  dst_x = resource[offset]
2738
2739  resource[offset] = dst_x | src_x
2740
2741
2742.. opcode:: ATOMXOR - Atomic bitwise Xor
2743
2744  Syntax: ``ATOMXOR dst, resource, offset, src``
2745
2746  Example: ``ATOMXOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2747
2748  The following operation is performed atomically:
2749
2750.. math::
2751
2752  dst_x = resource[offset]
2753
2754  resource[offset] = dst_x \oplus src_x
2755
2756
2757.. opcode:: ATOMUMIN - Atomic unsigned minimum
2758
2759  Syntax: ``ATOMUMIN dst, resource, offset, src``
2760
2761  Example: ``ATOMUMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2762
2763  The following operation is performed atomically:
2764
2765.. math::
2766
2767  dst_x = resource[offset]
2768
2769  resource[offset] = (dst_x < src_x ? dst_x : src_x)
2770
2771
2772.. opcode:: ATOMUMAX - Atomic unsigned maximum
2773
2774  Syntax: ``ATOMUMAX dst, resource, offset, src``
2775
2776  Example: ``ATOMUMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2777
2778  The following operation is performed atomically:
2779
2780.. math::
2781
2782  dst_x = resource[offset]
2783
2784  resource[offset] = (dst_x > src_x ? dst_x : src_x)
2785
2786
2787.. opcode:: ATOMIMIN - Atomic signed minimum
2788
2789  Syntax: ``ATOMIMIN dst, resource, offset, src``
2790
2791  Example: ``ATOMIMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2792
2793  The following operation is performed atomically:
2794
2795.. math::
2796
2797  dst_x = resource[offset]
2798
2799  resource[offset] = (dst_x < src_x ? dst_x : src_x)
2800
2801
2802.. opcode:: ATOMIMAX - Atomic signed maximum
2803
2804  Syntax: ``ATOMIMAX dst, resource, offset, src``
2805
2806  Example: ``ATOMIMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2807
2808  The following operation is performed atomically:
2809
2810.. math::
2811
2812  dst_x = resource[offset]
2813
2814  resource[offset] = (dst_x > src_x ? dst_x : src_x)
2815
2816
2817.. _voteopcodes:
2818
2819Vote opcodes
2820^^^^^^^^^^^^
2821
2822These opcodes compare the given value across the shader invocations
2823running in the current SIMD group. The details of exactly which
2824invocations get compared are implementation-defined, and it would be a
2825correct implementation to only ever consider the current thread's
2826value. (i.e. SIMD group of 1). The argument is treated as a boolean.
2827
2828.. opcode:: VOTE_ANY - Value is set in any of the current invocations
2829
2830.. opcode:: VOTE_ALL - Value is set in all of the current invocations
2831
2832.. opcode:: VOTE_EQ - Value is the same in all of the current invocations
2833
2834
2835Explanation of symbols used
2836------------------------------
2837
2838
2839Functions
2840^^^^^^^^^^^^^^
2841
2842
2843  :math:`|x|`       Absolute value of `x`.
2844
2845  :math:`\lceil x \rceil` Ceiling of `x`.
2846
2847  clamp(x,y,z)      Clamp x between y and z.
2848                    (x < y) ? y : (x > z) ? z : x
2849
2850  :math:`\lfloor x\rfloor` Floor of `x`.
2851
2852  :math:`\log_2{x}` Logarithm of `x`, base 2.
2853
2854  max(x,y)          Maximum of x and y.
2855                    (x > y) ? x : y
2856
2857  min(x,y)          Minimum of x and y.
2858                    (x < y) ? x : y
2859
2860  partialx(x)       Derivative of x relative to fragment's X.
2861
2862  partialy(x)       Derivative of x relative to fragment's Y.
2863
2864  pop()             Pop from stack.
2865
2866  :math:`x^y`       `x` to the power `y`.
2867
2868  push(x)           Push x on stack.
2869
2870  round(x)          Round x.
2871
2872  trunc(x)          Truncate x, i.e. drop the fraction bits.
2873
2874
2875Keywords
2876^^^^^^^^^^^^^
2877
2878
2879  discard           Discard fragment.
2880
2881  pc                Program counter.
2882
2883  target            Label of target instruction.
2884
2885
2886Other tokens
2887---------------
2888
2889
2890Declaration
2891^^^^^^^^^^^
2892
2893
2894Declares a register that is will be referenced as an operand in Instruction
2895tokens.
2896
2897File field contains register file that is being declared and is one
2898of TGSI_FILE.
2899
2900UsageMask field specifies which of the register components can be accessed
2901and is one of TGSI_WRITEMASK.
2902
2903The Local flag specifies that a given value isn't intended for
2904subroutine parameter passing and, as a result, the implementation
2905isn't required to give any guarantees of it being preserved across
2906subroutine boundaries.  As it's merely a compiler hint, the
2907implementation is free to ignore it.
2908
2909If Dimension flag is set to 1, a Declaration Dimension token follows.
2910
2911If Semantic flag is set to 1, a Declaration Semantic token follows.
2912
2913If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2914
2915If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2916
2917If Array flag is set to 1, a Declaration Array token follows.
2918
2919Array Declaration
2920^^^^^^^^^^^^^^^^^^^^^^^^
2921
2922Declarations can optional have an ArrayID attribute which can be referred by
2923indirect addressing operands. An ArrayID of zero is reserved and treated as
2924if no ArrayID is specified.
2925
2926If an indirect addressing operand refers to a specific declaration by using
2927an ArrayID only the registers in this declaration are guaranteed to be
2928accessed, accessing any register outside this declaration results in undefined
2929behavior. Note that for compatibility the effective index is zero-based and
2930not relative to the specified declaration
2931
2932If no ArrayID is specified with an indirect addressing operand the whole
2933register file might be accessed by this operand. This is strongly discouraged
2934and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2935This is only legal for TEMP and CONST register files.
2936
2937Declaration Semantic
2938^^^^^^^^^^^^^^^^^^^^^^^^
2939
2940Vertex and fragment shader input and output registers may be labeled
2941with semantic information consisting of a name and index.
2942
2943Follows Declaration token if Semantic bit is set.
2944
2945Since its purpose is to link a shader with other stages of the pipeline,
2946it is valid to follow only those Declaration tokens that declare a register
2947either in INPUT or OUTPUT file.
2948
2949SemanticName field contains the semantic name of the register being declared.
2950There is no default value.
2951
2952SemanticIndex is an optional subscript that can be used to distinguish
2953different register declarations with the same semantic name. The default value
2954is 0.
2955
2956The meanings of the individual semantic names are explained in the following
2957sections.
2958
2959TGSI_SEMANTIC_POSITION
2960""""""""""""""""""""""
2961
2962For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2963output register which contains the homogeneous vertex position in the clip
2964space coordinate system.  After clipping, the X, Y and Z components of the
2965vertex will be divided by the W value to get normalized device coordinates.
2966
2967For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2968fragment shader input (or system value, depending on which one is
2969supported by the driver) contains the fragment's window position.  The X
2970component starts at zero and always increases from left to right.
2971The Y component starts at zero and always increases but Y=0 may either
2972indicate the top of the window or the bottom depending on the fragment
2973coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2974The Z coordinate ranges from 0 to 1 to represent depth from the front
2975to the back of the Z buffer.  The W component contains the interpolated
2976reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
2977but unlike d3d10 which interpolates the same 1/w but then gives back
2978the reciprocal of the interpolated value).
2979
2980Fragment shaders may also declare an output register with
2981TGSI_SEMANTIC_POSITION.  Only the Z component is writable.  This allows
2982the fragment shader to change the fragment's Z position.
2983
2984
2985
2986TGSI_SEMANTIC_COLOR
2987"""""""""""""""""""
2988
2989For vertex shader outputs or fragment shader inputs/outputs, this
2990label indicates that the register contains an R,G,B,A color.
2991
2992Several shader inputs/outputs may contain colors so the semantic index
2993is used to distinguish them.  For example, color[0] may be the diffuse
2994color while color[1] may be the specular color.
2995
2996This label is needed so that the flat/smooth shading can be applied
2997to the right interpolants during rasterization.
2998
2999
3000
3001TGSI_SEMANTIC_BCOLOR
3002""""""""""""""""""""
3003
3004Back-facing colors are only used for back-facing polygons, and are only valid
3005in vertex shader outputs. After rasterization, all polygons are front-facing
3006and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
3007so all BCOLORs effectively become regular COLORs in the fragment shader.
3008
3009
3010TGSI_SEMANTIC_FOG
3011"""""""""""""""""
3012
3013Vertex shader inputs and outputs and fragment shader inputs may be
3014labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
3015a fog coordinate.  Typically, the fragment shader will use the fog coordinate
3016to compute a fog blend factor which is used to blend the normal fragment color
3017with a constant fog color.  But fog coord really is just an ordinary vec4
3018register like regular semantics.
3019
3020
3021TGSI_SEMANTIC_PSIZE
3022"""""""""""""""""""
3023
3024Vertex shader input and output registers may be labeled with
3025TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
3026in the form (S, 0, 0, 1).  The point size controls the width or diameter
3027of points for rasterization.  This label cannot be used in fragment
3028shaders.
3029
3030When using this semantic, be sure to set the appropriate state in the
3031:ref:`rasterizer` first.
3032
3033
3034TGSI_SEMANTIC_TEXCOORD
3035""""""""""""""""""""""
3036
3037Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3038
3039Vertex shader outputs and fragment shader inputs may be labeled with
3040this semantic to make them replaceable by sprite coordinates via the
3041sprite_coord_enable state in the :ref:`rasterizer`.
3042The semantic index permitted with this semantic is limited to <= 7.
3043
3044If the driver does not support TEXCOORD, sprite coordinate replacement
3045applies to inputs with the GENERIC semantic instead.
3046
3047The intended use case for this semantic is gl_TexCoord.
3048
3049
3050TGSI_SEMANTIC_PCOORD
3051""""""""""""""""""""
3052
3053Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3054
3055Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
3056that the register contains sprite coordinates in the form (x, y, 0, 1), if
3057the current primitive is a point and point sprites are enabled. Otherwise,
3058the contents of the register are undefined.
3059
3060The intended use case for this semantic is gl_PointCoord.
3061
3062
3063TGSI_SEMANTIC_GENERIC
3064"""""""""""""""""""""
3065
3066All vertex/fragment shader inputs/outputs not labeled with any other
3067semantic label can be considered to be generic attributes.  Typical
3068uses of generic inputs/outputs are texcoords and user-defined values.
3069
3070
3071TGSI_SEMANTIC_NORMAL
3072""""""""""""""""""""
3073
3074Indicates that a vertex shader input is a normal vector.  This is
3075typically only used for legacy graphics APIs.
3076
3077
3078TGSI_SEMANTIC_FACE
3079""""""""""""""""""
3080
3081This label applies to fragment shader inputs (or system values,
3082depending on which one is supported by the driver) and indicates that
3083the register contains front/back-face information.
3084
3085If it is an input, it will be a floating-point vector in the form (F, 0, 0, 1),
3086where F will be positive when the fragment belongs to a front-facing polygon,
3087and negative when the fragment belongs to a back-facing polygon.
3088
3089If it is a system value, it will be an integer vector in the form (F, 0, 0, 1),
3090where F is 0xffffffff when the fragment belongs to a front-facing polygon and
30910 when the fragment belongs to a back-facing polygon.
3092
3093
3094TGSI_SEMANTIC_EDGEFLAG
3095""""""""""""""""""""""
3096
3097For vertex shaders, this sematic label indicates that an input or
3098output is a boolean edge flag.  The register layout is [F, x, x, x]
3099where F is 0.0 or 1.0 and x = don't care.  Normally, the vertex shader
3100simply copies the edge flag input to the edgeflag output.
3101
3102Edge flags are used to control which lines or points are actually
3103drawn when the polygon mode converts triangles/quads/polygons into
3104points or lines.
3105
3106
3107TGSI_SEMANTIC_STENCIL
3108"""""""""""""""""""""
3109
3110For fragment shaders, this semantic label indicates that an output
3111is a writable stencil reference value. Only the Y component is writable.
3112This allows the fragment shader to change the fragments stencilref value.
3113
3114
3115TGSI_SEMANTIC_VIEWPORT_INDEX
3116""""""""""""""""""""""""""""
3117
3118For geometry shaders, this semantic label indicates that an output
3119contains the index of the viewport (and scissor) to use.
3120This is an integer value, and only the X component is used.
3121
3122
3123TGSI_SEMANTIC_LAYER
3124"""""""""""""""""""
3125
3126For geometry shaders, this semantic label indicates that an output
3127contains the layer value to use for the color and depth/stencil surfaces.
3128This is an integer value, and only the X component is used.
3129(Also known as rendertarget array index.)
3130
3131
3132TGSI_SEMANTIC_CULLDIST
3133""""""""""""""""""""""
3134
3135Used as distance to plane for performing application-defined culling
3136of individual primitives against a plane. When components of vertex
3137elements are given this label, these values are assumed to be a
3138float32 signed distance to a plane. Primitives will be completely
3139discarded if the plane distance for all of the vertices in the
3140primitive are < 0. If a vertex has a cull distance of NaN, that
3141vertex counts as "out" (as if its < 0);
3142The limits on both clip and cull distances are bound
3143by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3144the maximum number of components that can be used to hold the
3145distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3146which specifies the maximum number of registers which can be
3147annotated with those semantics.
3148
3149
3150TGSI_SEMANTIC_CLIPDIST
3151""""""""""""""""""""""
3152
3153Note this covers clipping and culling distances.
3154
3155When components of vertex elements are identified this way, these
3156values are each assumed to be a float32 signed distance to a plane.
3157
3158For clip distances:
3159Primitive setup only invokes rasterization on pixels for which
3160the interpolated plane distances are >= 0.
3161
3162For cull distances:
3163Primitives will be completely discarded if the plane distance
3164for all of the vertices in the primitive are < 0.
3165If a vertex has a cull distance of NaN, that vertex counts as "out"
3166(as if its < 0);
3167
3168Multiple clip/cull planes can be implemented simultaneously, by
3169annotating multiple components of one or more vertex elements with
3170the above specified semantic.
3171The limits on both clip and cull distances are bound
3172by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3173the maximum number of components that can be used to hold the
3174distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3175which specifies the maximum number of registers which can be
3176annotated with those semantics.
3177The properties NUM_CLIPDIST_ENABLED and NUM_CULLDIST_ENABLED
3178are used to divide up the 2 x vec4 space between clipping and culling.
3179
3180TGSI_SEMANTIC_SAMPLEID
3181""""""""""""""""""""""
3182
3183For fragment shaders, this semantic label indicates that a system value
3184contains the current sample id (i.e. gl_SampleID).
3185This is an integer value, and only the X component is used.
3186
3187TGSI_SEMANTIC_SAMPLEPOS
3188"""""""""""""""""""""""
3189
3190For fragment shaders, this semantic label indicates that a system value
3191contains the current sample's position (i.e. gl_SamplePosition). Only the X
3192and Y values are used.
3193
3194TGSI_SEMANTIC_SAMPLEMASK
3195""""""""""""""""""""""""
3196
3197For fragment shaders, this semantic label indicates that an output contains
3198the sample mask used to disable further sample processing
3199(i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
3200
3201TGSI_SEMANTIC_INVOCATIONID
3202""""""""""""""""""""""""""
3203
3204For geometry shaders, this semantic label indicates that a system value
3205contains the current invocation id (i.e. gl_InvocationID).
3206This is an integer value, and only the X component is used.
3207
3208TGSI_SEMANTIC_INSTANCEID
3209""""""""""""""""""""""""
3210
3211For vertex shaders, this semantic label indicates that a system value contains
3212the current instance id (i.e. gl_InstanceID). It does not include the base
3213instance. This is an integer value, and only the X component is used.
3214
3215TGSI_SEMANTIC_VERTEXID
3216""""""""""""""""""""""
3217
3218For vertex shaders, this semantic label indicates that a system value contains
3219the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
3220base vertex. This is an integer value, and only the X component is used.
3221
3222TGSI_SEMANTIC_VERTEXID_NOBASE
3223"""""""""""""""""""""""""""""""
3224
3225For vertex shaders, this semantic label indicates that a system value contains
3226the current vertex id without including the base vertex (this corresponds to
3227d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
3228== TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
3229is used.
3230
3231TGSI_SEMANTIC_BASEVERTEX
3232""""""""""""""""""""""""
3233
3234For vertex shaders, this semantic label indicates that a system value contains
3235the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
3236this contains the first (or start) value instead.
3237This is an integer value, and only the X component is used.
3238
3239TGSI_SEMANTIC_PRIMID
3240""""""""""""""""""""
3241
3242For geometry and fragment shaders, this semantic label indicates the value
3243contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
3244and only the X component is used.
3245FIXME: This right now can be either a ordinary input or a system value...
3246
3247
3248TGSI_SEMANTIC_PATCH
3249"""""""""""""""""""
3250
3251For tessellation evaluation/control shaders, this semantic label indicates a
3252generic per-patch attribute. Such semantics will not implicitly be per-vertex
3253arrays.
3254
3255TGSI_SEMANTIC_TESSCOORD
3256"""""""""""""""""""""""
3257
3258For tessellation evaluation shaders, this semantic label indicates the
3259coordinates of the vertex being processed. This is available in XYZ; W is
3260undefined.
3261
3262TGSI_SEMANTIC_TESSOUTER
3263"""""""""""""""""""""""
3264
3265For tessellation evaluation/control shaders, this semantic label indicates the
3266outer tessellation levels of the patch. Isoline tessellation will only have XY
3267defined, triangle will have XYZ and quads will have XYZW defined. This
3268corresponds to gl_TessLevelOuter.
3269
3270TGSI_SEMANTIC_TESSINNER
3271"""""""""""""""""""""""
3272
3273For tessellation evaluation/control shaders, this semantic label indicates the
3274inner tessellation levels of the patch. The X value is only defined for
3275triangle tessellation, while quads will have XY defined. This is entirely
3276undefined for isoline tessellation.
3277
3278TGSI_SEMANTIC_VERTICESIN
3279""""""""""""""""""""""""
3280
3281For tessellation evaluation/control shaders, this semantic label indicates the
3282number of vertices provided in the input patch. Only the X value is defined.
3283
3284TGSI_SEMANTIC_HELPER_INVOCATION
3285"""""""""""""""""""""""""""""""
3286
3287For fragment shaders, this semantic indicates whether the current
3288invocation is covered or not. Helper invocations are created in order
3289to properly compute derivatives, however it may be desirable to skip
3290some of the logic in those cases. See ``gl_HelperInvocation`` documentation.
3291
3292TGSI_SEMANTIC_BASEINSTANCE
3293""""""""""""""""""""""""""
3294
3295For vertex shaders, the base instance argument supplied for this
3296draw. This is an integer value, and only the X component is used.
3297
3298TGSI_SEMANTIC_DRAWID
3299""""""""""""""""""""
3300
3301For vertex shaders, the zero-based index of the current draw in a
3302``glMultiDraw*`` invocation. This is an integer value, and only the X
3303component is used.
3304
3305
3306TGSI_SEMANTIC_WORK_DIM
3307""""""""""""""""""""""
3308
3309For compute shaders started via opencl this retrieves the work_dim
3310parameter to the clEnqueueNDRangeKernel call with which the shader
3311was started.
3312
3313
3314TGSI_SEMANTIC_GRID_SIZE
3315"""""""""""""""""""""""
3316
3317For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3318of a grid of thread blocks.
3319
3320
3321TGSI_SEMANTIC_BLOCK_ID
3322""""""""""""""""""""""
3323
3324For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3325current block inside of the grid.
3326
3327
3328TGSI_SEMANTIC_BLOCK_SIZE
3329""""""""""""""""""""""""
3330
3331For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3332of a block in threads.
3333
3334
3335TGSI_SEMANTIC_THREAD_ID
3336"""""""""""""""""""""""
3337
3338For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3339current thread inside of the block.
3340
3341
3342Declaration Interpolate
3343^^^^^^^^^^^^^^^^^^^^^^^
3344
3345This token is only valid for fragment shader INPUT declarations.
3346
3347The Interpolate field specifes the way input is being interpolated by
3348the rasteriser and is one of TGSI_INTERPOLATE_*.
3349
3350The Location field specifies the location inside the pixel that the
3351interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
3352when per-sample shading is enabled, the implementation may choose to
3353interpolate at the sample irrespective of the Location field.
3354
3355The CylindricalWrap bitfield specifies which register components
3356should be subject to cylindrical wrapping when interpolating by the
3357rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
3358should be interpolated according to cylindrical wrapping rules.
3359
3360
3361Declaration Sampler View
3362^^^^^^^^^^^^^^^^^^^^^^^^
3363
3364Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
3365
3366DCL SVIEW[#], resource, type(s)
3367
3368Declares a shader input sampler view and assigns it to a SVIEW[#]
3369register.
3370
3371resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
3372
3373type must be 1 or 4 entries (if specifying on a per-component
3374level) out of UNORM, SNORM, SINT, UINT and FLOAT.
3375
3376For TEX\* style texture sample opcodes (as opposed to SAMPLE\* opcodes
3377which take an explicit SVIEW[#] source register), there may be optionally
3378SVIEW[#] declarations.  In this case, the SVIEW index is implied by the
3379SAMP index, and there must be a corresponding SVIEW[#] declaration for
3380each SAMP[#] declaration.  Drivers are free to ignore this if they wish.
3381But note in particular that some drivers need to know the sampler type
3382(float/int/unsigned) in order to generate the correct code, so cases
3383where integer textures are sampled, SVIEW[#] declarations should be
3384used.
3385
3386NOTE: It is NOT legal to mix SAMPLE\* style opcodes and TEX\* opcodes
3387in the same shader.
3388
3389Declaration Resource
3390^^^^^^^^^^^^^^^^^^^^
3391
3392Follows Declaration token if file is TGSI_FILE_RESOURCE.
3393
3394DCL RES[#], resource [, WR] [, RAW]
3395
3396Declares a shader input resource and assigns it to a RES[#]
3397register.
3398
3399resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
34002DArray.
3401
3402If the RAW keyword is not specified, the texture data will be
3403subject to conversion, swizzling and scaling as required to yield
3404the specified data type from the physical data format of the bound
3405resource.
3406
3407If the RAW keyword is specified, no channel conversion will be
3408performed: the values read for each of the channels (X,Y,Z,W) will
3409correspond to consecutive words in the same order and format
3410they're found in memory.  No element-to-address conversion will be
3411performed either: the value of the provided X coordinate will be
3412interpreted in byte units instead of texel units.  The result of
3413accessing a misaligned address is undefined.
3414
3415Usage of the STORE opcode is only allowed if the WR (writable) flag
3416is set.
3417
3418
3419Properties
3420^^^^^^^^^^^^^^^^^^^^^^^^
3421
3422Properties are general directives that apply to the whole TGSI program.
3423
3424FS_COORD_ORIGIN
3425"""""""""""""""
3426
3427Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
3428The default value is UPPER_LEFT.
3429
3430If UPPER_LEFT, the position will be (0,0) at the upper left corner and
3431increase downward and rightward.
3432If LOWER_LEFT, the position will be (0,0) at the lower left corner and
3433increase upward and rightward.
3434
3435OpenGL defaults to LOWER_LEFT, and is configurable with the
3436GL_ARB_fragment_coord_conventions extension.
3437
3438DirectX 9/10 use UPPER_LEFT.
3439
3440FS_COORD_PIXEL_CENTER
3441"""""""""""""""""""""
3442
3443Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
3444The default value is HALF_INTEGER.
3445
3446If HALF_INTEGER, the fractionary part of the position will be 0.5
3447If INTEGER, the fractionary part of the position will be 0.0
3448
3449Note that this does not affect the set of fragments generated by
3450rasterization, which is instead controlled by half_pixel_center in the
3451rasterizer.
3452
3453OpenGL defaults to HALF_INTEGER, and is configurable with the
3454GL_ARB_fragment_coord_conventions extension.
3455
3456DirectX 9 uses INTEGER.
3457DirectX 10 uses HALF_INTEGER.
3458
3459FS_COLOR0_WRITES_ALL_CBUFS
3460""""""""""""""""""""""""""
3461Specifies that writes to the fragment shader color 0 are replicated to all
3462bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
3463fragData is directed to a single color buffer, but fragColor is broadcast.
3464
3465VS_PROHIBIT_UCPS
3466""""""""""""""""""""""""""
3467If this property is set on the program bound to the shader stage before the
3468fragment shader, user clip planes should have no effect (be disabled) even if
3469that shader does not write to any clip distance outputs and the rasterizer's
3470clip_plane_enable is non-zero.
3471This property is only supported by drivers that also support shader clip
3472distance outputs.
3473This is useful for APIs that don't have UCPs and where clip distances written
3474by a shader cannot be disabled.
3475
3476GS_INVOCATIONS
3477""""""""""""""
3478
3479Specifies the number of times a geometry shader should be executed for each
3480input primitive. Each invocation will have a different
3481TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
3482be 1.
3483
3484VS_WINDOW_SPACE_POSITION
3485""""""""""""""""""""""""""
3486If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3487is assumed to contain window space coordinates.
3488Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3489directly taken from the 4-th component of the shader output.
3490Naturally, clipping is not performed on window coordinates either.
3491The effect of this property is undefined if a geometry or tessellation shader
3492are in use.
3493
3494TCS_VERTICES_OUT
3495""""""""""""""""
3496
3497The number of vertices written by the tessellation control shader. This
3498effectively defines the patch input size of the tessellation evaluation shader
3499as well.
3500
3501TES_PRIM_MODE
3502"""""""""""""
3503
3504This sets the tessellation primitive mode, one of ``PIPE_PRIM_TRIANGLES``,
3505``PIPE_PRIM_QUADS``, or ``PIPE_PRIM_LINES``. (Unlike in GL, there is no
3506separate isolines settings, the regular lines is assumed to mean isolines.)
3507
3508TES_SPACING
3509"""""""""""
3510
3511This sets the spacing mode of the tessellation generator, one of
3512``PIPE_TESS_SPACING_*``.
3513
3514TES_VERTEX_ORDER_CW
3515"""""""""""""""""""
3516
3517This sets the vertex order to be clockwise if the value is 1, or
3518counter-clockwise if set to 0.
3519
3520TES_POINT_MODE
3521""""""""""""""
3522
3523If set to a non-zero value, this turns on point mode for the tessellator,
3524which means that points will be generated instead of primitives.
3525
3526NUM_CLIPDIST_ENABLED
3527""""""""""""""""
3528
3529How many clip distance scalar outputs are enabled.
3530
3531NUM_CULLDIST_ENABLED
3532""""""""""""""""
3533
3534How many cull distance scalar outputs are enabled.
3535
3536FS_EARLY_DEPTH_STENCIL
3537""""""""""""""""""""""
3538
3539Whether depth test, stencil test, and occlusion query should run before
3540the fragment shader (regardless of fragment shader side effects). Corresponds
3541to GLSL early_fragment_tests.
3542
3543NEXT_SHADER
3544"""""""""""
3545
3546Which shader stage will MOST LIKELY follow after this shader when the shader
3547is bound. This is only a hint to the driver and doesn't have to be precise.
3548Only set for VS and TES.
3549
3550TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH / HEIGHT / DEPTH
3551"""""""""""""""""""""""""""""""""""""""""""""""""""
3552
3553Threads per block in each dimension, if known at compile time. If the block size
3554is known all three should be at least 1. If it is unknown they should all be set
3555to 0 or not set.
3556
3557Texture Sampling and Texture Formats
3558------------------------------------
3559
3560This table shows how texture image components are returned as (x,y,z,w) tuples
3561by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3562:opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3563well.
3564
3565+--------------------+--------------+--------------------+--------------+
3566| Texture Components | Gallium      | OpenGL             | Direct3D 9   |
3567+====================+==============+====================+==============+
3568| R                  | (r, 0, 0, 1) | (r, 0, 0, 1)       | (r, 1, 1, 1) |
3569+--------------------+--------------+--------------------+--------------+
3570| RG                 | (r, g, 0, 1) | (r, g, 0, 1)       | (r, g, 1, 1) |
3571+--------------------+--------------+--------------------+--------------+
3572| RGB                | (r, g, b, 1) | (r, g, b, 1)       | (r, g, b, 1) |
3573+--------------------+--------------+--------------------+--------------+
3574| RGBA               | (r, g, b, a) | (r, g, b, a)       | (r, g, b, a) |
3575+--------------------+--------------+--------------------+--------------+
3576| A                  | (0, 0, 0, a) | (0, 0, 0, a)       | (0, 0, 0, a) |
3577+--------------------+--------------+--------------------+--------------+
3578| L                  | (l, l, l, 1) | (l, l, l, 1)       | (l, l, l, 1) |
3579+--------------------+--------------+--------------------+--------------+
3580| LA                 | (l, l, l, a) | (l, l, l, a)       | (l, l, l, a) |
3581+--------------------+--------------+--------------------+--------------+
3582| I                  | (i, i, i, i) | (i, i, i, i)       | N/A          |
3583+--------------------+--------------+--------------------+--------------+
3584| UV                 | XXX TBD      | (0, 0, 0, 1)       | (u, v, 1, 1) |
3585|                    |              | [#envmap-bumpmap]_ |              |
3586+--------------------+--------------+--------------------+--------------+
3587| Z                  | XXX TBD      | (z, z, z, 1)       | (0, z, 0, 1) |
3588|                    |              | [#depth-tex-mode]_ |              |
3589+--------------------+--------------+--------------------+--------------+
3590| S                  | (s, s, s, s) | unknown            | unknown      |
3591+--------------------+--------------+--------------------+--------------+
3592
3593.. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3594.. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3595   or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.
3596