• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2009,2012 Intel Corporation
3  * Copyright © 1988-2004 Keith Packard and Bart Massey.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  * Except as contained in this notice, the names of the authors
25  * or their institutions shall not be used in advertising or
26  * otherwise to promote the sale, use or other dealings in this
27  * Software without prior written authorization from the
28  * authors.
29  *
30  * Authors:
31  *    Eric Anholt <eric@anholt.net>
32  *    Keith Packard <keithp@keithp.com>
33  */
34 
35 /**
36  * Implements an open-addressing, linear-reprobing hash table.
37  *
38  * For more information, see:
39  *
40  * http://cgit.freedesktop.org/~anholt/hash_table/tree/README
41  */
42 
43 #include <stdlib.h>
44 #include <string.h>
45 #include <assert.h>
46 
47 #include "hash_table.h"
48 #include "ralloc.h"
49 #include "macros.h"
50 
51 static const uint32_t deleted_key_value;
52 
53 /**
54  * From Knuth -- a good choice for hash/rehash values is p, p-2 where
55  * p and p-2 are both prime.  These tables are sized to have an extra 10%
56  * free to avoid exponential performance degradation as the hash table fills
57  */
58 static const struct {
59    uint32_t max_entries, size, rehash;
60 } hash_sizes[] = {
61    { 2,			5,		3	  },
62    { 4,			7,		5	  },
63    { 8,			13,		11	  },
64    { 16,		19,		17	  },
65    { 32,		43,		41        },
66    { 64,		73,		71        },
67    { 128,		151,		149       },
68    { 256,		283,		281       },
69    { 512,		571,		569       },
70    { 1024,		1153,		1151      },
71    { 2048,		2269,		2267      },
72    { 4096,		4519,		4517      },
73    { 8192,		9013,		9011      },
74    { 16384,		18043,		18041     },
75    { 32768,		36109,		36107     },
76    { 65536,		72091,		72089     },
77    { 131072,		144409,		144407    },
78    { 262144,		288361,		288359    },
79    { 524288,		576883,		576881    },
80    { 1048576,		1153459,	1153457   },
81    { 2097152,		2307163,	2307161   },
82    { 4194304,		4613893,	4613891   },
83    { 8388608,		9227641,	9227639   },
84    { 16777216,		18455029,	18455027  },
85    { 33554432,		36911011,	36911009  },
86    { 67108864,		73819861,	73819859  },
87    { 134217728,		147639589,	147639587 },
88    { 268435456,		295279081,	295279079 },
89    { 536870912,		590559793,	590559791 },
90    { 1073741824,	1181116273,	1181116271},
91    { 2147483648ul,	2362232233ul,	2362232231ul}
92 };
93 
94 static int
entry_is_free(const struct hash_entry * entry)95 entry_is_free(const struct hash_entry *entry)
96 {
97    return entry->key == NULL;
98 }
99 
100 static int
entry_is_deleted(const struct hash_table * ht,struct hash_entry * entry)101 entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry)
102 {
103    return entry->key == ht->deleted_key;
104 }
105 
106 static int
entry_is_present(const struct hash_table * ht,struct hash_entry * entry)107 entry_is_present(const struct hash_table *ht, struct hash_entry *entry)
108 {
109    return entry->key != NULL && entry->key != ht->deleted_key;
110 }
111 
112 struct hash_table *
_mesa_hash_table_create(void * mem_ctx,uint32_t (* key_hash_function)(const void * key),bool (* key_equals_function)(const void * a,const void * b))113 _mesa_hash_table_create(void *mem_ctx,
114                         uint32_t (*key_hash_function)(const void *key),
115                         bool (*key_equals_function)(const void *a,
116                                                     const void *b))
117 {
118    struct hash_table *ht;
119 
120    ht = ralloc(mem_ctx, struct hash_table);
121    if (ht == NULL)
122       return NULL;
123 
124    ht->size_index = 0;
125    ht->size = hash_sizes[ht->size_index].size;
126    ht->rehash = hash_sizes[ht->size_index].rehash;
127    ht->max_entries = hash_sizes[ht->size_index].max_entries;
128    ht->key_hash_function = key_hash_function;
129    ht->key_equals_function = key_equals_function;
130    ht->table = rzalloc_array(ht, struct hash_entry, ht->size);
131    ht->entries = 0;
132    ht->deleted_entries = 0;
133    ht->deleted_key = &deleted_key_value;
134 
135    if (ht->table == NULL) {
136       ralloc_free(ht);
137       return NULL;
138    }
139 
140    return ht;
141 }
142 
143 /**
144  * Frees the given hash table.
145  *
146  * If delete_function is passed, it gets called on each entry present before
147  * freeing.
148  */
149 void
_mesa_hash_table_destroy(struct hash_table * ht,void (* delete_function)(struct hash_entry * entry))150 _mesa_hash_table_destroy(struct hash_table *ht,
151                          void (*delete_function)(struct hash_entry *entry))
152 {
153    if (!ht)
154       return;
155 
156    if (delete_function) {
157       struct hash_entry *entry;
158 
159       hash_table_foreach(ht, entry) {
160          delete_function(entry);
161       }
162    }
163    ralloc_free(ht);
164 }
165 
166 /**
167  * Deletes all entries of the given hash table without deleting the table
168  * itself or changing its structure.
169  *
170  * If delete_function is passed, it gets called on each entry present.
171  */
172 void
_mesa_hash_table_clear(struct hash_table * ht,void (* delete_function)(struct hash_entry * entry))173 _mesa_hash_table_clear(struct hash_table *ht,
174                        void (*delete_function)(struct hash_entry *entry))
175 {
176    struct hash_entry *entry;
177 
178    for (entry = ht->table; entry != ht->table + ht->size; entry++) {
179       if (entry->key == NULL)
180          continue;
181 
182       if (delete_function != NULL && entry->key != ht->deleted_key)
183          delete_function(entry);
184 
185       entry->key = NULL;
186    }
187 
188    ht->entries = 0;
189    ht->deleted_entries = 0;
190 }
191 
192 /** Sets the value of the key pointer used for deleted entries in the table.
193  *
194  * The assumption is that usually keys are actual pointers, so we use a
195  * default value of a pointer to an arbitrary piece of storage in the library.
196  * But in some cases a consumer wants to store some other sort of value in the
197  * table, like a uint32_t, in which case that pointer may conflict with one of
198  * their valid keys.  This lets that user select a safe value.
199  *
200  * This must be called before any keys are actually deleted from the table.
201  */
202 void
_mesa_hash_table_set_deleted_key(struct hash_table * ht,const void * deleted_key)203 _mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key)
204 {
205    ht->deleted_key = deleted_key;
206 }
207 
208 static struct hash_entry *
hash_table_search(struct hash_table * ht,uint32_t hash,const void * key)209 hash_table_search(struct hash_table *ht, uint32_t hash, const void *key)
210 {
211    uint32_t start_hash_address = hash % ht->size;
212    uint32_t hash_address = start_hash_address;
213 
214    do {
215       uint32_t double_hash;
216 
217       struct hash_entry *entry = ht->table + hash_address;
218 
219       if (entry_is_free(entry)) {
220          return NULL;
221       } else if (entry_is_present(ht, entry) && entry->hash == hash) {
222          if (ht->key_equals_function(key, entry->key)) {
223             return entry;
224          }
225       }
226 
227       double_hash = 1 + hash % ht->rehash;
228 
229       hash_address = (hash_address + double_hash) % ht->size;
230    } while (hash_address != start_hash_address);
231 
232    return NULL;
233 }
234 
235 /**
236  * Finds a hash table entry with the given key and hash of that key.
237  *
238  * Returns NULL if no entry is found.  Note that the data pointer may be
239  * modified by the user.
240  */
241 struct hash_entry *
_mesa_hash_table_search(struct hash_table * ht,const void * key)242 _mesa_hash_table_search(struct hash_table *ht, const void *key)
243 {
244    assert(ht->key_hash_function);
245    return hash_table_search(ht, ht->key_hash_function(key), key);
246 }
247 
248 struct hash_entry *
_mesa_hash_table_search_pre_hashed(struct hash_table * ht,uint32_t hash,const void * key)249 _mesa_hash_table_search_pre_hashed(struct hash_table *ht, uint32_t hash,
250                                   const void *key)
251 {
252    assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
253    return hash_table_search(ht, hash, key);
254 }
255 
256 static struct hash_entry *
257 hash_table_insert(struct hash_table *ht, uint32_t hash,
258                   const void *key, void *data);
259 
260 static void
_mesa_hash_table_rehash(struct hash_table * ht,unsigned new_size_index)261 _mesa_hash_table_rehash(struct hash_table *ht, unsigned new_size_index)
262 {
263    struct hash_table old_ht;
264    struct hash_entry *table, *entry;
265 
266    if (new_size_index >= ARRAY_SIZE(hash_sizes))
267       return;
268 
269    table = rzalloc_array(ht, struct hash_entry,
270                          hash_sizes[new_size_index].size);
271    if (table == NULL)
272       return;
273 
274    old_ht = *ht;
275 
276    ht->table = table;
277    ht->size_index = new_size_index;
278    ht->size = hash_sizes[ht->size_index].size;
279    ht->rehash = hash_sizes[ht->size_index].rehash;
280    ht->max_entries = hash_sizes[ht->size_index].max_entries;
281    ht->entries = 0;
282    ht->deleted_entries = 0;
283 
284    hash_table_foreach(&old_ht, entry) {
285       hash_table_insert(ht, entry->hash, entry->key, entry->data);
286    }
287 
288    ralloc_free(old_ht.table);
289 }
290 
291 static struct hash_entry *
hash_table_insert(struct hash_table * ht,uint32_t hash,const void * key,void * data)292 hash_table_insert(struct hash_table *ht, uint32_t hash,
293                   const void *key, void *data)
294 {
295    uint32_t start_hash_address, hash_address;
296    struct hash_entry *available_entry = NULL;
297 
298    assert(key != NULL);
299 
300    if (ht->entries >= ht->max_entries) {
301       _mesa_hash_table_rehash(ht, ht->size_index + 1);
302    } else if (ht->deleted_entries + ht->entries >= ht->max_entries) {
303       _mesa_hash_table_rehash(ht, ht->size_index);
304    }
305 
306    start_hash_address = hash % ht->size;
307    hash_address = start_hash_address;
308    do {
309       struct hash_entry *entry = ht->table + hash_address;
310       uint32_t double_hash;
311 
312       if (!entry_is_present(ht, entry)) {
313          /* Stash the first available entry we find */
314          if (available_entry == NULL)
315             available_entry = entry;
316          if (entry_is_free(entry))
317             break;
318       }
319 
320       /* Implement replacement when another insert happens
321        * with a matching key.  This is a relatively common
322        * feature of hash tables, with the alternative
323        * generally being "insert the new value as well, and
324        * return it first when the key is searched for".
325        *
326        * Note that the hash table doesn't have a delete
327        * callback.  If freeing of old data pointers is
328        * required to avoid memory leaks, perform a search
329        * before inserting.
330        */
331       if (!entry_is_deleted(ht, entry) &&
332           entry->hash == hash &&
333           ht->key_equals_function(key, entry->key)) {
334          entry->key = key;
335          entry->data = data;
336          return entry;
337       }
338 
339 
340       double_hash = 1 + hash % ht->rehash;
341 
342       hash_address = (hash_address + double_hash) % ht->size;
343    } while (hash_address != start_hash_address);
344 
345    if (available_entry) {
346       if (entry_is_deleted(ht, available_entry))
347          ht->deleted_entries--;
348       available_entry->hash = hash;
349       available_entry->key = key;
350       available_entry->data = data;
351       ht->entries++;
352       return available_entry;
353    }
354 
355    /* We could hit here if a required resize failed. An unchecked-malloc
356     * application could ignore this result.
357     */
358    return NULL;
359 }
360 
361 /**
362  * Inserts the key with the given hash into the table.
363  *
364  * Note that insertion may rearrange the table on a resize or rehash,
365  * so previously found hash_entries are no longer valid after this function.
366  */
367 struct hash_entry *
_mesa_hash_table_insert(struct hash_table * ht,const void * key,void * data)368 _mesa_hash_table_insert(struct hash_table *ht, const void *key, void *data)
369 {
370    assert(ht->key_hash_function);
371    return hash_table_insert(ht, ht->key_hash_function(key), key, data);
372 }
373 
374 struct hash_entry *
_mesa_hash_table_insert_pre_hashed(struct hash_table * ht,uint32_t hash,const void * key,void * data)375 _mesa_hash_table_insert_pre_hashed(struct hash_table *ht, uint32_t hash,
376                                    const void *key, void *data)
377 {
378    assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
379    return hash_table_insert(ht, hash, key, data);
380 }
381 
382 /**
383  * This function deletes the given hash table entry.
384  *
385  * Note that deletion doesn't otherwise modify the table, so an iteration over
386  * the table deleting entries is safe.
387  */
388 void
_mesa_hash_table_remove(struct hash_table * ht,struct hash_entry * entry)389 _mesa_hash_table_remove(struct hash_table *ht,
390                         struct hash_entry *entry)
391 {
392    if (!entry)
393       return;
394 
395    entry->key = ht->deleted_key;
396    ht->entries--;
397    ht->deleted_entries++;
398 }
399 
400 /**
401  * This function is an iterator over the hash table.
402  *
403  * Pass in NULL for the first entry, as in the start of a for loop.  Note that
404  * an iteration over the table is O(table_size) not O(entries).
405  */
406 struct hash_entry *
_mesa_hash_table_next_entry(struct hash_table * ht,struct hash_entry * entry)407 _mesa_hash_table_next_entry(struct hash_table *ht,
408                             struct hash_entry *entry)
409 {
410    if (entry == NULL)
411       entry = ht->table;
412    else
413       entry = entry + 1;
414 
415    for (; entry != ht->table + ht->size; entry++) {
416       if (entry_is_present(ht, entry)) {
417          return entry;
418       }
419    }
420 
421    return NULL;
422 }
423 
424 /**
425  * Returns a random entry from the hash table.
426  *
427  * This may be useful in implementing random replacement (as opposed
428  * to just removing everything) in caches based on this hash table
429  * implementation.  @predicate may be used to filter entries, or may
430  * be set to NULL for no filtering.
431  */
432 struct hash_entry *
_mesa_hash_table_random_entry(struct hash_table * ht,bool (* predicate)(struct hash_entry * entry))433 _mesa_hash_table_random_entry(struct hash_table *ht,
434                               bool (*predicate)(struct hash_entry *entry))
435 {
436    struct hash_entry *entry;
437    uint32_t i = rand() % ht->size;
438 
439    if (ht->entries == 0)
440       return NULL;
441 
442    for (entry = ht->table + i; entry != ht->table + ht->size; entry++) {
443       if (entry_is_present(ht, entry) &&
444           (!predicate || predicate(entry))) {
445          return entry;
446       }
447    }
448 
449    for (entry = ht->table; entry != ht->table + i; entry++) {
450       if (entry_is_present(ht, entry) &&
451           (!predicate || predicate(entry))) {
452          return entry;
453       }
454    }
455 
456    return NULL;
457 }
458 
459 
460 /**
461  * Quick FNV-1a hash implementation based on:
462  * http://www.isthe.com/chongo/tech/comp/fnv/
463  *
464  * FNV-1a is not be the best hash out there -- Jenkins's lookup3 is supposed
465  * to be quite good, and it probably beats FNV.  But FNV has the advantage
466  * that it involves almost no code.  For an improvement on both, see Paul
467  * Hsieh's http://www.azillionmonkeys.com/qed/hash.html
468  */
469 uint32_t
_mesa_hash_data(const void * data,size_t size)470 _mesa_hash_data(const void *data, size_t size)
471 {
472    return _mesa_fnv32_1a_accumulate_block(_mesa_fnv32_1a_offset_bias,
473                                           data, size);
474 }
475 
476 /** FNV-1a string hash implementation */
477 uint32_t
_mesa_hash_string(const char * key)478 _mesa_hash_string(const char *key)
479 {
480    uint32_t hash = _mesa_fnv32_1a_offset_bias;
481 
482    while (*key != 0) {
483       hash = _mesa_fnv32_1a_accumulate(hash, *key);
484       key++;
485    }
486 
487    return hash;
488 }
489 
490 /**
491  * String compare function for use as the comparison callback in
492  * _mesa_hash_table_create().
493  */
494 bool
_mesa_key_string_equal(const void * a,const void * b)495 _mesa_key_string_equal(const void *a, const void *b)
496 {
497    return strcmp(a, b) == 0;
498 }
499 
500 bool
_mesa_key_pointer_equal(const void * a,const void * b)501 _mesa_key_pointer_equal(const void *a, const void *b)
502 {
503    return a == b;
504 }
505