• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2007-2010 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 /*
29  * Rasterization for binned triangles within a tile
30  */
31 
32 
33 
34 /**
35  * Prototype for a 8 plane rasterizer function.  Will codegenerate
36  * several of these.
37  *
38  * XXX: Varients for more/fewer planes.
39  * XXX: Need ways of dropping planes as we descend.
40  * XXX: SIMD
41  */
42 static void
TAG(do_block_4)43 TAG(do_block_4)(struct lp_rasterizer_task *task,
44                 const struct lp_rast_triangle *tri,
45                 const struct lp_rast_plane *plane,
46                 int x, int y,
47                 const int64_t *c)
48 {
49    unsigned mask = 0xffff;
50    int j;
51 
52    for (j = 0; j < NR_PLANES; j++) {
53 #ifdef RASTER_64
54       mask &= ~BUILD_MASK_LINEAR(((c[j] - 1) >> (int64_t)FIXED_ORDER),
55                                  -plane[j].dcdx >> FIXED_ORDER,
56                                  plane[j].dcdy >> FIXED_ORDER);
57 #else
58       mask &= ~BUILD_MASK_LINEAR((c[j] - 1),
59                                  -plane[j].dcdx,
60                                  plane[j].dcdy);
61 #endif
62    }
63 
64    /* Now pass to the shader:
65     */
66    if (mask)
67       lp_rast_shade_quads_mask(task, &tri->inputs, x, y, mask);
68 }
69 
70 /**
71  * Evaluate a 16x16 block of pixels to determine which 4x4 subblocks are in/out
72  * of the triangle's bounds.
73  */
74 static void
TAG(do_block_16)75 TAG(do_block_16)(struct lp_rasterizer_task *task,
76                  const struct lp_rast_triangle *tri,
77                  const struct lp_rast_plane *plane,
78                  int x, int y,
79                  const int64_t *c)
80 {
81    unsigned outmask, inmask, partmask, partial_mask;
82    unsigned j;
83 
84    outmask = 0;                 /* outside one or more trivial reject planes */
85    partmask = 0;                /* outside one or more trivial accept planes */
86 
87    for (j = 0; j < NR_PLANES; j++) {
88 #ifdef RASTER_64
89       int32_t dcdx = -plane[j].dcdx >> FIXED_ORDER;
90       int32_t dcdy = plane[j].dcdy >> FIXED_ORDER;
91       const int32_t cox = plane[j].eo >> FIXED_ORDER;
92       const int32_t ei = (dcdy + dcdx - cox) << 2;
93       const int32_t cox_s = cox << 2;
94       const int32_t co = (int32_t)(c[j] >> (int64_t)FIXED_ORDER) + cox_s;
95       int32_t cdiff;
96       cdiff = ei - cox_s + ((int32_t)((c[j] - 1) >> (int64_t)FIXED_ORDER) -
97                             (int32_t)(c[j] >> (int64_t)FIXED_ORDER));
98       dcdx <<= 2;
99       dcdy <<= 2;
100 #else
101       const int64_t dcdx = -IMUL64(plane[j].dcdx, 4);
102       const int64_t dcdy = IMUL64(plane[j].dcdy, 4);
103       const int64_t cox = IMUL64(plane[j].eo, 4);
104       const int32_t ei = plane[j].dcdy - plane[j].dcdx - (int64_t)plane[j].eo;
105       const int64_t cio = IMUL64(ei, 4) - 1;
106       int32_t co, cdiff;
107       co = c[j] + cox;
108       cdiff = cio - cox;
109 #endif
110 
111       BUILD_MASKS(co, cdiff,
112                   dcdx, dcdy,
113                   &outmask,   /* sign bits from c[i][0..15] + cox */
114                   &partmask); /* sign bits from c[i][0..15] + cio */
115    }
116 
117    if (outmask == 0xffff)
118       return;
119 
120    /* Mask of sub-blocks which are inside all trivial accept planes:
121     */
122    inmask = ~partmask & 0xffff;
123 
124    /* Mask of sub-blocks which are inside all trivial reject planes,
125     * but outside at least one trivial accept plane:
126     */
127    partial_mask = partmask & ~outmask;
128 
129    assert((partial_mask & inmask) == 0);
130 
131    LP_COUNT_ADD(nr_empty_4, util_bitcount(0xffff & ~(partial_mask | inmask)));
132 
133    /* Iterate over partials:
134     */
135    while (partial_mask) {
136       int i = ffs(partial_mask) - 1;
137       int ix = (i & 3) * 4;
138       int iy = (i >> 2) * 4;
139       int px = x + ix;
140       int py = y + iy;
141       int64_t cx[NR_PLANES];
142 
143       partial_mask &= ~(1 << i);
144 
145       LP_COUNT(nr_partially_covered_4);
146 
147       for (j = 0; j < NR_PLANES; j++)
148          cx[j] = (c[j]
149                   - IMUL64(plane[j].dcdx, ix)
150                   + IMUL64(plane[j].dcdy, iy));
151 
152       TAG(do_block_4)(task, tri, plane, px, py, cx);
153    }
154 
155    /* Iterate over fulls:
156     */
157    while (inmask) {
158       int i = ffs(inmask) - 1;
159       int ix = (i & 3) * 4;
160       int iy = (i >> 2) * 4;
161       int px = x + ix;
162       int py = y + iy;
163 
164       inmask &= ~(1 << i);
165 
166       LP_COUNT(nr_fully_covered_4);
167       block_full_4(task, tri, px, py);
168    }
169 }
170 
171 
172 /**
173  * Scan the tile in chunks and figure out which pixels to rasterize
174  * for this triangle.
175  */
176 void
TAG(lp_rast_triangle)177 TAG(lp_rast_triangle)(struct lp_rasterizer_task *task,
178                       const union lp_rast_cmd_arg arg)
179 {
180    const struct lp_rast_triangle *tri = arg.triangle.tri;
181    unsigned plane_mask = arg.triangle.plane_mask;
182    const struct lp_rast_plane *tri_plane = GET_PLANES(tri);
183    const int x = task->x, y = task->y;
184    struct lp_rast_plane plane[NR_PLANES];
185    int64_t c[NR_PLANES];
186    unsigned outmask, inmask, partmask, partial_mask;
187    unsigned j = 0;
188 
189    if (tri->inputs.disable) {
190       /* This triangle was partially binned and has been disabled */
191       return;
192    }
193 
194    outmask = 0;                 /* outside one or more trivial reject planes */
195    partmask = 0;                /* outside one or more trivial accept planes */
196 
197    while (plane_mask) {
198       int i = ffs(plane_mask) - 1;
199       plane[j] = tri_plane[i];
200       plane_mask &= ~(1 << i);
201       c[j] = plane[j].c + IMUL64(plane[j].dcdy, y) - IMUL64(plane[j].dcdx, x);
202 
203       {
204 #ifdef RASTER_64
205          /*
206           * Strip off lower FIXED_ORDER bits. Note that those bits from
207           * dcdx, dcdy, eo are always 0 (by definition).
208           * c values, however, are not. This means that for every
209           * addition of the form c + n*dcdx the lower FIXED_ORDER bits will
210           * NOT change. And those bits are not relevant to the sign bit (which
211           * is only what we need!) that is,
212           * sign(c + n*dcdx) == sign((c >> FIXED_ORDER) + n*(dcdx >> FIXED_ORDER))
213           * This means we can get away with using 32bit math for the most part.
214           * Only tricky part is the -1 adjustment for cdiff.
215           */
216          int32_t dcdx = -plane[j].dcdx >> FIXED_ORDER;
217          int32_t dcdy = plane[j].dcdy >> FIXED_ORDER;
218          const int32_t cox = plane[j].eo >> FIXED_ORDER;
219          const int32_t ei = (dcdy + dcdx - cox) << 4;
220          const int32_t cox_s = cox << 4;
221          const int32_t co = (int32_t)(c[j] >> (int64_t)FIXED_ORDER) + cox_s;
222          int32_t cdiff;
223          /*
224           * Plausibility check to ensure the 32bit math works.
225           * Note that within a tile, the max we can move the edge function
226           * is essentially dcdx * TILE_SIZE + dcdy * TILE_SIZE.
227           * TILE_SIZE is 64, dcdx/dcdy are nominally 21 bit (for 8192 max size
228           * and 8 subpixel bits), I'd be happy with 2 bits more too (1 for
229           * increasing fb size to 16384, the required d3d11 value, another one
230           * because I'm not quite sure we can't be _just_ above the max value
231           * here). This gives us 30 bits max - hence if c would exceed that here
232           * that means the plane is either trivial reject for the whole tile
233           * (in which case the tri will not get binned), or trivial accept for
234           * the whole tile (in which case plane_mask will not include it).
235           */
236          assert((c[j] >> (int64_t)FIXED_ORDER) > (int32_t)0xb0000000 &&
237                 (c[j] >> (int64_t)FIXED_ORDER) < (int32_t)0x3fffffff);
238          /*
239           * Note the fixup part is constant throughout the tile - thus could
240           * just calculate this and avoid _all_ 64bit math in rasterization
241           * (except exactly this fixup calc).
242           * In fact theoretically could move that even to setup, albeit that
243           * seems tricky (pre-bin certainly can have values larger than 32bit,
244           * and would need to communicate that fixup value through).
245           * And if we want to support msaa, we'd probably don't want to do the
246           * downscaling in setup in any case...
247           */
248          cdiff = ei - cox_s + ((int32_t)((c[j] - 1) >> (int64_t)FIXED_ORDER) -
249                                (int32_t)(c[j] >> (int64_t)FIXED_ORDER));
250          dcdx <<= 4;
251          dcdy <<= 4;
252 #else
253          const int32_t dcdx = -plane[j].dcdx << 4;
254          const int32_t dcdy = plane[j].dcdy << 4;
255          const int32_t cox = plane[j].eo << 4;
256          const int32_t ei = plane[j].dcdy - plane[j].dcdx - (int32_t)plane[j].eo;
257          const int32_t cio = (ei << 4) - 1;
258          int32_t co, cdiff;
259          co = c[j] + cox;
260          cdiff = cio - cox;
261 #endif
262          BUILD_MASKS(co, cdiff,
263                      dcdx, dcdy,
264                      &outmask,   /* sign bits from c[i][0..15] + cox */
265                      &partmask); /* sign bits from c[i][0..15] + cio */
266       }
267 
268       j++;
269    }
270 
271    if (outmask == 0xffff)
272       return;
273 
274    /* Mask of sub-blocks which are inside all trivial accept planes:
275     */
276    inmask = ~partmask & 0xffff;
277 
278    /* Mask of sub-blocks which are inside all trivial reject planes,
279     * but outside at least one trivial accept plane:
280     */
281    partial_mask = partmask & ~outmask;
282 
283    assert((partial_mask & inmask) == 0);
284 
285    LP_COUNT_ADD(nr_empty_16, util_bitcount(0xffff & ~(partial_mask | inmask)));
286 
287    /* Iterate over partials:
288     */
289    while (partial_mask) {
290       int i = ffs(partial_mask) - 1;
291       int ix = (i & 3) * 16;
292       int iy = (i >> 2) * 16;
293       int px = x + ix;
294       int py = y + iy;
295       int64_t cx[NR_PLANES];
296 
297       for (j = 0; j < NR_PLANES; j++)
298          cx[j] = (c[j]
299                   - IMUL64(plane[j].dcdx, ix)
300                   + IMUL64(plane[j].dcdy, iy));
301 
302       partial_mask &= ~(1 << i);
303 
304       LP_COUNT(nr_partially_covered_16);
305       TAG(do_block_16)(task, tri, plane, px, py, cx);
306    }
307 
308    /* Iterate over fulls:
309     */
310    while (inmask) {
311       int i = ffs(inmask) - 1;
312       int ix = (i & 3) * 16;
313       int iy = (i >> 2) * 16;
314       int px = x + ix;
315       int py = y + iy;
316 
317       inmask &= ~(1 << i);
318 
319       LP_COUNT(nr_fully_covered_16);
320       block_full_16(task, tri, px, py);
321    }
322 }
323 
324 #if defined(PIPE_ARCH_SSE) && defined(TRI_16)
325 /* XXX: special case this when intersection is not required.
326  *      - tile completely within bbox,
327  *      - bbox completely within tile.
328  */
329 void
TRI_16(struct lp_rasterizer_task * task,const union lp_rast_cmd_arg arg)330 TRI_16(struct lp_rasterizer_task *task,
331        const union lp_rast_cmd_arg arg)
332 {
333    const struct lp_rast_triangle *tri = arg.triangle.tri;
334    const struct lp_rast_plane *plane = GET_PLANES(tri);
335    unsigned mask = arg.triangle.plane_mask;
336    unsigned outmask, partial_mask;
337    unsigned j;
338    __m128i cstep4[NR_PLANES][4];
339 
340    int x = (mask & 0xff);
341    int y = (mask >> 8);
342 
343    outmask = 0;                 /* outside one or more trivial reject planes */
344 
345    x += task->x;
346    y += task->y;
347 
348    for (j = 0; j < NR_PLANES; j++) {
349       const int dcdx = -plane[j].dcdx * 4;
350       const int dcdy = plane[j].dcdy * 4;
351       __m128i xdcdy = _mm_set1_epi32(dcdy);
352 
353       cstep4[j][0] = _mm_setr_epi32(0, dcdx, dcdx*2, dcdx*3);
354       cstep4[j][1] = _mm_add_epi32(cstep4[j][0], xdcdy);
355       cstep4[j][2] = _mm_add_epi32(cstep4[j][1], xdcdy);
356       cstep4[j][3] = _mm_add_epi32(cstep4[j][2], xdcdy);
357 
358       {
359 	 const int c = plane[j].c + plane[j].dcdy * y - plane[j].dcdx * x;
360 	 const int cox = plane[j].eo * 4;
361 
362 	 outmask |= sign_bits4(cstep4[j], c + cox);
363       }
364    }
365 
366    if (outmask == 0xffff)
367       return;
368 
369 
370    /* Mask of sub-blocks which are inside all trivial reject planes,
371     * but outside at least one trivial accept plane:
372     */
373    partial_mask = 0xffff & ~outmask;
374 
375    /* Iterate over partials:
376     */
377    while (partial_mask) {
378       int i = ffs(partial_mask) - 1;
379       int ix = (i & 3) * 4;
380       int iy = (i >> 2) * 4;
381       int px = x + ix;
382       int py = y + iy;
383       unsigned mask = 0xffff;
384 
385       partial_mask &= ~(1 << i);
386 
387       for (j = 0; j < NR_PLANES; j++) {
388          const int cx = (plane[j].c - 1
389 			 - plane[j].dcdx * px
390 			 + plane[j].dcdy * py) * 4;
391 
392 	 mask &= ~sign_bits4(cstep4[j], cx);
393       }
394 
395       if (mask)
396 	 lp_rast_shade_quads_mask(task, &tri->inputs, px, py, mask);
397    }
398 }
399 #endif
400 
401 #if defined(PIPE_ARCH_SSE) && defined(TRI_4)
402 void
TRI_4(struct lp_rasterizer_task * task,const union lp_rast_cmd_arg arg)403 TRI_4(struct lp_rasterizer_task *task,
404       const union lp_rast_cmd_arg arg)
405 {
406    const struct lp_rast_triangle *tri = arg.triangle.tri;
407    const struct lp_rast_plane *plane = GET_PLANES(tri);
408    unsigned mask = arg.triangle.plane_mask;
409    const int x = task->x + (mask & 0xff);
410    const int y = task->y + (mask >> 8);
411    unsigned j;
412 
413    /* Iterate over partials:
414     */
415    {
416       unsigned mask = 0xffff;
417 
418       for (j = 0; j < NR_PLANES; j++) {
419 	 const int cx = (plane[j].c
420 			 - plane[j].dcdx * x
421 			 + plane[j].dcdy * y);
422 
423 	 const int dcdx = -plane[j].dcdx;
424 	 const int dcdy = plane[j].dcdy;
425 	 __m128i xdcdy = _mm_set1_epi32(dcdy);
426 
427 	 __m128i cstep0 = _mm_setr_epi32(cx, cx + dcdx, cx + dcdx*2, cx + dcdx*3);
428 	 __m128i cstep1 = _mm_add_epi32(cstep0, xdcdy);
429 	 __m128i cstep2 = _mm_add_epi32(cstep1, xdcdy);
430 	 __m128i cstep3 = _mm_add_epi32(cstep2, xdcdy);
431 
432 	 __m128i cstep01 = _mm_packs_epi32(cstep0, cstep1);
433 	 __m128i cstep23 = _mm_packs_epi32(cstep2, cstep3);
434 	 __m128i result = _mm_packs_epi16(cstep01, cstep23);
435 
436 	 /* Extract the sign bits
437 	  */
438 	 mask &= ~_mm_movemask_epi8(result);
439       }
440 
441       if (mask)
442 	 lp_rast_shade_quads_mask(task, &tri->inputs, x, y, mask);
443    }
444 }
445 #endif
446 
447 
448 
449 #undef TAG
450 #undef TRI_4
451 #undef TRI_16
452 #undef NR_PLANES
453 
454