• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jmemmgr.c
3  *
4  * Copyright (C) 1991-1997, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains the JPEG system-independent memory management
9  * routines.  This code is usable across a wide variety of machines; most
10  * of the system dependencies have been isolated in a separate file.
11  * The major functions provided here are:
12  *   * pool-based allocation and freeing of memory;
13  *   * policy decisions about how to divide available memory among the
14  *     virtual arrays;
15  *   * control logic for swapping virtual arrays between main memory and
16  *     backing storage.
17  * The separate system-dependent file provides the actual backing-storage
18  * access code, and it contains the policy decision about how much total
19  * main memory to use.
20  * This file is system-dependent in the sense that some of its functions
21  * are unnecessary in some systems.  For example, if there is enough virtual
22  * memory so that backing storage will never be used, much of the virtual
23  * array control logic could be removed.  (Of course, if you have that much
24  * memory then you shouldn't care about a little bit of unused code...)
25  */
26 
27 #define JPEG_INTERNALS
28 #define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */
29 #include "jinclude.h"
30 #include "jpeglib.h"
31 #include "jmemsys.h"		/* import the system-dependent declarations */
32 
33 #define NO_GETENV	/* XYQ: 2007-5-22 Don't use it */
34 
35 #ifndef NO_GETENV
36 #ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */
37 extern char * getenv JPP((const char * name));
38 #endif
39 #endif
40 
41 
42 /*
43  * Some important notes:
44  *   The allocation routines provided here must never return NULL.
45  *   They should exit to error_exit if unsuccessful.
46  *
47  *   It's not a good idea to try to merge the sarray and barray routines,
48  *   even though they are textually almost the same, because samples are
49  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
50  *   in machines where byte pointers have a different representation from
51  *   word pointers, the resulting machine code could not be the same.
52  */
53 
54 
55 /*
56  * Many machines require storage alignment: longs must start on 4-byte
57  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
58  * always returns pointers that are multiples of the worst-case alignment
59  * requirement, and we had better do so too.
60  * There isn't any really portable way to determine the worst-case alignment
61  * requirement.  This module assumes that the alignment requirement is
62  * multiples of sizeof(ALIGN_TYPE).
63  * By default, we define ALIGN_TYPE as double.  This is necessary on some
64  * workstations (where doubles really do need 8-byte alignment) and will work
65  * fine on nearly everything.  If your machine has lesser alignment needs,
66  * you can save a few bytes by making ALIGN_TYPE smaller.
67  * The only place I know of where this will NOT work is certain Macintosh
68  * 680x0 compilers that define double as a 10-byte IEEE extended float.
69  * Doing 10-byte alignment is counterproductive because longwords won't be
70  * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
71  * such a compiler.
72  */
73 
74 #ifndef ALIGN_TYPE		/* so can override from jconfig.h */
75 #define ALIGN_TYPE  double
76 #endif
77 
78 
79 /*
80  * We allocate objects from "pools", where each pool is gotten with a single
81  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
82  * overhead within a pool, except for alignment padding.  Each pool has a
83  * header with a link to the next pool of the same class.
84  * Small and large pool headers are identical except that the latter's
85  * link pointer must be FAR on 80x86 machines.
86  * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
87  * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
88  * of the alignment requirement of ALIGN_TYPE.
89  */
90 
91 typedef union small_pool_struct * small_pool_ptr;
92 
93 typedef union small_pool_struct {
94   struct {
95     small_pool_ptr next;	/* next in list of pools */
96     size_t bytes_used;		/* how many bytes already used within pool */
97     size_t bytes_left;		/* bytes still available in this pool */
98   } hdr;
99   ALIGN_TYPE dummy;		/* included in union to ensure alignment */
100 } small_pool_hdr;
101 
102 typedef union large_pool_struct FAR * large_pool_ptr;
103 
104 typedef union large_pool_struct {
105   struct {
106     large_pool_ptr next;	/* next in list of pools */
107     size_t bytes_used;		/* how many bytes already used within pool */
108     size_t bytes_left;		/* bytes still available in this pool */
109   } hdr;
110   ALIGN_TYPE dummy;		/* included in union to ensure alignment */
111 } large_pool_hdr;
112 
113 
114 /*
115  * Here is the full definition of a memory manager object.
116  */
117 
118 typedef struct {
119   struct jpeg_memory_mgr pub;	/* public fields */
120 
121   /* Each pool identifier (lifetime class) names a linked list of pools. */
122   small_pool_ptr small_list[JPOOL_NUMPOOLS];
123   large_pool_ptr large_list[JPOOL_NUMPOOLS];
124 
125   /* Since we only have one lifetime class of virtual arrays, only one
126    * linked list is necessary (for each datatype).  Note that the virtual
127    * array control blocks being linked together are actually stored somewhere
128    * in the small-pool list.
129    */
130   jvirt_sarray_ptr virt_sarray_list;
131   jvirt_barray_ptr virt_barray_list;
132 
133   /* This counts total space obtained from jpeg_get_small/large */
134   long total_space_allocated;
135 
136   /* alloc_sarray and alloc_barray set this value for use by virtual
137    * array routines.
138    */
139   JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */
140 } my_memory_mgr;
141 
142 typedef my_memory_mgr * my_mem_ptr;
143 
144 
145 /*
146  * The control blocks for virtual arrays.
147  * Note that these blocks are allocated in the "small" pool area.
148  * System-dependent info for the associated backing store (if any) is hidden
149  * inside the backing_store_info struct.
150  */
151 
152 struct jvirt_sarray_control {
153   JSAMPARRAY mem_buffer;	/* => the in-memory buffer */
154   JDIMENSION rows_in_array;	/* total virtual array height */
155   JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */
156   JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */
157   JDIMENSION rows_in_mem;	/* height of memory buffer */
158   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
159   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
160   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
161   boolean pre_zero;		/* pre-zero mode requested? */
162   boolean dirty;		/* do current buffer contents need written? */
163   boolean b_s_open;		/* is backing-store data valid? */
164   jvirt_sarray_ptr next;	/* link to next virtual sarray control block */
165   backing_store_info b_s_info;	/* System-dependent control info */
166 };
167 
168 struct jvirt_barray_control {
169   JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */
170   JDIMENSION rows_in_array;	/* total virtual array height */
171   JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */
172   JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */
173   JDIMENSION rows_in_mem;	/* height of memory buffer */
174   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
175   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
176   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
177   boolean pre_zero;		/* pre-zero mode requested? */
178   boolean dirty;		/* do current buffer contents need written? */
179   boolean b_s_open;		/* is backing-store data valid? */
180   jvirt_barray_ptr next;	/* link to next virtual barray control block */
181   backing_store_info b_s_info;	/* System-dependent control info */
182 };
183 
184 
185 #ifdef MEM_STATS		/* optional extra stuff for statistics */
186 
187 LOCAL(void)
print_mem_stats(j_common_ptr cinfo,int pool_id)188 print_mem_stats (j_common_ptr cinfo, int pool_id)
189 {
190   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
191   small_pool_ptr shdr_ptr;
192   large_pool_ptr lhdr_ptr;
193 
194   /* Since this is only a debugging stub, we can cheat a little by using
195    * fprintf directly rather than going through the trace message code.
196    * This is helpful because message parm array can't handle longs.
197    */
198   FXSYS_fprintf(stderr, "Freeing pool %d, total space = %ld\n",
199 	  pool_id, mem->total_space_allocated);
200 
201   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
202        lhdr_ptr = lhdr_ptr->hdr.next) {
203     FXSYS_fprintf(stderr, "  Large chunk used %ld\n",
204 	    (long) lhdr_ptr->hdr.bytes_used);
205   }
206 
207   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
208        shdr_ptr = shdr_ptr->hdr.next) {
209     FXSYS_fprintf(stderr, "  Small chunk used %ld free %ld\n",
210 	    (long) shdr_ptr->hdr.bytes_used,
211 	    (long) shdr_ptr->hdr.bytes_left);
212   }
213 }
214 
215 #endif /* MEM_STATS */
216 
217 
218 LOCAL(void)
out_of_memory(j_common_ptr cinfo,int which)219 out_of_memory (j_common_ptr cinfo, int which)
220 /* Report an out-of-memory error and stop execution */
221 /* If we compiled MEM_STATS support, report alloc requests before dying */
222 {
223 #ifdef MEM_STATS
224   cinfo->err->trace_level = 2;	/* force self_destruct to report stats */
225 #endif
226   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
227 }
228 
229 
230 /*
231  * Allocation of "small" objects.
232  *
233  * For these, we use pooled storage.  When a new pool must be created,
234  * we try to get enough space for the current request plus a "slop" factor,
235  * where the slop will be the amount of leftover space in the new pool.
236  * The speed vs. space tradeoff is largely determined by the slop values.
237  * A different slop value is provided for each pool class (lifetime),
238  * and we also distinguish the first pool of a class from later ones.
239  * NOTE: the values given work fairly well on both 16- and 32-bit-int
240  * machines, but may be too small if longs are 64 bits or more.
241  */
242 
243 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
244 {
245 	1600,			/* first PERMANENT pool */
246 	16000			/* first IMAGE pool */
247 };
248 
249 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
250 {
251 	0,			/* additional PERMANENT pools */
252 	5000			/* additional IMAGE pools */
253 };
254 
255 #define MIN_SLOP  50		/* greater than 0 to avoid futile looping */
256 
257 
258 METHODDEF(void *)
alloc_small(j_common_ptr cinfo,int pool_id,size_t sizeofobject)259 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
260 /* Allocate a "small" object */
261 {
262   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
263   small_pool_ptr hdr_ptr, prev_hdr_ptr;
264   char * data_ptr;
265   size_t odd_bytes, min_request, slop;
266 
267   /* Check for unsatisfiable request (do now to ensure no overflow below) */
268   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
269     out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */
270 
271   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
272   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
273   if (odd_bytes > 0)
274     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
275 
276   /* See if space is available in any existing pool */
277   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
278     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
279   prev_hdr_ptr = NULL;
280   hdr_ptr = mem->small_list[pool_id];
281   while (hdr_ptr != NULL) {
282     if (hdr_ptr->hdr.bytes_left >= sizeofobject)
283       break;			/* found pool with enough space */
284     prev_hdr_ptr = hdr_ptr;
285     hdr_ptr = hdr_ptr->hdr.next;
286   }
287 
288   /* Time to make a new pool? */
289   if (hdr_ptr == NULL) {
290     /* min_request is what we need now, slop is what will be leftover */
291     min_request = sizeofobject + SIZEOF(small_pool_hdr);
292     if (prev_hdr_ptr == NULL)	/* first pool in class? */
293       slop = first_pool_slop[pool_id];
294     else
295       slop = extra_pool_slop[pool_id];
296     /* Don't ask for more than MAX_ALLOC_CHUNK */
297     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
298       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
299     /* Try to get space, if fail reduce slop and try again */
300     for (;;) {
301       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
302       if (hdr_ptr != NULL)
303 	break;
304       slop /= 2;
305       if (slop < MIN_SLOP)	/* give up when it gets real small */
306 	out_of_memory(cinfo, 2); /* jpeg_get_small failed */
307     }
308     mem->total_space_allocated += min_request + slop;
309     /* Success, initialize the new pool header and add to end of list */
310     hdr_ptr->hdr.next = NULL;
311     hdr_ptr->hdr.bytes_used = 0;
312     hdr_ptr->hdr.bytes_left = sizeofobject + slop;
313     if (prev_hdr_ptr == NULL)	/* first pool in class? */
314       mem->small_list[pool_id] = hdr_ptr;
315     else
316       prev_hdr_ptr->hdr.next = hdr_ptr;
317   }
318 
319   /* OK, allocate the object from the current pool */
320   data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
321   data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
322   hdr_ptr->hdr.bytes_used += sizeofobject;
323   hdr_ptr->hdr.bytes_left -= sizeofobject;
324 
325   return (void *) data_ptr;
326 }
327 
328 
329 /*
330  * Allocation of "large" objects.
331  *
332  * The external semantics of these are the same as "small" objects,
333  * except that FAR pointers are used on 80x86.  However the pool
334  * management heuristics are quite different.  We assume that each
335  * request is large enough that it may as well be passed directly to
336  * jpeg_get_large; the pool management just links everything together
337  * so that we can free it all on demand.
338  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
339  * structures.  The routines that create these structures (see below)
340  * deliberately bunch rows together to ensure a large request size.
341  */
342 
343 METHODDEF(void FAR *)
alloc_large(j_common_ptr cinfo,int pool_id,size_t sizeofobject)344 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
345 /* Allocate a "large" object */
346 {
347   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
348   large_pool_ptr hdr_ptr;
349   size_t odd_bytes;
350 
351   /* Check for unsatisfiable request (do now to ensure no overflow below) */
352   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
353     out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */
354 
355   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
356   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
357   if (odd_bytes > 0)
358     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
359 
360   /* Always make a new pool */
361   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
362     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
363 
364   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
365 					    SIZEOF(large_pool_hdr));
366   if (hdr_ptr == NULL)
367     out_of_memory(cinfo, 4);	/* jpeg_get_large failed */
368   mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
369 
370   /* Success, initialize the new pool header and add to list */
371   hdr_ptr->hdr.next = mem->large_list[pool_id];
372   /* We maintain space counts in each pool header for statistical purposes,
373    * even though they are not needed for allocation.
374    */
375   hdr_ptr->hdr.bytes_used = sizeofobject;
376   hdr_ptr->hdr.bytes_left = 0;
377   mem->large_list[pool_id] = hdr_ptr;
378 
379   return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
380 }
381 
382 
383 /*
384  * Creation of 2-D sample arrays.
385  * The pointers are in near heap, the samples themselves in FAR heap.
386  *
387  * To minimize allocation overhead and to allow I/O of large contiguous
388  * blocks, we allocate the sample rows in groups of as many rows as possible
389  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
390  * NB: the virtual array control routines, later in this file, know about
391  * this chunking of rows.  The rowsperchunk value is left in the mem manager
392  * object so that it can be saved away if this sarray is the workspace for
393  * a virtual array.
394  */
395 
396 METHODDEF(JSAMPARRAY)
alloc_sarray(j_common_ptr cinfo,int pool_id,JDIMENSION samplesperrow,JDIMENSION numrows)397 alloc_sarray (j_common_ptr cinfo, int pool_id,
398 	      JDIMENSION samplesperrow, JDIMENSION numrows)
399 /* Allocate a 2-D sample array */
400 {
401   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
402   JSAMPARRAY result;
403   JSAMPROW workspace;
404   JDIMENSION rowsperchunk, currow, i;
405   long ltemp;
406 
407   /* Calculate max # of rows allowed in one allocation chunk */
408   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
409 	  ((long) samplesperrow * SIZEOF(JSAMPLE));
410   if (ltemp <= 0)
411     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
412   if (ltemp < (long) numrows)
413     rowsperchunk = (JDIMENSION) ltemp;
414   else
415     rowsperchunk = numrows;
416   mem->last_rowsperchunk = rowsperchunk;
417 
418   /* Get space for row pointers (small object) */
419   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
420 				    (size_t) (numrows * SIZEOF(JSAMPROW)));
421 
422   /* Get the rows themselves (large objects) */
423   currow = 0;
424   while (currow < numrows) {
425     rowsperchunk = MIN(rowsperchunk, numrows - currow);
426     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
427 	(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
428 		  * SIZEOF(JSAMPLE)));
429     for (i = rowsperchunk; i > 0; i--) {
430       result[currow++] = workspace;
431       workspace += samplesperrow;
432     }
433   }
434 
435   return result;
436 }
437 
438 
439 /*
440  * Creation of 2-D coefficient-block arrays.
441  * This is essentially the same as the code for sample arrays, above.
442  */
443 
444 METHODDEF(JBLOCKARRAY)
alloc_barray(j_common_ptr cinfo,int pool_id,JDIMENSION blocksperrow,JDIMENSION numrows)445 alloc_barray (j_common_ptr cinfo, int pool_id,
446 	      JDIMENSION blocksperrow, JDIMENSION numrows)
447 /* Allocate a 2-D coefficient-block array */
448 {
449   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
450   JBLOCKARRAY result;
451   JBLOCKROW workspace;
452   JDIMENSION rowsperchunk, currow, i;
453   long ltemp;
454 
455   /* Calculate max # of rows allowed in one allocation chunk */
456   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
457 	  ((long) blocksperrow * SIZEOF(JBLOCK));
458   if (ltemp <= 0)
459     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
460   if (ltemp < (long) numrows)
461     rowsperchunk = (JDIMENSION) ltemp;
462   else
463     rowsperchunk = numrows;
464   mem->last_rowsperchunk = rowsperchunk;
465 
466   /* Get space for row pointers (small object) */
467   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
468 				     (size_t) (numrows * SIZEOF(JBLOCKROW)));
469 
470   /* Get the rows themselves (large objects) */
471   currow = 0;
472   while (currow < numrows) {
473     rowsperchunk = MIN(rowsperchunk, numrows - currow);
474     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
475 	(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
476 		  * SIZEOF(JBLOCK)));
477     for (i = rowsperchunk; i > 0; i--) {
478       result[currow++] = workspace;
479       workspace += blocksperrow;
480     }
481   }
482 
483   return result;
484 }
485 
486 
487 /*
488  * About virtual array management:
489  *
490  * The above "normal" array routines are only used to allocate strip buffers
491  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
492  * are handled as "virtual" arrays.  The array is still accessed a strip at a
493  * time, but the memory manager must save the whole array for repeated
494  * accesses.  The intended implementation is that there is a strip buffer in
495  * memory (as high as is possible given the desired memory limit), plus a
496  * backing file that holds the rest of the array.
497  *
498  * The request_virt_array routines are told the total size of the image and
499  * the maximum number of rows that will be accessed at once.  The in-memory
500  * buffer must be at least as large as the maxaccess value.
501  *
502  * The request routines create control blocks but not the in-memory buffers.
503  * That is postponed until realize_virt_arrays is called.  At that time the
504  * total amount of space needed is known (approximately, anyway), so free
505  * memory can be divided up fairly.
506  *
507  * The access_virt_array routines are responsible for making a specific strip
508  * area accessible (after reading or writing the backing file, if necessary).
509  * Note that the access routines are told whether the caller intends to modify
510  * the accessed strip; during a read-only pass this saves having to rewrite
511  * data to disk.  The access routines are also responsible for pre-zeroing
512  * any newly accessed rows, if pre-zeroing was requested.
513  *
514  * In current usage, the access requests are usually for nonoverlapping
515  * strips; that is, successive access start_row numbers differ by exactly
516  * num_rows = maxaccess.  This means we can get good performance with simple
517  * buffer dump/reload logic, by making the in-memory buffer be a multiple
518  * of the access height; then there will never be accesses across bufferload
519  * boundaries.  The code will still work with overlapping access requests,
520  * but it doesn't handle bufferload overlaps very efficiently.
521  */
522 
523 
524 METHODDEF(jvirt_sarray_ptr)
request_virt_sarray(j_common_ptr cinfo,int pool_id,boolean pre_zero,JDIMENSION samplesperrow,JDIMENSION numrows,JDIMENSION maxaccess)525 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
526 		     JDIMENSION samplesperrow, JDIMENSION numrows,
527 		     JDIMENSION maxaccess)
528 /* Request a virtual 2-D sample array */
529 {
530   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
531   jvirt_sarray_ptr result;
532 
533   /* Only IMAGE-lifetime virtual arrays are currently supported */
534   if (pool_id != JPOOL_IMAGE)
535     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
536 
537   /* get control block */
538   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
539 					  SIZEOF(struct jvirt_sarray_control));
540 
541   result->mem_buffer = NULL;	/* marks array not yet realized */
542   result->rows_in_array = numrows;
543   result->samplesperrow = samplesperrow;
544   result->maxaccess = maxaccess;
545   result->pre_zero = pre_zero;
546   result->b_s_open = FALSE;	/* no associated backing-store object */
547   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
548   mem->virt_sarray_list = result;
549 
550   return result;
551 }
552 
553 
554 METHODDEF(jvirt_barray_ptr)
request_virt_barray(j_common_ptr cinfo,int pool_id,boolean pre_zero,JDIMENSION blocksperrow,JDIMENSION numrows,JDIMENSION maxaccess)555 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
556 		     JDIMENSION blocksperrow, JDIMENSION numrows,
557 		     JDIMENSION maxaccess)
558 /* Request a virtual 2-D coefficient-block array */
559 {
560   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
561   jvirt_barray_ptr result;
562 
563   /* Only IMAGE-lifetime virtual arrays are currently supported */
564   if (pool_id != JPOOL_IMAGE)
565     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
566 
567   /* get control block */
568   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
569 					  SIZEOF(struct jvirt_barray_control));
570 
571   result->mem_buffer = NULL;	/* marks array not yet realized */
572   result->rows_in_array = numrows;
573   result->blocksperrow = blocksperrow;
574   result->maxaccess = maxaccess;
575   result->pre_zero = pre_zero;
576   result->b_s_open = FALSE;	/* no associated backing-store object */
577   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
578   mem->virt_barray_list = result;
579 
580   return result;
581 }
582 
583 
584 METHODDEF(void)
realize_virt_arrays(j_common_ptr cinfo)585 realize_virt_arrays (j_common_ptr cinfo)
586 /* Allocate the in-memory buffers for any unrealized virtual arrays */
587 {
588   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
589   long space_per_minheight, maximum_space, avail_mem;
590   long minheights, max_minheights;
591   jvirt_sarray_ptr sptr;
592   jvirt_barray_ptr bptr;
593 
594   /* Compute the minimum space needed (maxaccess rows in each buffer)
595    * and the maximum space needed (full image height in each buffer).
596    * These may be of use to the system-dependent jpeg_mem_available routine.
597    */
598   space_per_minheight = 0;
599   maximum_space = 0;
600   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
601     if (sptr->mem_buffer == NULL) { /* if not realized yet */
602       space_per_minheight += (long) sptr->maxaccess *
603 			     (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
604       maximum_space += (long) sptr->rows_in_array *
605 		       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
606     }
607   }
608   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
609     if (bptr->mem_buffer == NULL) { /* if not realized yet */
610       space_per_minheight += (long) bptr->maxaccess *
611 			     (long) bptr->blocksperrow * SIZEOF(JBLOCK);
612       maximum_space += (long) bptr->rows_in_array *
613 		       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
614     }
615   }
616 
617   if (space_per_minheight <= 0)
618     return;			/* no unrealized arrays, no work */
619 
620   /* Determine amount of memory to actually use; this is system-dependent. */
621   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
622 				 mem->total_space_allocated);
623 
624   /* If the maximum space needed is available, make all the buffers full
625    * height; otherwise parcel it out with the same number of minheights
626    * in each buffer.
627    */
628   if (avail_mem >= maximum_space)
629     max_minheights = 1000000000L;
630   else {
631     max_minheights = avail_mem / space_per_minheight;
632     /* If there doesn't seem to be enough space, try to get the minimum
633      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
634      */
635     if (max_minheights <= 0)
636       max_minheights = 1;
637   }
638 
639   /* Allocate the in-memory buffers and initialize backing store as needed. */
640 
641   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
642     if (sptr->mem_buffer == NULL) { /* if not realized yet */
643       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
644       if (minheights <= max_minheights) {
645 	/* This buffer fits in memory */
646 	sptr->rows_in_mem = sptr->rows_in_array;
647       } else {
648 	/* It doesn't fit in memory, create backing store. */
649 	sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
650 	jpeg_open_backing_store(cinfo, & sptr->b_s_info,
651 				(long) sptr->rows_in_array *
652 				(long) sptr->samplesperrow *
653 				(long) SIZEOF(JSAMPLE));
654 	sptr->b_s_open = TRUE;
655       }
656       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
657 				      sptr->samplesperrow, sptr->rows_in_mem);
658       sptr->rowsperchunk = mem->last_rowsperchunk;
659       sptr->cur_start_row = 0;
660       sptr->first_undef_row = 0;
661       sptr->dirty = FALSE;
662     }
663   }
664 
665   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
666     if (bptr->mem_buffer == NULL) { /* if not realized yet */
667       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
668       if (minheights <= max_minheights) {
669 	/* This buffer fits in memory */
670 	bptr->rows_in_mem = bptr->rows_in_array;
671       } else {
672 	/* It doesn't fit in memory, create backing store. */
673 	bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
674 	jpeg_open_backing_store(cinfo, & bptr->b_s_info,
675 				(long) bptr->rows_in_array *
676 				(long) bptr->blocksperrow *
677 				(long) SIZEOF(JBLOCK));
678 	bptr->b_s_open = TRUE;
679       }
680       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
681 				      bptr->blocksperrow, bptr->rows_in_mem);
682       bptr->rowsperchunk = mem->last_rowsperchunk;
683       bptr->cur_start_row = 0;
684       bptr->first_undef_row = 0;
685       bptr->dirty = FALSE;
686     }
687   }
688 }
689 
690 
691 LOCAL(void)
do_sarray_io(j_common_ptr cinfo,jvirt_sarray_ptr ptr,boolean writing)692 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
693 /* Do backing store read or write of a virtual sample array */
694 {
695   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
696 
697   bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
698   file_offset = ptr->cur_start_row * bytesperrow;
699   /* Loop to read or write each allocation chunk in mem_buffer */
700   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
701     /* One chunk, but check for short chunk at end of buffer */
702     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
703     /* Transfer no more than is currently defined */
704     thisrow = (long) ptr->cur_start_row + i;
705     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
706     /* Transfer no more than fits in file */
707     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
708     if (rows <= 0)		/* this chunk might be past end of file! */
709       break;
710     byte_count = rows * bytesperrow;
711     if (writing)
712       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
713 					    (void FAR *) ptr->mem_buffer[i],
714 					    file_offset, byte_count);
715     else
716       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
717 					   (void FAR *) ptr->mem_buffer[i],
718 					   file_offset, byte_count);
719     file_offset += byte_count;
720   }
721 }
722 
723 
724 LOCAL(void)
do_barray_io(j_common_ptr cinfo,jvirt_barray_ptr ptr,boolean writing)725 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
726 /* Do backing store read or write of a virtual coefficient-block array */
727 {
728   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
729 
730   bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
731   file_offset = ptr->cur_start_row * bytesperrow;
732   /* Loop to read or write each allocation chunk in mem_buffer */
733   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
734     /* One chunk, but check for short chunk at end of buffer */
735     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
736     /* Transfer no more than is currently defined */
737     thisrow = (long) ptr->cur_start_row + i;
738     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
739     /* Transfer no more than fits in file */
740     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
741     if (rows <= 0)		/* this chunk might be past end of file! */
742       break;
743     byte_count = rows * bytesperrow;
744     if (writing)
745       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
746 					    (void FAR *) ptr->mem_buffer[i],
747 					    file_offset, byte_count);
748     else
749       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
750 					   (void FAR *) ptr->mem_buffer[i],
751 					   file_offset, byte_count);
752     file_offset += byte_count;
753   }
754 }
755 
756 
757 METHODDEF(JSAMPARRAY)
access_virt_sarray(j_common_ptr cinfo,jvirt_sarray_ptr ptr,JDIMENSION start_row,JDIMENSION num_rows,boolean writable)758 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
759 		    JDIMENSION start_row, JDIMENSION num_rows,
760 		    boolean writable)
761 /* Access the part of a virtual sample array starting at start_row */
762 /* and extending for num_rows rows.  writable is true if  */
763 /* caller intends to modify the accessed area. */
764 {
765   JDIMENSION end_row = start_row + num_rows;
766   JDIMENSION undef_row;
767 
768   /* debugging check */
769   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
770       ptr->mem_buffer == NULL)
771     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
772 
773   /* Make the desired part of the virtual array accessible */
774   if (start_row < ptr->cur_start_row ||
775       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
776     if (! ptr->b_s_open)
777       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
778     /* Flush old buffer contents if necessary */
779     if (ptr->dirty) {
780       do_sarray_io(cinfo, ptr, TRUE);
781       ptr->dirty = FALSE;
782     }
783     /* Decide what part of virtual array to access.
784      * Algorithm: if target address > current window, assume forward scan,
785      * load starting at target address.  If target address < current window,
786      * assume backward scan, load so that target area is top of window.
787      * Note that when switching from forward write to forward read, will have
788      * start_row = 0, so the limiting case applies and we load from 0 anyway.
789      */
790     if (start_row > ptr->cur_start_row) {
791       ptr->cur_start_row = start_row;
792     } else {
793       /* use long arithmetic here to avoid overflow & unsigned problems */
794       long ltemp;
795 
796       ltemp = (long) end_row - (long) ptr->rows_in_mem;
797       if (ltemp < 0)
798 	ltemp = 0;		/* don't fall off front end of file */
799       ptr->cur_start_row = (JDIMENSION) ltemp;
800     }
801     /* Read in the selected part of the array.
802      * During the initial write pass, we will do no actual read
803      * because the selected part is all undefined.
804      */
805     do_sarray_io(cinfo, ptr, FALSE);
806   }
807   /* Ensure the accessed part of the array is defined; prezero if needed.
808    * To improve locality of access, we only prezero the part of the array
809    * that the caller is about to access, not the entire in-memory array.
810    */
811   if (ptr->first_undef_row < end_row) {
812     if (ptr->first_undef_row < start_row) {
813       if (writable)		/* writer skipped over a section of array */
814 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
815       undef_row = start_row;	/* but reader is allowed to read ahead */
816     } else {
817       undef_row = ptr->first_undef_row;
818     }
819     if (writable)
820       ptr->first_undef_row = end_row;
821     if (ptr->pre_zero) {
822       size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
823       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
824       end_row -= ptr->cur_start_row;
825       while (undef_row < end_row) {
826 	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
827 	undef_row++;
828       }
829     } else {
830       if (! writable)		/* reader looking at undefined data */
831 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
832     }
833   }
834   /* Flag the buffer dirty if caller will write in it */
835   if (writable)
836     ptr->dirty = TRUE;
837   /* Return address of proper part of the buffer */
838   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
839 }
840 
841 
842 METHODDEF(JBLOCKARRAY)
access_virt_barray(j_common_ptr cinfo,jvirt_barray_ptr ptr,JDIMENSION start_row,JDIMENSION num_rows,boolean writable)843 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
844 		    JDIMENSION start_row, JDIMENSION num_rows,
845 		    boolean writable)
846 /* Access the part of a virtual block array starting at start_row */
847 /* and extending for num_rows rows.  writable is true if  */
848 /* caller intends to modify the accessed area. */
849 {
850   JDIMENSION end_row = start_row + num_rows;
851   JDIMENSION undef_row;
852 
853   /* debugging check */
854   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
855       ptr->mem_buffer == NULL)
856     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
857 
858   /* Make the desired part of the virtual array accessible */
859   if (start_row < ptr->cur_start_row ||
860       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
861     if (! ptr->b_s_open)
862       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
863     /* Flush old buffer contents if necessary */
864     if (ptr->dirty) {
865       do_barray_io(cinfo, ptr, TRUE);
866       ptr->dirty = FALSE;
867     }
868     /* Decide what part of virtual array to access.
869      * Algorithm: if target address > current window, assume forward scan,
870      * load starting at target address.  If target address < current window,
871      * assume backward scan, load so that target area is top of window.
872      * Note that when switching from forward write to forward read, will have
873      * start_row = 0, so the limiting case applies and we load from 0 anyway.
874      */
875     if (start_row > ptr->cur_start_row) {
876       ptr->cur_start_row = start_row;
877     } else {
878       /* use long arithmetic here to avoid overflow & unsigned problems */
879       long ltemp;
880 
881       ltemp = (long) end_row - (long) ptr->rows_in_mem;
882       if (ltemp < 0)
883 	ltemp = 0;		/* don't fall off front end of file */
884       ptr->cur_start_row = (JDIMENSION) ltemp;
885     }
886     /* Read in the selected part of the array.
887      * During the initial write pass, we will do no actual read
888      * because the selected part is all undefined.
889      */
890     do_barray_io(cinfo, ptr, FALSE);
891   }
892   /* Ensure the accessed part of the array is defined; prezero if needed.
893    * To improve locality of access, we only prezero the part of the array
894    * that the caller is about to access, not the entire in-memory array.
895    */
896   if (ptr->first_undef_row < end_row) {
897     if (ptr->first_undef_row < start_row) {
898       if (writable)		/* writer skipped over a section of array */
899 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
900       undef_row = start_row;	/* but reader is allowed to read ahead */
901     } else {
902       undef_row = ptr->first_undef_row;
903     }
904     if (writable)
905       ptr->first_undef_row = end_row;
906     if (ptr->pre_zero) {
907       size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
908       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
909       end_row -= ptr->cur_start_row;
910       while (undef_row < end_row) {
911 	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
912 	undef_row++;
913       }
914     } else {
915       if (! writable)		/* reader looking at undefined data */
916 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
917     }
918   }
919   /* Flag the buffer dirty if caller will write in it */
920   if (writable)
921     ptr->dirty = TRUE;
922   /* Return address of proper part of the buffer */
923   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
924 }
925 
926 
927 /*
928  * Release all objects belonging to a specified pool.
929  */
930 
931 METHODDEF(void)
free_pool(j_common_ptr cinfo,int pool_id)932 free_pool (j_common_ptr cinfo, int pool_id)
933 {
934   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
935   small_pool_ptr shdr_ptr;
936   large_pool_ptr lhdr_ptr;
937   size_t space_freed;
938 
939   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
940     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
941 
942 #ifdef MEM_STATS
943   if (cinfo->err->trace_level > 1)
944     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
945 #endif
946 
947   /* If freeing IMAGE pool, close any virtual arrays first */
948   if (pool_id == JPOOL_IMAGE) {
949     jvirt_sarray_ptr sptr;
950     jvirt_barray_ptr bptr;
951 
952     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
953       if (sptr->b_s_open) {	/* there may be no backing store */
954 	sptr->b_s_open = FALSE;	/* prevent recursive close if error */
955 	(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
956       }
957     }
958     mem->virt_sarray_list = NULL;
959     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
960       if (bptr->b_s_open) {	/* there may be no backing store */
961 	bptr->b_s_open = FALSE;	/* prevent recursive close if error */
962 	(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
963       }
964     }
965     mem->virt_barray_list = NULL;
966   }
967 
968   /* Release large objects */
969   lhdr_ptr = mem->large_list[pool_id];
970   mem->large_list[pool_id] = NULL;
971 
972   while (lhdr_ptr != NULL) {
973     large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
974     space_freed = lhdr_ptr->hdr.bytes_used +
975 		  lhdr_ptr->hdr.bytes_left +
976 		  SIZEOF(large_pool_hdr);
977     jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
978     mem->total_space_allocated -= space_freed;
979     lhdr_ptr = next_lhdr_ptr;
980   }
981 
982   /* Release small objects */
983   shdr_ptr = mem->small_list[pool_id];
984   mem->small_list[pool_id] = NULL;
985 
986   while (shdr_ptr != NULL) {
987     small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
988     space_freed = shdr_ptr->hdr.bytes_used +
989 		  shdr_ptr->hdr.bytes_left +
990 		  SIZEOF(small_pool_hdr);
991     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
992     mem->total_space_allocated -= space_freed;
993     shdr_ptr = next_shdr_ptr;
994   }
995 }
996 
997 
998 /*
999  * Close up shop entirely.
1000  * Note that this cannot be called unless cinfo->mem is non-NULL.
1001  */
1002 
1003 METHODDEF(void)
self_destruct(j_common_ptr cinfo)1004 self_destruct (j_common_ptr cinfo)
1005 {
1006   int pool;
1007 
1008   /* Close all backing store, release all memory.
1009    * Releasing pools in reverse order might help avoid fragmentation
1010    * with some (brain-damaged) malloc libraries.
1011    */
1012   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1013     free_pool(cinfo, pool);
1014   }
1015 
1016   /* Release the memory manager control block too. */
1017   jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1018   cinfo->mem = NULL;		/* ensures I will be called only once */
1019 
1020   jpeg_mem_term(cinfo);		/* system-dependent cleanup */
1021 }
1022 
1023 
1024 /*
1025  * Memory manager initialization.
1026  * When this is called, only the error manager pointer is valid in cinfo!
1027  */
1028 
1029 GLOBAL(void)
jinit_memory_mgr(j_common_ptr cinfo)1030 jinit_memory_mgr (j_common_ptr cinfo)
1031 {
1032   my_mem_ptr mem;
1033   long max_to_use;
1034   int pool;
1035   size_t test_mac;
1036 
1037   cinfo->mem = NULL;		/* for safety if init fails */
1038 
1039   /* Check for configuration errors.
1040    * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1041    * doesn't reflect any real hardware alignment requirement.
1042    * The test is a little tricky: for X>0, X and X-1 have no one-bits
1043    * in common if and only if X is a power of 2, ie has only one one-bit.
1044    * Some compilers may give an "unreachable code" warning here; ignore it.
1045    */
1046   if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1047     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1048   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1049    * a multiple of SIZEOF(ALIGN_TYPE).
1050    * Again, an "unreachable code" warning may be ignored here.
1051    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1052    */
1053   test_mac = (size_t) MAX_ALLOC_CHUNK;
1054   if ((long) test_mac != MAX_ALLOC_CHUNK ||
1055       (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1056     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1057 
1058   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1059 
1060   /* Attempt to allocate memory manager's control block */
1061   mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1062 
1063   if (mem == NULL) {
1064     jpeg_mem_term(cinfo);	/* system-dependent cleanup */
1065     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1066   }
1067 
1068   /* OK, fill in the method pointers */
1069   mem->pub.alloc_small = alloc_small;
1070   mem->pub.alloc_large = alloc_large;
1071   mem->pub.alloc_sarray = alloc_sarray;
1072   mem->pub.alloc_barray = alloc_barray;
1073   mem->pub.request_virt_sarray = request_virt_sarray;
1074   mem->pub.request_virt_barray = request_virt_barray;
1075   mem->pub.realize_virt_arrays = realize_virt_arrays;
1076   mem->pub.access_virt_sarray = access_virt_sarray;
1077   mem->pub.access_virt_barray = access_virt_barray;
1078   mem->pub.free_pool = free_pool;
1079   mem->pub.self_destruct = self_destruct;
1080 
1081   /* Make MAX_ALLOC_CHUNK accessible to other modules */
1082   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1083 
1084   /* Initialize working state */
1085   mem->pub.max_memory_to_use = max_to_use;
1086 
1087   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1088     mem->small_list[pool] = NULL;
1089     mem->large_list[pool] = NULL;
1090   }
1091   mem->virt_sarray_list = NULL;
1092   mem->virt_barray_list = NULL;
1093 
1094   mem->total_space_allocated = SIZEOF(my_memory_mgr);
1095 
1096   /* Declare ourselves open for business */
1097   cinfo->mem = & mem->pub;
1098 
1099   /* Check for an environment variable JPEGMEM; if found, override the
1100    * default max_memory setting from jpeg_mem_init.  Note that the
1101    * surrounding application may again override this value.
1102    * If your system doesn't support getenv(), define NO_GETENV to disable
1103    * this feature.
1104    */
1105 #ifndef NO_GETENV
1106   { char * memenv;
1107 
1108     if ((memenv = getenv("JPEGMEM")) != NULL) {
1109       char ch = 'x';
1110 
1111       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1112 	if (ch == 'm' || ch == 'M')
1113 	  max_to_use *= 1000L;
1114 	mem->pub.max_memory_to_use = max_to_use * 1000L;
1115       }
1116     }
1117   }
1118 #endif
1119 
1120 }
1121