• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 /**
25  * @file brw_vue_map.c
26  *
27  * This file computes the "VUE map" for a (non-fragment) shader stage, which
28  * describes the layout of its output varyings.  The VUE map is used to match
29  * outputs from one stage with the inputs of the next.
30  *
31  * Largely, varyings can be placed however we like - producers/consumers simply
32  * have to agree on the layout.  However, there is also a "VUE Header" that
33  * prescribes a fixed-layout for items that interact with fixed function
34  * hardware, such as the clipper and rasterizer.
35  *
36  * Authors:
37  *   Paul Berry <stereotype441@gmail.com>
38  *   Chris Forbes <chrisf@ijw.co.nz>
39  *   Eric Anholt <eric@anholt.net>
40  */
41 
42 
43 #include "brw_context.h"
44 
45 static inline void
assign_vue_slot(struct brw_vue_map * vue_map,int varying,int slot)46 assign_vue_slot(struct brw_vue_map *vue_map, int varying, int slot)
47 {
48    /* Make sure this varying hasn't been assigned a slot already */
49    assert (vue_map->varying_to_slot[varying] == -1);
50 
51    vue_map->varying_to_slot[varying] = slot;
52    vue_map->slot_to_varying[slot] = varying;
53 }
54 
55 /**
56  * Compute the VUE map for a shader stage.
57  */
58 void
brw_compute_vue_map(const struct gen_device_info * devinfo,struct brw_vue_map * vue_map,GLbitfield64 slots_valid,bool separate)59 brw_compute_vue_map(const struct gen_device_info *devinfo,
60                     struct brw_vue_map *vue_map,
61                     GLbitfield64 slots_valid,
62                     bool separate)
63 {
64    /* Keep using the packed/contiguous layout on old hardware - we only need
65     * the SSO layout when using geometry/tessellation shaders or 32 FS input
66     * varyings, which only exist on Gen >= 6.  It's also a bit more efficient.
67     */
68    if (devinfo->gen < 6)
69       separate = false;
70 
71    if (separate) {
72       /* In SSO mode, we don't know whether the adjacent stage will
73        * read/write gl_ClipDistance, which has a fixed slot location.
74        * We have to assume the worst and reserve a slot for it, or else
75        * the rest of our varyings will be off by a slot.
76        *
77        * Note that we don't have to worry about COL/BFC, as those built-in
78        * variables only exist in legacy GL, which only supports VS and FS.
79        */
80       slots_valid |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
81       slots_valid |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
82    }
83 
84    vue_map->slots_valid = slots_valid;
85    vue_map->separate = separate;
86 
87    /* gl_Layer and gl_ViewportIndex don't get their own varying slots -- they
88     * are stored in the first VUE slot (VARYING_SLOT_PSIZ).
89     */
90    slots_valid &= ~(VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
91 
92    /* Make sure that the values we store in vue_map->varying_to_slot and
93     * vue_map->slot_to_varying won't overflow the signed chars that are used
94     * to store them.  Note that since vue_map->slot_to_varying sometimes holds
95     * values equal to BRW_VARYING_SLOT_COUNT, we need to ensure that
96     * BRW_VARYING_SLOT_COUNT is <= 127, not 128.
97     */
98    STATIC_ASSERT(BRW_VARYING_SLOT_COUNT <= 127);
99 
100    for (int i = 0; i < BRW_VARYING_SLOT_COUNT; ++i) {
101       vue_map->varying_to_slot[i] = -1;
102       vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_PAD;
103    }
104 
105    int slot = 0;
106 
107    /* VUE header: format depends on chip generation and whether clipping is
108     * enabled.
109     *
110     * See the Sandybridge PRM, Volume 2 Part 1, section 1.5.1 (page 30),
111     * "Vertex URB Entry (VUE) Formats" which describes the VUE header layout.
112     */
113    if (devinfo->gen < 6) {
114       /* There are 8 dwords in VUE header pre-Ironlake:
115        * dword 0-3 is indices, point width, clip flags.
116        * dword 4-7 is ndc position
117        * dword 8-11 is the first vertex data.
118        *
119        * On Ironlake the VUE header is nominally 20 dwords, but the hardware
120        * will accept the same header layout as Gen4 [and should be a bit faster]
121        */
122       assign_vue_slot(vue_map, VARYING_SLOT_PSIZ, slot++);
123       assign_vue_slot(vue_map, BRW_VARYING_SLOT_NDC, slot++);
124       assign_vue_slot(vue_map, VARYING_SLOT_POS, slot++);
125    } else {
126       /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
127        * dword 0-3 of the header is indices, point width, clip flags.
128        * dword 4-7 is the 4D space position
129        * dword 8-15 of the vertex header is the user clip distance if
130        * enabled.
131        * dword 8-11 or 16-19 is the first vertex element data we fill.
132        */
133       assign_vue_slot(vue_map, VARYING_SLOT_PSIZ, slot++);
134       assign_vue_slot(vue_map, VARYING_SLOT_POS, slot++);
135       if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0))
136          assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0, slot++);
137       if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1))
138          assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1, slot++);
139 
140       /* front and back colors need to be consecutive so that we can use
141        * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
142        * two-sided color.
143        */
144       if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL0))
145          assign_vue_slot(vue_map, VARYING_SLOT_COL0, slot++);
146       if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC0))
147          assign_vue_slot(vue_map, VARYING_SLOT_BFC0, slot++);
148       if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL1))
149          assign_vue_slot(vue_map, VARYING_SLOT_COL1, slot++);
150       if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC1))
151          assign_vue_slot(vue_map, VARYING_SLOT_BFC1, slot++);
152    }
153 
154    /* The hardware doesn't care about the rest of the vertex outputs, so we
155     * can assign them however we like.  For normal programs, we simply assign
156     * them contiguously.
157     *
158     * For separate shader pipelines, we first assign built-in varyings
159     * contiguous slots.  This works because ARB_separate_shader_objects
160     * requires that all shaders have matching built-in varying interface
161     * blocks.  Next, we assign generic varyings based on their location
162     * (either explicit or linker assigned).  This guarantees a fixed layout.
163     *
164     * We generally don't need to assign a slot for VARYING_SLOT_CLIP_VERTEX,
165     * since it's encoded as the clip distances by emit_clip_distances().
166     * However, it may be output by transform feedback, and we'd rather not
167     * recompute state when TF changes, so we just always include it.
168     */
169    GLbitfield64 builtins = slots_valid & BITFIELD64_MASK(VARYING_SLOT_VAR0);
170    while (builtins != 0) {
171       const int varying = ffsll(builtins) - 1;
172       if (vue_map->varying_to_slot[varying] == -1) {
173          assign_vue_slot(vue_map, varying, slot++);
174       }
175       builtins &= ~BITFIELD64_BIT(varying);
176    }
177 
178    const int first_generic_slot = slot;
179    GLbitfield64 generics = slots_valid & ~BITFIELD64_MASK(VARYING_SLOT_VAR0);
180    while (generics != 0) {
181       const int varying = ffsll(generics) - 1;
182       if (separate) {
183          slot = first_generic_slot + varying - VARYING_SLOT_VAR0;
184       }
185       assign_vue_slot(vue_map, varying, slot++);
186       generics &= ~BITFIELD64_BIT(varying);
187    }
188 
189    vue_map->num_slots = slot;
190    vue_map->num_per_vertex_slots = 0;
191    vue_map->num_per_patch_slots = 0;
192 }
193 
194 /**
195  * Compute the VUE map for tessellation control shader outputs and
196  * tessellation evaluation shader inputs.
197  */
198 void
brw_compute_tess_vue_map(struct brw_vue_map * vue_map,GLbitfield64 vertex_slots,GLbitfield patch_slots)199 brw_compute_tess_vue_map(struct brw_vue_map *vue_map,
200                          GLbitfield64 vertex_slots,
201                          GLbitfield patch_slots)
202 {
203    /* I don't think anything actually uses this... */
204    vue_map->slots_valid = vertex_slots;
205 
206    /* separate isn't really meaningful, but make sure it's initialized */
207    vue_map->separate = false;
208 
209    vertex_slots &= ~(VARYING_BIT_TESS_LEVEL_OUTER |
210                      VARYING_BIT_TESS_LEVEL_INNER);
211 
212    /* Make sure that the values we store in vue_map->varying_to_slot and
213     * vue_map->slot_to_varying won't overflow the signed chars that are used
214     * to store them.  Note that since vue_map->slot_to_varying sometimes holds
215     * values equal to VARYING_SLOT_TESS_MAX , we need to ensure that
216     * VARYING_SLOT_TESS_MAX is <= 127, not 128.
217     */
218    STATIC_ASSERT(VARYING_SLOT_TESS_MAX <= 127);
219 
220    for (int i = 0; i < VARYING_SLOT_TESS_MAX ; ++i) {
221       vue_map->varying_to_slot[i] = -1;
222       vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_PAD;
223    }
224 
225    int slot = 0;
226 
227    /* The first 8 DWords are reserved for the "Patch Header".
228     *
229     * VARYING_SLOT_TESS_LEVEL_OUTER / INNER live here, but the exact layout
230     * depends on the domain type.  They might not be in slots 0 and 1 as
231     * described here, but pretending they're separate allows us to uniquely
232     * identify them by distinct slot locations.
233     */
234    assign_vue_slot(vue_map, VARYING_SLOT_TESS_LEVEL_INNER, slot++);
235    assign_vue_slot(vue_map, VARYING_SLOT_TESS_LEVEL_OUTER, slot++);
236 
237    /* first assign per-patch varyings */
238    while (patch_slots != 0) {
239       const int varying = ffsll(patch_slots) - 1;
240       if (vue_map->varying_to_slot[varying + VARYING_SLOT_PATCH0] == -1) {
241          assign_vue_slot(vue_map, varying + VARYING_SLOT_PATCH0, slot++);
242       }
243       patch_slots &= ~BITFIELD64_BIT(varying);
244    }
245 
246    /* apparently, including the patch header... */
247    vue_map->num_per_patch_slots = slot;
248 
249    /* then assign per-vertex varyings for each vertex in our patch */
250    while (vertex_slots != 0) {
251       const int varying = ffsll(vertex_slots) - 1;
252       if (vue_map->varying_to_slot[varying] == -1) {
253          assign_vue_slot(vue_map, varying, slot++);
254       }
255       vertex_slots &= ~BITFIELD64_BIT(varying);
256    }
257 
258    vue_map->num_per_vertex_slots = slot - vue_map->num_per_patch_slots;
259    vue_map->num_slots = slot;
260 }
261 
262 static const char *
varying_name(brw_varying_slot slot)263 varying_name(brw_varying_slot slot)
264 {
265    assume(slot < BRW_VARYING_SLOT_COUNT);
266 
267    if (slot < VARYING_SLOT_MAX)
268       return gl_varying_slot_name(slot);
269 
270    static const char *brw_names[] = {
271       [BRW_VARYING_SLOT_NDC - VARYING_SLOT_MAX] = "BRW_VARYING_SLOT_NDC",
272       [BRW_VARYING_SLOT_PAD - VARYING_SLOT_MAX] = "BRW_VARYING_SLOT_PAD",
273       [BRW_VARYING_SLOT_PNTC - VARYING_SLOT_MAX] = "BRW_VARYING_SLOT_PNTC",
274    };
275 
276    return brw_names[slot - VARYING_SLOT_MAX];
277 }
278 
279 void
brw_print_vue_map(FILE * fp,const struct brw_vue_map * vue_map)280 brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map)
281 {
282    if (vue_map->num_per_vertex_slots > 0 || vue_map->num_per_patch_slots > 0) {
283       fprintf(fp, "PUE map (%d slots, %d/patch, %d/vertex, %s)\n",
284               vue_map->num_slots,
285               vue_map->num_per_patch_slots,
286               vue_map->num_per_vertex_slots,
287               vue_map->separate ? "SSO" : "non-SSO");
288       for (int i = 0; i < vue_map->num_slots; i++) {
289          if (vue_map->slot_to_varying[i] >= VARYING_SLOT_PATCH0) {
290             fprintf(fp, "  [%d] VARYING_SLOT_PATCH%d\n", i,
291                     vue_map->slot_to_varying[i] - VARYING_SLOT_PATCH0);
292          } else {
293             fprintf(fp, "  [%d] %s\n", i,
294                     varying_name(vue_map->slot_to_varying[i]));
295          }
296       }
297    } else {
298       fprintf(fp, "VUE map (%d slots, %s)\n",
299               vue_map->num_slots, vue_map->separate ? "SSO" : "non-SSO");
300       for (int i = 0; i < vue_map->num_slots; i++) {
301          fprintf(fp, "  [%d] %s\n", i,
302                  varying_name(vue_map->slot_to_varying[i]));
303       }
304    }
305    fprintf(fp, "\n");
306 }
307