1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "common/gen_l3_config.h"
32 #include "anv_private.h"
33 #include "brw_nir.h"
34 #include "anv_nir.h"
35 #include "spirv/nir_spirv.h"
36
37 /* Needed for SWIZZLE macros */
38 #include "program/prog_instruction.h"
39
40 // Shader functions
41
anv_CreateShaderModule(VkDevice _device,const VkShaderModuleCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkShaderModule * pShaderModule)42 VkResult anv_CreateShaderModule(
43 VkDevice _device,
44 const VkShaderModuleCreateInfo* pCreateInfo,
45 const VkAllocationCallbacks* pAllocator,
46 VkShaderModule* pShaderModule)
47 {
48 ANV_FROM_HANDLE(anv_device, device, _device);
49 struct anv_shader_module *module;
50
51 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
52 assert(pCreateInfo->flags == 0);
53
54 module = vk_alloc2(&device->alloc, pAllocator,
55 sizeof(*module) + pCreateInfo->codeSize, 8,
56 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
57 if (module == NULL)
58 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
59
60 module->size = pCreateInfo->codeSize;
61 memcpy(module->data, pCreateInfo->pCode, module->size);
62
63 _mesa_sha1_compute(module->data, module->size, module->sha1);
64
65 *pShaderModule = anv_shader_module_to_handle(module);
66
67 return VK_SUCCESS;
68 }
69
anv_DestroyShaderModule(VkDevice _device,VkShaderModule _module,const VkAllocationCallbacks * pAllocator)70 void anv_DestroyShaderModule(
71 VkDevice _device,
72 VkShaderModule _module,
73 const VkAllocationCallbacks* pAllocator)
74 {
75 ANV_FROM_HANDLE(anv_device, device, _device);
76 ANV_FROM_HANDLE(anv_shader_module, module, _module);
77
78 if (!module)
79 return;
80
81 vk_free2(&device->alloc, pAllocator, module);
82 }
83
84 #define SPIR_V_MAGIC_NUMBER 0x07230203
85
86 /* Eventually, this will become part of anv_CreateShader. Unfortunately,
87 * we can't do that yet because we don't have the ability to copy nir.
88 */
89 static nir_shader *
anv_shader_compile_to_nir(struct anv_device * device,struct anv_shader_module * module,const char * entrypoint_name,gl_shader_stage stage,const VkSpecializationInfo * spec_info)90 anv_shader_compile_to_nir(struct anv_device *device,
91 struct anv_shader_module *module,
92 const char *entrypoint_name,
93 gl_shader_stage stage,
94 const VkSpecializationInfo *spec_info)
95 {
96 if (strcmp(entrypoint_name, "main") != 0) {
97 anv_finishme("Multiple shaders per module not really supported");
98 }
99
100 const struct brw_compiler *compiler =
101 device->instance->physicalDevice.compiler;
102 const nir_shader_compiler_options *nir_options =
103 compiler->glsl_compiler_options[stage].NirOptions;
104
105 uint32_t *spirv = (uint32_t *) module->data;
106 assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
107 assert(module->size % 4 == 0);
108
109 uint32_t num_spec_entries = 0;
110 struct nir_spirv_specialization *spec_entries = NULL;
111 if (spec_info && spec_info->mapEntryCount > 0) {
112 num_spec_entries = spec_info->mapEntryCount;
113 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
114 for (uint32_t i = 0; i < num_spec_entries; i++) {
115 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
116 const void *data = spec_info->pData + entry.offset;
117 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
118
119 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
120 if (spec_info->dataSize == 8)
121 spec_entries[i].data64 = *(const uint64_t *)data;
122 else
123 spec_entries[i].data32 = *(const uint32_t *)data;
124 }
125 }
126
127 const struct nir_spirv_supported_extensions supported_ext = {
128 .float64 = device->instance->physicalDevice.info.gen >= 8,
129 .tessellation = true,
130 };
131
132 nir_function *entry_point =
133 spirv_to_nir(spirv, module->size / 4,
134 spec_entries, num_spec_entries,
135 stage, entrypoint_name, &supported_ext, nir_options);
136 nir_shader *nir = entry_point->shader;
137 assert(nir->stage == stage);
138 nir_validate_shader(nir);
139
140 free(spec_entries);
141
142 /* We have to lower away local constant initializers right before we
143 * inline functions. That way they get properly initialized at the top
144 * of the function and not at the top of its caller.
145 */
146 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
147 NIR_PASS_V(nir, nir_lower_returns);
148 NIR_PASS_V(nir, nir_inline_functions);
149
150 /* Pick off the single entrypoint that we want */
151 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
152 if (func != entry_point)
153 exec_node_remove(&func->node);
154 }
155 assert(exec_list_length(&nir->functions) == 1);
156 entry_point->name = ralloc_strdup(entry_point, "main");
157
158 NIR_PASS_V(nir, nir_remove_dead_variables,
159 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
160
161 if (stage == MESA_SHADER_FRAGMENT)
162 NIR_PASS_V(nir, nir_lower_wpos_center);
163
164 /* Now that we've deleted all but the main function, we can go ahead and
165 * lower the rest of the constant initializers.
166 */
167 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
168 NIR_PASS_V(nir, nir_propagate_invariant);
169 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
170 entry_point->impl, true, false);
171 NIR_PASS_V(nir, nir_lower_system_values);
172
173 /* Vulkan uses the separate-shader linking model */
174 nir->info->separate_shader = true;
175
176 nir = brw_preprocess_nir(compiler, nir);
177
178 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
179
180 if (stage == MESA_SHADER_FRAGMENT)
181 NIR_PASS_V(nir, anv_nir_lower_input_attachments);
182
183 nir_shader_gather_info(nir, entry_point->impl);
184
185 return nir;
186 }
187
anv_DestroyPipeline(VkDevice _device,VkPipeline _pipeline,const VkAllocationCallbacks * pAllocator)188 void anv_DestroyPipeline(
189 VkDevice _device,
190 VkPipeline _pipeline,
191 const VkAllocationCallbacks* pAllocator)
192 {
193 ANV_FROM_HANDLE(anv_device, device, _device);
194 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
195
196 if (!pipeline)
197 return;
198
199 anv_reloc_list_finish(&pipeline->batch_relocs,
200 pAllocator ? pAllocator : &device->alloc);
201 if (pipeline->blend_state.map)
202 anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
203
204 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
205 if (pipeline->shaders[s])
206 anv_shader_bin_unref(device, pipeline->shaders[s]);
207 }
208
209 vk_free2(&device->alloc, pAllocator, pipeline);
210 }
211
212 static const uint32_t vk_to_gen_primitive_type[] = {
213 [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
214 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
215 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
216 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
217 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
218 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
219 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
220 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
221 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
222 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
223 };
224
225 static void
populate_sampler_prog_key(const struct gen_device_info * devinfo,struct brw_sampler_prog_key_data * key)226 populate_sampler_prog_key(const struct gen_device_info *devinfo,
227 struct brw_sampler_prog_key_data *key)
228 {
229 /* XXX: Handle texture swizzle on HSW- */
230 for (int i = 0; i < MAX_SAMPLERS; i++) {
231 /* Assume color sampler, no swizzling. (Works for BDW+) */
232 key->swizzles[i] = SWIZZLE_XYZW;
233 }
234 }
235
236 static void
populate_vs_prog_key(const struct gen_device_info * devinfo,struct brw_vs_prog_key * key)237 populate_vs_prog_key(const struct gen_device_info *devinfo,
238 struct brw_vs_prog_key *key)
239 {
240 memset(key, 0, sizeof(*key));
241
242 populate_sampler_prog_key(devinfo, &key->tex);
243
244 /* XXX: Handle vertex input work-arounds */
245
246 /* XXX: Handle sampler_prog_key */
247 }
248
249 static void
populate_gs_prog_key(const struct gen_device_info * devinfo,struct brw_gs_prog_key * key)250 populate_gs_prog_key(const struct gen_device_info *devinfo,
251 struct brw_gs_prog_key *key)
252 {
253 memset(key, 0, sizeof(*key));
254
255 populate_sampler_prog_key(devinfo, &key->tex);
256 }
257
258 static void
populate_wm_prog_key(const struct anv_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * info,struct brw_wm_prog_key * key)259 populate_wm_prog_key(const struct anv_pipeline *pipeline,
260 const VkGraphicsPipelineCreateInfo *info,
261 struct brw_wm_prog_key *key)
262 {
263 const struct gen_device_info *devinfo = &pipeline->device->info;
264 ANV_FROM_HANDLE(anv_render_pass, render_pass, info->renderPass);
265
266 memset(key, 0, sizeof(*key));
267
268 populate_sampler_prog_key(devinfo, &key->tex);
269
270 /* TODO: we could set this to 0 based on the information in nir_shader, but
271 * this function is called before spirv_to_nir. */
272 const struct brw_vue_map *vue_map =
273 &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
274 key->input_slots_valid = vue_map->slots_valid;
275
276 /* Vulkan doesn't specify a default */
277 key->high_quality_derivatives = false;
278
279 /* XXX Vulkan doesn't appear to specify */
280 key->clamp_fragment_color = false;
281
282 key->nr_color_regions =
283 render_pass->subpasses[info->subpass].color_count;
284
285 key->replicate_alpha = key->nr_color_regions > 1 &&
286 info->pMultisampleState &&
287 info->pMultisampleState->alphaToCoverageEnable;
288
289 if (info->pMultisampleState && info->pMultisampleState->rasterizationSamples > 1) {
290 /* We should probably pull this out of the shader, but it's fairly
291 * harmless to compute it and then let dead-code take care of it.
292 */
293 key->persample_interp =
294 (info->pMultisampleState->minSampleShading *
295 info->pMultisampleState->rasterizationSamples) > 1;
296 key->multisample_fbo = true;
297 }
298 }
299
300 static void
populate_cs_prog_key(const struct gen_device_info * devinfo,struct brw_cs_prog_key * key)301 populate_cs_prog_key(const struct gen_device_info *devinfo,
302 struct brw_cs_prog_key *key)
303 {
304 memset(key, 0, sizeof(*key));
305
306 populate_sampler_prog_key(devinfo, &key->tex);
307 }
308
309 static nir_shader *
anv_pipeline_compile(struct anv_pipeline * pipeline,struct anv_shader_module * module,const char * entrypoint,gl_shader_stage stage,const VkSpecializationInfo * spec_info,struct brw_stage_prog_data * prog_data,struct anv_pipeline_bind_map * map)310 anv_pipeline_compile(struct anv_pipeline *pipeline,
311 struct anv_shader_module *module,
312 const char *entrypoint,
313 gl_shader_stage stage,
314 const VkSpecializationInfo *spec_info,
315 struct brw_stage_prog_data *prog_data,
316 struct anv_pipeline_bind_map *map)
317 {
318 nir_shader *nir = anv_shader_compile_to_nir(pipeline->device,
319 module, entrypoint, stage,
320 spec_info);
321 if (nir == NULL)
322 return NULL;
323
324 NIR_PASS_V(nir, anv_nir_lower_push_constants);
325
326 /* Figure out the number of parameters */
327 prog_data->nr_params = 0;
328
329 if (nir->num_uniforms > 0) {
330 /* If the shader uses any push constants at all, we'll just give
331 * them the maximum possible number
332 */
333 assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
334 prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
335 }
336
337 if (pipeline->layout && pipeline->layout->stage[stage].has_dynamic_offsets)
338 prog_data->nr_params += MAX_DYNAMIC_BUFFERS * 2;
339
340 if (nir->info->num_images > 0) {
341 prog_data->nr_params += nir->info->num_images * BRW_IMAGE_PARAM_SIZE;
342 pipeline->needs_data_cache = true;
343 }
344
345 if (stage == MESA_SHADER_COMPUTE)
346 ((struct brw_cs_prog_data *)prog_data)->thread_local_id_index =
347 prog_data->nr_params++; /* The CS Thread ID uniform */
348
349 if (nir->info->num_ssbos > 0)
350 pipeline->needs_data_cache = true;
351
352 if (prog_data->nr_params > 0) {
353 /* XXX: I think we're leaking this */
354 prog_data->param = (const union gl_constant_value **)
355 malloc(prog_data->nr_params * sizeof(union gl_constant_value *));
356
357 /* We now set the param values to be offsets into a
358 * anv_push_constant_data structure. Since the compiler doesn't
359 * actually dereference any of the gl_constant_value pointers in the
360 * params array, it doesn't really matter what we put here.
361 */
362 struct anv_push_constants *null_data = NULL;
363 if (nir->num_uniforms > 0) {
364 /* Fill out the push constants section of the param array */
365 for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++)
366 prog_data->param[i] = (const union gl_constant_value *)
367 &null_data->client_data[i * sizeof(float)];
368 }
369 }
370
371 /* Set up dynamic offsets */
372 anv_nir_apply_dynamic_offsets(pipeline, nir, prog_data);
373
374 /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
375 if (pipeline->layout)
376 anv_nir_apply_pipeline_layout(pipeline, nir, prog_data, map);
377
378 /* nir_lower_io will only handle the push constants; we need to set this
379 * to the full number of possible uniforms.
380 */
381 nir->num_uniforms = prog_data->nr_params * 4;
382
383 return nir;
384 }
385
386 static void
anv_fill_binding_table(struct brw_stage_prog_data * prog_data,unsigned bias)387 anv_fill_binding_table(struct brw_stage_prog_data *prog_data, unsigned bias)
388 {
389 prog_data->binding_table.size_bytes = 0;
390 prog_data->binding_table.texture_start = bias;
391 prog_data->binding_table.gather_texture_start = bias;
392 prog_data->binding_table.ubo_start = bias;
393 prog_data->binding_table.ssbo_start = bias;
394 prog_data->binding_table.image_start = bias;
395 }
396
397 static struct anv_shader_bin *
anv_pipeline_upload_kernel(struct anv_pipeline * pipeline,struct anv_pipeline_cache * cache,const void * key_data,uint32_t key_size,const void * kernel_data,uint32_t kernel_size,const struct brw_stage_prog_data * prog_data,uint32_t prog_data_size,const struct anv_pipeline_bind_map * bind_map)398 anv_pipeline_upload_kernel(struct anv_pipeline *pipeline,
399 struct anv_pipeline_cache *cache,
400 const void *key_data, uint32_t key_size,
401 const void *kernel_data, uint32_t kernel_size,
402 const struct brw_stage_prog_data *prog_data,
403 uint32_t prog_data_size,
404 const struct anv_pipeline_bind_map *bind_map)
405 {
406 if (cache) {
407 return anv_pipeline_cache_upload_kernel(cache, key_data, key_size,
408 kernel_data, kernel_size,
409 prog_data, prog_data_size,
410 bind_map);
411 } else {
412 return anv_shader_bin_create(pipeline->device, key_data, key_size,
413 kernel_data, kernel_size,
414 prog_data, prog_data_size,
415 prog_data->param, bind_map);
416 }
417 }
418
419
420 static void
anv_pipeline_add_compiled_stage(struct anv_pipeline * pipeline,gl_shader_stage stage,struct anv_shader_bin * shader)421 anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
422 gl_shader_stage stage,
423 struct anv_shader_bin *shader)
424 {
425 pipeline->shaders[stage] = shader;
426 pipeline->active_stages |= mesa_to_vk_shader_stage(stage);
427 }
428
429 static VkResult
anv_pipeline_compile_vs(struct anv_pipeline * pipeline,struct anv_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * info,struct anv_shader_module * module,const char * entrypoint,const VkSpecializationInfo * spec_info)430 anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
431 struct anv_pipeline_cache *cache,
432 const VkGraphicsPipelineCreateInfo *info,
433 struct anv_shader_module *module,
434 const char *entrypoint,
435 const VkSpecializationInfo *spec_info)
436 {
437 const struct brw_compiler *compiler =
438 pipeline->device->instance->physicalDevice.compiler;
439 struct anv_pipeline_bind_map map;
440 struct brw_vs_prog_key key;
441 struct anv_shader_bin *bin = NULL;
442 unsigned char sha1[20];
443
444 populate_vs_prog_key(&pipeline->device->info, &key);
445
446 if (cache) {
447 anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
448 pipeline->layout, spec_info);
449 bin = anv_pipeline_cache_search(cache, sha1, 20);
450 }
451
452 if (bin == NULL) {
453 struct brw_vs_prog_data prog_data = { 0, };
454 struct anv_pipeline_binding surface_to_descriptor[256];
455 struct anv_pipeline_binding sampler_to_descriptor[256];
456
457 map = (struct anv_pipeline_bind_map) {
458 .surface_to_descriptor = surface_to_descriptor,
459 .sampler_to_descriptor = sampler_to_descriptor
460 };
461
462 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
463 MESA_SHADER_VERTEX, spec_info,
464 &prog_data.base.base, &map);
465 if (nir == NULL)
466 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
467
468 anv_fill_binding_table(&prog_data.base.base, 0);
469
470 void *mem_ctx = ralloc_context(NULL);
471
472 ralloc_steal(mem_ctx, nir);
473
474 prog_data.inputs_read = nir->info->inputs_read;
475 prog_data.double_inputs_read = nir->info->double_inputs_read;
476
477 brw_compute_vue_map(&pipeline->device->info,
478 &prog_data.base.vue_map,
479 nir->info->outputs_written,
480 nir->info->separate_shader);
481
482 unsigned code_size;
483 const unsigned *shader_code =
484 brw_compile_vs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
485 NULL, false, -1, &code_size, NULL);
486 if (shader_code == NULL) {
487 ralloc_free(mem_ctx);
488 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
489 }
490
491 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
492 shader_code, code_size,
493 &prog_data.base.base, sizeof(prog_data),
494 &map);
495 if (!bin) {
496 ralloc_free(mem_ctx);
497 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
498 }
499
500 ralloc_free(mem_ctx);
501 }
502
503 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX, bin);
504
505 return VK_SUCCESS;
506 }
507
508 static void
merge_tess_info(struct shader_info * tes_info,const struct shader_info * tcs_info)509 merge_tess_info(struct shader_info *tes_info,
510 const struct shader_info *tcs_info)
511 {
512 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
513 *
514 * "PointMode. Controls generation of points rather than triangles
515 * or lines. This functionality defaults to disabled, and is
516 * enabled if either shader stage includes the execution mode.
517 *
518 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
519 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
520 * and OutputVertices, it says:
521 *
522 * "One mode must be set in at least one of the tessellation
523 * shader stages."
524 *
525 * So, the fields can be set in either the TCS or TES, but they must
526 * agree if set in both. Our backend looks at TES, so bitwise-or in
527 * the values from the TCS.
528 */
529 assert(tcs_info->tess.tcs_vertices_out == 0 ||
530 tes_info->tess.tcs_vertices_out == 0 ||
531 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
532 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
533
534 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
535 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
536 tcs_info->tess.spacing == tes_info->tess.spacing);
537 tes_info->tess.spacing |= tcs_info->tess.spacing;
538
539 tes_info->tess.ccw |= tcs_info->tess.ccw;
540 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
541 }
542
543 static VkResult
anv_pipeline_compile_tcs_tes(struct anv_pipeline * pipeline,struct anv_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * info,struct anv_shader_module * tcs_module,const char * tcs_entrypoint,const VkSpecializationInfo * tcs_spec_info,struct anv_shader_module * tes_module,const char * tes_entrypoint,const VkSpecializationInfo * tes_spec_info)544 anv_pipeline_compile_tcs_tes(struct anv_pipeline *pipeline,
545 struct anv_pipeline_cache *cache,
546 const VkGraphicsPipelineCreateInfo *info,
547 struct anv_shader_module *tcs_module,
548 const char *tcs_entrypoint,
549 const VkSpecializationInfo *tcs_spec_info,
550 struct anv_shader_module *tes_module,
551 const char *tes_entrypoint,
552 const VkSpecializationInfo *tes_spec_info)
553 {
554 const struct gen_device_info *devinfo = &pipeline->device->info;
555 const struct brw_compiler *compiler =
556 pipeline->device->instance->physicalDevice.compiler;
557 struct anv_pipeline_bind_map tcs_map;
558 struct anv_pipeline_bind_map tes_map;
559 struct brw_tcs_prog_key tcs_key = { 0, };
560 struct brw_tes_prog_key tes_key = { 0, };
561 struct anv_shader_bin *tcs_bin = NULL;
562 struct anv_shader_bin *tes_bin = NULL;
563 unsigned char tcs_sha1[40];
564 unsigned char tes_sha1[40];
565
566 populate_sampler_prog_key(&pipeline->device->info, &tcs_key.tex);
567 populate_sampler_prog_key(&pipeline->device->info, &tes_key.tex);
568 tcs_key.input_vertices = info->pTessellationState->patchControlPoints;
569
570 if (cache) {
571 anv_hash_shader(tcs_sha1, &tcs_key, sizeof(tcs_key), tcs_module,
572 tcs_entrypoint, pipeline->layout, tcs_spec_info);
573 anv_hash_shader(tes_sha1, &tes_key, sizeof(tes_key), tes_module,
574 tes_entrypoint, pipeline->layout, tes_spec_info);
575 memcpy(&tcs_sha1[20], tes_sha1, 20);
576 memcpy(&tes_sha1[20], tcs_sha1, 20);
577 tcs_bin = anv_pipeline_cache_search(cache, tcs_sha1, sizeof(tcs_sha1));
578 tes_bin = anv_pipeline_cache_search(cache, tes_sha1, sizeof(tes_sha1));
579 }
580
581 if (tcs_bin == NULL || tes_bin == NULL) {
582 struct brw_tcs_prog_data tcs_prog_data = { 0, };
583 struct brw_tes_prog_data tes_prog_data = { 0, };
584 struct anv_pipeline_binding tcs_surface_to_descriptor[256];
585 struct anv_pipeline_binding tcs_sampler_to_descriptor[256];
586 struct anv_pipeline_binding tes_surface_to_descriptor[256];
587 struct anv_pipeline_binding tes_sampler_to_descriptor[256];
588
589 tcs_map = (struct anv_pipeline_bind_map) {
590 .surface_to_descriptor = tcs_surface_to_descriptor,
591 .sampler_to_descriptor = tcs_sampler_to_descriptor
592 };
593 tes_map = (struct anv_pipeline_bind_map) {
594 .surface_to_descriptor = tes_surface_to_descriptor,
595 .sampler_to_descriptor = tes_sampler_to_descriptor
596 };
597
598 nir_shader *tcs_nir =
599 anv_pipeline_compile(pipeline, tcs_module, tcs_entrypoint,
600 MESA_SHADER_TESS_CTRL, tcs_spec_info,
601 &tcs_prog_data.base.base, &tcs_map);
602 nir_shader *tes_nir =
603 anv_pipeline_compile(pipeline, tes_module, tes_entrypoint,
604 MESA_SHADER_TESS_EVAL, tes_spec_info,
605 &tes_prog_data.base.base, &tes_map);
606 if (tcs_nir == NULL || tes_nir == NULL)
607 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
608
609 nir_lower_tes_patch_vertices(tes_nir,
610 tcs_nir->info->tess.tcs_vertices_out);
611
612 /* Copy TCS info into the TES info */
613 merge_tess_info(tes_nir->info, tcs_nir->info);
614
615 anv_fill_binding_table(&tcs_prog_data.base.base, 0);
616 anv_fill_binding_table(&tes_prog_data.base.base, 0);
617
618 void *mem_ctx = ralloc_context(NULL);
619
620 ralloc_steal(mem_ctx, tcs_nir);
621 ralloc_steal(mem_ctx, tes_nir);
622
623 /* Whacking the key after cache lookup is a bit sketchy, but all of
624 * this comes from the SPIR-V, which is part of the hash used for the
625 * pipeline cache. So it should be safe.
626 */
627 tcs_key.tes_primitive_mode = tes_nir->info->tess.primitive_mode;
628 tcs_key.outputs_written = tcs_nir->info->outputs_written;
629 tcs_key.patch_outputs_written = tcs_nir->info->patch_outputs_written;
630 tcs_key.quads_workaround =
631 devinfo->gen < 9 &&
632 tes_nir->info->tess.primitive_mode == 7 /* GL_QUADS */ &&
633 tes_nir->info->tess.spacing == TESS_SPACING_EQUAL;
634
635 tes_key.inputs_read = tcs_key.outputs_written;
636 tes_key.patch_inputs_read = tcs_key.patch_outputs_written;
637
638 unsigned code_size;
639 const int shader_time_index = -1;
640 const unsigned *shader_code;
641
642 shader_code =
643 brw_compile_tcs(compiler, NULL, mem_ctx, &tcs_key, &tcs_prog_data,
644 tcs_nir, shader_time_index, &code_size, NULL);
645 if (shader_code == NULL) {
646 ralloc_free(mem_ctx);
647 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
648 }
649
650 tcs_bin = anv_pipeline_upload_kernel(pipeline, cache,
651 tcs_sha1, sizeof(tcs_sha1),
652 shader_code, code_size,
653 &tcs_prog_data.base.base,
654 sizeof(tcs_prog_data),
655 &tcs_map);
656 if (!tcs_bin) {
657 ralloc_free(mem_ctx);
658 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
659 }
660
661 shader_code =
662 brw_compile_tes(compiler, NULL, mem_ctx, &tes_key,
663 &tcs_prog_data.base.vue_map, &tes_prog_data, tes_nir,
664 NULL, shader_time_index, &code_size, NULL);
665 if (shader_code == NULL) {
666 ralloc_free(mem_ctx);
667 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
668 }
669
670 tes_bin = anv_pipeline_upload_kernel(pipeline, cache,
671 tes_sha1, sizeof(tes_sha1),
672 shader_code, code_size,
673 &tes_prog_data.base.base,
674 sizeof(tes_prog_data),
675 &tes_map);
676 if (!tes_bin) {
677 ralloc_free(mem_ctx);
678 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
679 }
680
681 ralloc_free(mem_ctx);
682 }
683
684 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
685 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
686
687 return VK_SUCCESS;
688 }
689
690 static VkResult
anv_pipeline_compile_gs(struct anv_pipeline * pipeline,struct anv_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * info,struct anv_shader_module * module,const char * entrypoint,const VkSpecializationInfo * spec_info)691 anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
692 struct anv_pipeline_cache *cache,
693 const VkGraphicsPipelineCreateInfo *info,
694 struct anv_shader_module *module,
695 const char *entrypoint,
696 const VkSpecializationInfo *spec_info)
697 {
698 const struct brw_compiler *compiler =
699 pipeline->device->instance->physicalDevice.compiler;
700 struct anv_pipeline_bind_map map;
701 struct brw_gs_prog_key key;
702 struct anv_shader_bin *bin = NULL;
703 unsigned char sha1[20];
704
705 populate_gs_prog_key(&pipeline->device->info, &key);
706
707 if (cache) {
708 anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
709 pipeline->layout, spec_info);
710 bin = anv_pipeline_cache_search(cache, sha1, 20);
711 }
712
713 if (bin == NULL) {
714 struct brw_gs_prog_data prog_data = { 0, };
715 struct anv_pipeline_binding surface_to_descriptor[256];
716 struct anv_pipeline_binding sampler_to_descriptor[256];
717
718 map = (struct anv_pipeline_bind_map) {
719 .surface_to_descriptor = surface_to_descriptor,
720 .sampler_to_descriptor = sampler_to_descriptor
721 };
722
723 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
724 MESA_SHADER_GEOMETRY, spec_info,
725 &prog_data.base.base, &map);
726 if (nir == NULL)
727 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
728
729 anv_fill_binding_table(&prog_data.base.base, 0);
730
731 void *mem_ctx = ralloc_context(NULL);
732
733 ralloc_steal(mem_ctx, nir);
734
735 brw_compute_vue_map(&pipeline->device->info,
736 &prog_data.base.vue_map,
737 nir->info->outputs_written,
738 nir->info->separate_shader);
739
740 unsigned code_size;
741 const unsigned *shader_code =
742 brw_compile_gs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
743 NULL, -1, &code_size, NULL);
744 if (shader_code == NULL) {
745 ralloc_free(mem_ctx);
746 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
747 }
748
749 /* TODO: SIMD8 GS */
750 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
751 shader_code, code_size,
752 &prog_data.base.base, sizeof(prog_data),
753 &map);
754 if (!bin) {
755 ralloc_free(mem_ctx);
756 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
757 }
758
759 ralloc_free(mem_ctx);
760 }
761
762 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY, bin);
763
764 return VK_SUCCESS;
765 }
766
767 static VkResult
anv_pipeline_compile_fs(struct anv_pipeline * pipeline,struct anv_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * info,struct anv_shader_module * module,const char * entrypoint,const VkSpecializationInfo * spec_info)768 anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
769 struct anv_pipeline_cache *cache,
770 const VkGraphicsPipelineCreateInfo *info,
771 struct anv_shader_module *module,
772 const char *entrypoint,
773 const VkSpecializationInfo *spec_info)
774 {
775 const struct brw_compiler *compiler =
776 pipeline->device->instance->physicalDevice.compiler;
777 struct anv_pipeline_bind_map map;
778 struct brw_wm_prog_key key;
779 struct anv_shader_bin *bin = NULL;
780 unsigned char sha1[20];
781
782 populate_wm_prog_key(pipeline, info, &key);
783
784 if (cache) {
785 anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
786 pipeline->layout, spec_info);
787 bin = anv_pipeline_cache_search(cache, sha1, 20);
788 }
789
790 if (bin == NULL) {
791 struct brw_wm_prog_data prog_data = { 0, };
792 struct anv_pipeline_binding surface_to_descriptor[256];
793 struct anv_pipeline_binding sampler_to_descriptor[256];
794
795 map = (struct anv_pipeline_bind_map) {
796 .surface_to_descriptor = surface_to_descriptor + 8,
797 .sampler_to_descriptor = sampler_to_descriptor
798 };
799
800 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
801 MESA_SHADER_FRAGMENT, spec_info,
802 &prog_data.base, &map);
803 if (nir == NULL)
804 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
805
806 unsigned num_rts = 0;
807 struct anv_pipeline_binding rt_bindings[8];
808 nir_function_impl *impl = nir_shader_get_entrypoint(nir);
809 nir_foreach_variable_safe(var, &nir->outputs) {
810 if (var->data.location < FRAG_RESULT_DATA0)
811 continue;
812
813 unsigned rt = var->data.location - FRAG_RESULT_DATA0;
814 if (rt >= key.nr_color_regions) {
815 /* Out-of-bounds, throw it away */
816 var->data.mode = nir_var_local;
817 exec_node_remove(&var->node);
818 exec_list_push_tail(&impl->locals, &var->node);
819 continue;
820 }
821
822 /* Give it a new, compacted, location */
823 var->data.location = FRAG_RESULT_DATA0 + num_rts;
824
825 unsigned array_len =
826 glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
827 assert(num_rts + array_len <= 8);
828
829 for (unsigned i = 0; i < array_len; i++) {
830 rt_bindings[num_rts + i] = (struct anv_pipeline_binding) {
831 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
832 .binding = 0,
833 .index = rt + i,
834 };
835 }
836
837 num_rts += array_len;
838 }
839
840 if (num_rts == 0) {
841 /* If we have no render targets, we need a null render target */
842 rt_bindings[0] = (struct anv_pipeline_binding) {
843 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
844 .binding = 0,
845 .index = UINT8_MAX,
846 };
847 num_rts = 1;
848 }
849
850 assert(num_rts <= 8);
851 map.surface_to_descriptor -= num_rts;
852 map.surface_count += num_rts;
853 assert(map.surface_count <= 256);
854 memcpy(map.surface_to_descriptor, rt_bindings,
855 num_rts * sizeof(*rt_bindings));
856
857 anv_fill_binding_table(&prog_data.base, num_rts);
858
859 void *mem_ctx = ralloc_context(NULL);
860
861 ralloc_steal(mem_ctx, nir);
862
863 unsigned code_size;
864 const unsigned *shader_code =
865 brw_compile_fs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
866 NULL, -1, -1, true, false, NULL, &code_size, NULL);
867 if (shader_code == NULL) {
868 ralloc_free(mem_ctx);
869 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
870 }
871
872 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
873 shader_code, code_size,
874 &prog_data.base, sizeof(prog_data),
875 &map);
876 if (!bin) {
877 ralloc_free(mem_ctx);
878 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
879 }
880
881 ralloc_free(mem_ctx);
882 }
883
884 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT, bin);
885
886 return VK_SUCCESS;
887 }
888
889 VkResult
anv_pipeline_compile_cs(struct anv_pipeline * pipeline,struct anv_pipeline_cache * cache,const VkComputePipelineCreateInfo * info,struct anv_shader_module * module,const char * entrypoint,const VkSpecializationInfo * spec_info)890 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
891 struct anv_pipeline_cache *cache,
892 const VkComputePipelineCreateInfo *info,
893 struct anv_shader_module *module,
894 const char *entrypoint,
895 const VkSpecializationInfo *spec_info)
896 {
897 const struct brw_compiler *compiler =
898 pipeline->device->instance->physicalDevice.compiler;
899 struct anv_pipeline_bind_map map;
900 struct brw_cs_prog_key key;
901 struct anv_shader_bin *bin = NULL;
902 unsigned char sha1[20];
903
904 populate_cs_prog_key(&pipeline->device->info, &key);
905
906 if (cache) {
907 anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
908 pipeline->layout, spec_info);
909 bin = anv_pipeline_cache_search(cache, sha1, 20);
910 }
911
912 if (bin == NULL) {
913 struct brw_cs_prog_data prog_data = { 0, };
914 struct anv_pipeline_binding surface_to_descriptor[256];
915 struct anv_pipeline_binding sampler_to_descriptor[256];
916
917 map = (struct anv_pipeline_bind_map) {
918 .surface_to_descriptor = surface_to_descriptor,
919 .sampler_to_descriptor = sampler_to_descriptor
920 };
921
922 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
923 MESA_SHADER_COMPUTE, spec_info,
924 &prog_data.base, &map);
925 if (nir == NULL)
926 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
927
928 anv_fill_binding_table(&prog_data.base, 1);
929
930 void *mem_ctx = ralloc_context(NULL);
931
932 ralloc_steal(mem_ctx, nir);
933
934 unsigned code_size;
935 const unsigned *shader_code =
936 brw_compile_cs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
937 -1, &code_size, NULL);
938 if (shader_code == NULL) {
939 ralloc_free(mem_ctx);
940 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
941 }
942
943 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
944 shader_code, code_size,
945 &prog_data.base, sizeof(prog_data),
946 &map);
947 if (!bin) {
948 ralloc_free(mem_ctx);
949 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
950 }
951
952 ralloc_free(mem_ctx);
953 }
954
955 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE, bin);
956
957 return VK_SUCCESS;
958 }
959
960 /**
961 * Copy pipeline state not marked as dynamic.
962 * Dynamic state is pipeline state which hasn't been provided at pipeline
963 * creation time, but is dynamically provided afterwards using various
964 * vkCmdSet* functions.
965 *
966 * The set of state considered "non_dynamic" is determined by the pieces of
967 * state that have their corresponding VkDynamicState enums omitted from
968 * VkPipelineDynamicStateCreateInfo::pDynamicStates.
969 *
970 * @param[out] pipeline Destination non_dynamic state.
971 * @param[in] pCreateInfo Source of non_dynamic state to be copied.
972 */
973 static void
copy_non_dynamic_state(struct anv_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo)974 copy_non_dynamic_state(struct anv_pipeline *pipeline,
975 const VkGraphicsPipelineCreateInfo *pCreateInfo)
976 {
977 anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
978 ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
979 struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
980
981 pipeline->dynamic_state = default_dynamic_state;
982
983 if (pCreateInfo->pDynamicState) {
984 /* Remove all of the states that are marked as dynamic */
985 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
986 for (uint32_t s = 0; s < count; s++)
987 states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
988 }
989
990 struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
991
992 /* Section 9.2 of the Vulkan 1.0.15 spec says:
993 *
994 * pViewportState is [...] NULL if the pipeline
995 * has rasterization disabled.
996 */
997 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
998 assert(pCreateInfo->pViewportState);
999
1000 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1001 if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
1002 typed_memcpy(dynamic->viewport.viewports,
1003 pCreateInfo->pViewportState->pViewports,
1004 pCreateInfo->pViewportState->viewportCount);
1005 }
1006
1007 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1008 if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
1009 typed_memcpy(dynamic->scissor.scissors,
1010 pCreateInfo->pViewportState->pScissors,
1011 pCreateInfo->pViewportState->scissorCount);
1012 }
1013 }
1014
1015 if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
1016 assert(pCreateInfo->pRasterizationState);
1017 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1018 }
1019
1020 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
1021 assert(pCreateInfo->pRasterizationState);
1022 dynamic->depth_bias.bias =
1023 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1024 dynamic->depth_bias.clamp =
1025 pCreateInfo->pRasterizationState->depthBiasClamp;
1026 dynamic->depth_bias.slope =
1027 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1028 }
1029
1030 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1031 *
1032 * pColorBlendState is [...] NULL if the pipeline has rasterization
1033 * disabled or if the subpass of the render pass the pipeline is
1034 * created against does not use any color attachments.
1035 */
1036 bool uses_color_att = false;
1037 for (unsigned i = 0; i < subpass->color_count; ++i) {
1038 if (subpass->color_attachments[i] != VK_ATTACHMENT_UNUSED) {
1039 uses_color_att = true;
1040 break;
1041 }
1042 }
1043
1044 if (uses_color_att &&
1045 !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1046 assert(pCreateInfo->pColorBlendState);
1047
1048 if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
1049 typed_memcpy(dynamic->blend_constants,
1050 pCreateInfo->pColorBlendState->blendConstants, 4);
1051 }
1052
1053 /* If there is no depthstencil attachment, then don't read
1054 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1055 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1056 * no need to override the depthstencil defaults in
1057 * anv_pipeline::dynamic_state when there is no depthstencil attachment.
1058 *
1059 * Section 9.2 of the Vulkan 1.0.15 spec says:
1060 *
1061 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1062 * disabled or if the subpass of the render pass the pipeline is created
1063 * against does not use a depth/stencil attachment.
1064 */
1065 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1066 subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
1067 assert(pCreateInfo->pDepthStencilState);
1068
1069 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
1070 dynamic->depth_bounds.min =
1071 pCreateInfo->pDepthStencilState->minDepthBounds;
1072 dynamic->depth_bounds.max =
1073 pCreateInfo->pDepthStencilState->maxDepthBounds;
1074 }
1075
1076 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
1077 dynamic->stencil_compare_mask.front =
1078 pCreateInfo->pDepthStencilState->front.compareMask;
1079 dynamic->stencil_compare_mask.back =
1080 pCreateInfo->pDepthStencilState->back.compareMask;
1081 }
1082
1083 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
1084 dynamic->stencil_write_mask.front =
1085 pCreateInfo->pDepthStencilState->front.writeMask;
1086 dynamic->stencil_write_mask.back =
1087 pCreateInfo->pDepthStencilState->back.writeMask;
1088 }
1089
1090 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
1091 dynamic->stencil_reference.front =
1092 pCreateInfo->pDepthStencilState->front.reference;
1093 dynamic->stencil_reference.back =
1094 pCreateInfo->pDepthStencilState->back.reference;
1095 }
1096 }
1097
1098 pipeline->dynamic_state_mask = states;
1099 }
1100
1101 static void
anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo * info)1102 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
1103 {
1104 struct anv_render_pass *renderpass = NULL;
1105 struct anv_subpass *subpass = NULL;
1106
1107 /* Assert that all required members of VkGraphicsPipelineCreateInfo are
1108 * present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
1109 */
1110 assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1111
1112 renderpass = anv_render_pass_from_handle(info->renderPass);
1113 assert(renderpass);
1114
1115 assert(info->subpass < renderpass->subpass_count);
1116 subpass = &renderpass->subpasses[info->subpass];
1117
1118 assert(info->stageCount >= 1);
1119 assert(info->pVertexInputState);
1120 assert(info->pInputAssemblyState);
1121 assert(info->pRasterizationState);
1122 if (!info->pRasterizationState->rasterizerDiscardEnable) {
1123 assert(info->pViewportState);
1124 assert(info->pMultisampleState);
1125
1126 if (subpass && subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED)
1127 assert(info->pDepthStencilState);
1128
1129 if (subpass && subpass->color_count > 0)
1130 assert(info->pColorBlendState);
1131 }
1132
1133 for (uint32_t i = 0; i < info->stageCount; ++i) {
1134 switch (info->pStages[i].stage) {
1135 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
1136 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
1137 assert(info->pTessellationState);
1138 break;
1139 default:
1140 break;
1141 }
1142 }
1143 }
1144
1145 /**
1146 * Calculate the desired L3 partitioning based on the current state of the
1147 * pipeline. For now this simply returns the conservative defaults calculated
1148 * by get_default_l3_weights(), but we could probably do better by gathering
1149 * more statistics from the pipeline state (e.g. guess of expected URB usage
1150 * and bound surfaces), or by using feed-back from performance counters.
1151 */
1152 void
anv_pipeline_setup_l3_config(struct anv_pipeline * pipeline,bool needs_slm)1153 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
1154 {
1155 const struct gen_device_info *devinfo = &pipeline->device->info;
1156
1157 const struct gen_l3_weights w =
1158 gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
1159
1160 pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
1161 pipeline->urb.total_size =
1162 gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
1163 }
1164
1165 VkResult
anv_pipeline_init(struct anv_pipeline * pipeline,struct anv_device * device,struct anv_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * pCreateInfo,const VkAllocationCallbacks * alloc)1166 anv_pipeline_init(struct anv_pipeline *pipeline,
1167 struct anv_device *device,
1168 struct anv_pipeline_cache *cache,
1169 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1170 const VkAllocationCallbacks *alloc)
1171 {
1172 VkResult result;
1173
1174 anv_validate {
1175 anv_pipeline_validate_create_info(pCreateInfo);
1176 }
1177
1178 if (alloc == NULL)
1179 alloc = &device->alloc;
1180
1181 pipeline->device = device;
1182 pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
1183
1184 result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
1185 if (result != VK_SUCCESS)
1186 return result;
1187
1188 pipeline->batch.alloc = alloc;
1189 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1190 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1191 pipeline->batch.relocs = &pipeline->batch_relocs;
1192
1193 copy_non_dynamic_state(pipeline, pCreateInfo);
1194 pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
1195 pCreateInfo->pRasterizationState->depthClampEnable;
1196
1197 pipeline->needs_data_cache = false;
1198
1199 /* When we free the pipeline, we detect stages based on the NULL status
1200 * of various prog_data pointers. Make them NULL by default.
1201 */
1202 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1203
1204 pipeline->active_stages = 0;
1205
1206 const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
1207 struct anv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
1208 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
1209 gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
1210 pStages[stage] = &pCreateInfo->pStages[i];
1211 modules[stage] = anv_shader_module_from_handle(pStages[stage]->module);
1212 }
1213
1214 if (modules[MESA_SHADER_VERTEX]) {
1215 result = anv_pipeline_compile_vs(pipeline, cache, pCreateInfo,
1216 modules[MESA_SHADER_VERTEX],
1217 pStages[MESA_SHADER_VERTEX]->pName,
1218 pStages[MESA_SHADER_VERTEX]->pSpecializationInfo);
1219 if (result != VK_SUCCESS)
1220 goto compile_fail;
1221 }
1222
1223 if (modules[MESA_SHADER_TESS_EVAL]) {
1224 anv_pipeline_compile_tcs_tes(pipeline, cache, pCreateInfo,
1225 modules[MESA_SHADER_TESS_CTRL],
1226 pStages[MESA_SHADER_TESS_CTRL]->pName,
1227 pStages[MESA_SHADER_TESS_CTRL]->pSpecializationInfo,
1228 modules[MESA_SHADER_TESS_EVAL],
1229 pStages[MESA_SHADER_TESS_EVAL]->pName,
1230 pStages[MESA_SHADER_TESS_EVAL]->pSpecializationInfo);
1231 }
1232
1233 if (modules[MESA_SHADER_GEOMETRY]) {
1234 result = anv_pipeline_compile_gs(pipeline, cache, pCreateInfo,
1235 modules[MESA_SHADER_GEOMETRY],
1236 pStages[MESA_SHADER_GEOMETRY]->pName,
1237 pStages[MESA_SHADER_GEOMETRY]->pSpecializationInfo);
1238 if (result != VK_SUCCESS)
1239 goto compile_fail;
1240 }
1241
1242 if (modules[MESA_SHADER_FRAGMENT]) {
1243 result = anv_pipeline_compile_fs(pipeline, cache, pCreateInfo,
1244 modules[MESA_SHADER_FRAGMENT],
1245 pStages[MESA_SHADER_FRAGMENT]->pName,
1246 pStages[MESA_SHADER_FRAGMENT]->pSpecializationInfo);
1247 if (result != VK_SUCCESS)
1248 goto compile_fail;
1249 }
1250
1251 assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
1252
1253 anv_pipeline_setup_l3_config(pipeline, false);
1254
1255 const VkPipelineVertexInputStateCreateInfo *vi_info =
1256 pCreateInfo->pVertexInputState;
1257
1258 const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
1259
1260 pipeline->vb_used = 0;
1261 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1262 const VkVertexInputAttributeDescription *desc =
1263 &vi_info->pVertexAttributeDescriptions[i];
1264
1265 if (inputs_read & (1 << (VERT_ATTRIB_GENERIC0 + desc->location)))
1266 pipeline->vb_used |= 1 << desc->binding;
1267 }
1268
1269 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1270 const VkVertexInputBindingDescription *desc =
1271 &vi_info->pVertexBindingDescriptions[i];
1272
1273 pipeline->binding_stride[desc->binding] = desc->stride;
1274
1275 /* Step rate is programmed per vertex element (attribute), not
1276 * binding. Set up a map of which bindings step per instance, for
1277 * reference by vertex element setup. */
1278 switch (desc->inputRate) {
1279 default:
1280 case VK_VERTEX_INPUT_RATE_VERTEX:
1281 pipeline->instancing_enable[desc->binding] = false;
1282 break;
1283 case VK_VERTEX_INPUT_RATE_INSTANCE:
1284 pipeline->instancing_enable[desc->binding] = true;
1285 break;
1286 }
1287 }
1288
1289 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1290 pCreateInfo->pInputAssemblyState;
1291 const VkPipelineTessellationStateCreateInfo *tess_info =
1292 pCreateInfo->pTessellationState;
1293 pipeline->primitive_restart = ia_info->primitiveRestartEnable;
1294
1295 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1296 pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
1297 else
1298 pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
1299
1300 return VK_SUCCESS;
1301
1302 compile_fail:
1303 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1304 if (pipeline->shaders[s])
1305 anv_shader_bin_unref(device, pipeline->shaders[s]);
1306 }
1307
1308 anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
1309
1310 return result;
1311 }
1312