1 /*
2 * jmemmgr.c
3 *
4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains the JPEG system-independent memory management
9 * routines. This code is usable across a wide variety of machines; most
10 * of the system dependencies have been isolated in a separate file.
11 * The major functions provided here are:
12 * * pool-based allocation and freeing of memory;
13 * * policy decisions about how to divide available memory among the
14 * virtual arrays;
15 * * control logic for swapping virtual arrays between main memory and
16 * backing storage.
17 * The separate system-dependent file provides the actual backing-storage
18 * access code, and it contains the policy decision about how much total
19 * main memory to use.
20 * This file is system-dependent in the sense that some of its functions
21 * are unnecessary in some systems. For example, if there is enough virtual
22 * memory so that backing storage will never be used, much of the virtual
23 * array control logic could be removed. (Of course, if you have that much
24 * memory then you shouldn't care about a little bit of unused code...)
25 */
26
27 #define JPEG_INTERNALS
28 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
29 #include "jinclude.h"
30 #include "jpeglib.h"
31 #include "jmemsys.h" /* import the system-dependent declarations */
32
33 #define NO_GETENV /* XYQ: 2007-5-22 Don't use it */
34
35 #ifndef NO_GETENV
36 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
37 extern char * getenv JPP((const char * name));
38 #endif
39 #endif
40
41
42 /*
43 * Some important notes:
44 * The allocation routines provided here must never return NULL.
45 * They should exit to error_exit if unsuccessful.
46 *
47 * It's not a good idea to try to merge the sarray and barray routines,
48 * even though they are textually almost the same, because samples are
49 * usually stored as bytes while coefficients are shorts or ints. Thus,
50 * in machines where byte pointers have a different representation from
51 * word pointers, the resulting machine code could not be the same.
52 */
53
54
55 /*
56 * Many machines require storage alignment: longs must start on 4-byte
57 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
58 * always returns pointers that are multiples of the worst-case alignment
59 * requirement, and we had better do so too.
60 * There isn't any really portable way to determine the worst-case alignment
61 * requirement. This module assumes that the alignment requirement is
62 * multiples of sizeof(ALIGN_TYPE).
63 * By default, we define ALIGN_TYPE as double. This is necessary on some
64 * workstations (where doubles really do need 8-byte alignment) and will work
65 * fine on nearly everything. If your machine has lesser alignment needs,
66 * you can save a few bytes by making ALIGN_TYPE smaller.
67 * The only place I know of where this will NOT work is certain Macintosh
68 * 680x0 compilers that define double as a 10-byte IEEE extended float.
69 * Doing 10-byte alignment is counterproductive because longwords won't be
70 * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
71 * such a compiler.
72 */
73
74 #ifndef ALIGN_TYPE /* so can override from jconfig.h */
75 #define ALIGN_TYPE double
76 #endif
77
78
79 /*
80 * We allocate objects from "pools", where each pool is gotten with a single
81 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
82 * overhead within a pool, except for alignment padding. Each pool has a
83 * header with a link to the next pool of the same class.
84 * Small and large pool headers are identical except that the latter's
85 * link pointer must be FAR on 80x86 machines.
86 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
87 * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
88 * of the alignment requirement of ALIGN_TYPE.
89 */
90
91 typedef union small_pool_struct * small_pool_ptr;
92
93 typedef union small_pool_struct {
94 struct {
95 small_pool_ptr next; /* next in list of pools */
96 size_t bytes_used; /* how many bytes already used within pool */
97 size_t bytes_left; /* bytes still available in this pool */
98 } hdr;
99 ALIGN_TYPE dummy; /* included in union to ensure alignment */
100 } small_pool_hdr;
101
102 typedef union large_pool_struct FAR * large_pool_ptr;
103
104 typedef union large_pool_struct {
105 struct {
106 large_pool_ptr next; /* next in list of pools */
107 size_t bytes_used; /* how many bytes already used within pool */
108 size_t bytes_left; /* bytes still available in this pool */
109 } hdr;
110 ALIGN_TYPE dummy; /* included in union to ensure alignment */
111 } large_pool_hdr;
112
113
114 /*
115 * Here is the full definition of a memory manager object.
116 */
117
118 typedef struct {
119 struct jpeg_memory_mgr pub; /* public fields */
120
121 /* Each pool identifier (lifetime class) names a linked list of pools. */
122 small_pool_ptr small_list[JPOOL_NUMPOOLS];
123 large_pool_ptr large_list[JPOOL_NUMPOOLS];
124
125 /* Since we only have one lifetime class of virtual arrays, only one
126 * linked list is necessary (for each datatype). Note that the virtual
127 * array control blocks being linked together are actually stored somewhere
128 * in the small-pool list.
129 */
130 jvirt_sarray_ptr virt_sarray_list;
131 jvirt_barray_ptr virt_barray_list;
132
133 /* This counts total space obtained from jpeg_get_small/large */
134 long total_space_allocated;
135
136 /* alloc_sarray and alloc_barray set this value for use by virtual
137 * array routines.
138 */
139 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
140 } my_memory_mgr;
141
142 typedef my_memory_mgr * my_mem_ptr;
143
144
145 /*
146 * The control blocks for virtual arrays.
147 * Note that these blocks are allocated in the "small" pool area.
148 * System-dependent info for the associated backing store (if any) is hidden
149 * inside the backing_store_info struct.
150 */
151
152 struct jvirt_sarray_control {
153 JSAMPARRAY mem_buffer; /* => the in-memory buffer */
154 JDIMENSION rows_in_array; /* total virtual array height */
155 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
156 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
157 JDIMENSION rows_in_mem; /* height of memory buffer */
158 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
159 JDIMENSION cur_start_row; /* first logical row # in the buffer */
160 JDIMENSION first_undef_row; /* row # of first uninitialized row */
161 boolean pre_zero; /* pre-zero mode requested? */
162 boolean dirty; /* do current buffer contents need written? */
163 boolean b_s_open; /* is backing-store data valid? */
164 jvirt_sarray_ptr next; /* link to next virtual sarray control block */
165 backing_store_info b_s_info; /* System-dependent control info */
166 };
167
168 struct jvirt_barray_control {
169 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
170 JDIMENSION rows_in_array; /* total virtual array height */
171 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
172 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
173 JDIMENSION rows_in_mem; /* height of memory buffer */
174 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
175 JDIMENSION cur_start_row; /* first logical row # in the buffer */
176 JDIMENSION first_undef_row; /* row # of first uninitialized row */
177 boolean pre_zero; /* pre-zero mode requested? */
178 boolean dirty; /* do current buffer contents need written? */
179 boolean b_s_open; /* is backing-store data valid? */
180 jvirt_barray_ptr next; /* link to next virtual barray control block */
181 backing_store_info b_s_info; /* System-dependent control info */
182 };
183
184
185 #ifdef MEM_STATS /* optional extra stuff for statistics */
186
187 LOCAL(void)
print_mem_stats(j_common_ptr cinfo,int pool_id)188 print_mem_stats (j_common_ptr cinfo, int pool_id)
189 {
190 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
191 small_pool_ptr shdr_ptr;
192 large_pool_ptr lhdr_ptr;
193
194 /* Since this is only a debugging stub, we can cheat a little by using
195 * fprintf directly rather than going through the trace message code.
196 * This is helpful because message parm array can't handle longs.
197 */
198 FXSYS_fprintf(stderr, "Freeing pool %d, total space = %ld\n",
199 pool_id, mem->total_space_allocated);
200
201 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
202 lhdr_ptr = lhdr_ptr->hdr.next) {
203 FXSYS_fprintf(stderr, " Large chunk used %ld\n",
204 (long) lhdr_ptr->hdr.bytes_used);
205 }
206
207 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
208 shdr_ptr = shdr_ptr->hdr.next) {
209 FXSYS_fprintf(stderr, " Small chunk used %ld free %ld\n",
210 (long) shdr_ptr->hdr.bytes_used,
211 (long) shdr_ptr->hdr.bytes_left);
212 }
213 }
214
215 #endif /* MEM_STATS */
216
217
218 LOCAL(void)
out_of_memory(j_common_ptr cinfo,int which)219 out_of_memory (j_common_ptr cinfo, int which)
220 /* Report an out-of-memory error and stop execution */
221 /* If we compiled MEM_STATS support, report alloc requests before dying */
222 {
223 #ifdef MEM_STATS
224 cinfo->err->trace_level = 2; /* force self_destruct to report stats */
225 #endif
226 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
227 }
228
229
230 /*
231 * Allocation of "small" objects.
232 *
233 * For these, we use pooled storage. When a new pool must be created,
234 * we try to get enough space for the current request plus a "slop" factor,
235 * where the slop will be the amount of leftover space in the new pool.
236 * The speed vs. space tradeoff is largely determined by the slop values.
237 * A different slop value is provided for each pool class (lifetime),
238 * and we also distinguish the first pool of a class from later ones.
239 * NOTE: the values given work fairly well on both 16- and 32-bit-int
240 * machines, but may be too small if longs are 64 bits or more.
241 */
242
243 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
244 {
245 1600, /* first PERMANENT pool */
246 16000 /* first IMAGE pool */
247 };
248
249 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
250 {
251 0, /* additional PERMANENT pools */
252 5000 /* additional IMAGE pools */
253 };
254
255 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
256
257
258 METHODDEF(void *)
alloc_small(j_common_ptr cinfo,int pool_id,size_t sizeofobject)259 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
260 /* Allocate a "small" object */
261 {
262 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
263 small_pool_ptr hdr_ptr, prev_hdr_ptr;
264 char * data_ptr;
265 size_t odd_bytes, min_request, slop;
266
267 /* Check for unsatisfiable request (do now to ensure no overflow below) */
268 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
269 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
270
271 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
272 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
273 if (odd_bytes > 0)
274 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
275
276 /* See if space is available in any existing pool */
277 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
278 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
279 prev_hdr_ptr = NULL;
280 hdr_ptr = mem->small_list[pool_id];
281 while (hdr_ptr != NULL) {
282 if (hdr_ptr->hdr.bytes_left >= sizeofobject)
283 break; /* found pool with enough space */
284 prev_hdr_ptr = hdr_ptr;
285 hdr_ptr = hdr_ptr->hdr.next;
286 }
287
288 /* Time to make a new pool? */
289 if (hdr_ptr == NULL) {
290 /* min_request is what we need now, slop is what will be leftover */
291 min_request = sizeofobject + SIZEOF(small_pool_hdr);
292 if (prev_hdr_ptr == NULL) /* first pool in class? */
293 slop = first_pool_slop[pool_id];
294 else
295 slop = extra_pool_slop[pool_id];
296 /* Don't ask for more than MAX_ALLOC_CHUNK */
297 if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
298 slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
299 /* Try to get space, if fail reduce slop and try again */
300 for (;;) {
301 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
302 if (hdr_ptr != NULL)
303 break;
304 slop /= 2;
305 if (slop < MIN_SLOP) /* give up when it gets real small */
306 out_of_memory(cinfo, 2); /* jpeg_get_small failed */
307 }
308 mem->total_space_allocated += min_request + slop;
309 /* Success, initialize the new pool header and add to end of list */
310 hdr_ptr->hdr.next = NULL;
311 hdr_ptr->hdr.bytes_used = 0;
312 hdr_ptr->hdr.bytes_left = sizeofobject + slop;
313 if (prev_hdr_ptr == NULL) /* first pool in class? */
314 mem->small_list[pool_id] = hdr_ptr;
315 else
316 prev_hdr_ptr->hdr.next = hdr_ptr;
317 }
318
319 /* OK, allocate the object from the current pool */
320 data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
321 data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
322 hdr_ptr->hdr.bytes_used += sizeofobject;
323 hdr_ptr->hdr.bytes_left -= sizeofobject;
324
325 return (void *) data_ptr;
326 }
327
328
329 /*
330 * Allocation of "large" objects.
331 *
332 * The external semantics of these are the same as "small" objects,
333 * except that FAR pointers are used on 80x86. However the pool
334 * management heuristics are quite different. We assume that each
335 * request is large enough that it may as well be passed directly to
336 * jpeg_get_large; the pool management just links everything together
337 * so that we can free it all on demand.
338 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
339 * structures. The routines that create these structures (see below)
340 * deliberately bunch rows together to ensure a large request size.
341 */
342
343 METHODDEF(void FAR *)
alloc_large(j_common_ptr cinfo,int pool_id,size_t sizeofobject)344 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
345 /* Allocate a "large" object */
346 {
347 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
348 large_pool_ptr hdr_ptr;
349 size_t odd_bytes;
350
351 /* Check for unsatisfiable request (do now to ensure no overflow below) */
352 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
353 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
354
355 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
356 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
357 if (odd_bytes > 0)
358 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
359
360 /* Always make a new pool */
361 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
362 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
363
364 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
365 SIZEOF(large_pool_hdr));
366 if (hdr_ptr == NULL)
367 out_of_memory(cinfo, 4); /* jpeg_get_large failed */
368 mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
369
370 /* Success, initialize the new pool header and add to list */
371 hdr_ptr->hdr.next = mem->large_list[pool_id];
372 /* We maintain space counts in each pool header for statistical purposes,
373 * even though they are not needed for allocation.
374 */
375 hdr_ptr->hdr.bytes_used = sizeofobject;
376 hdr_ptr->hdr.bytes_left = 0;
377 mem->large_list[pool_id] = hdr_ptr;
378
379 return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
380 }
381
382
383 /*
384 * Creation of 2-D sample arrays.
385 * The pointers are in near heap, the samples themselves in FAR heap.
386 *
387 * To minimize allocation overhead and to allow I/O of large contiguous
388 * blocks, we allocate the sample rows in groups of as many rows as possible
389 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
390 * NB: the virtual array control routines, later in this file, know about
391 * this chunking of rows. The rowsperchunk value is left in the mem manager
392 * object so that it can be saved away if this sarray is the workspace for
393 * a virtual array.
394 */
395
396 METHODDEF(JSAMPARRAY)
alloc_sarray(j_common_ptr cinfo,int pool_id,JDIMENSION samplesperrow,JDIMENSION numrows)397 alloc_sarray (j_common_ptr cinfo, int pool_id,
398 JDIMENSION samplesperrow, JDIMENSION numrows)
399 /* Allocate a 2-D sample array */
400 {
401 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
402 JSAMPARRAY result;
403 JSAMPROW workspace;
404 JDIMENSION rowsperchunk, currow, i;
405 long ltemp;
406
407 /* Calculate max # of rows allowed in one allocation chunk */
408 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
409 ((long) samplesperrow * SIZEOF(JSAMPLE));
410 if (ltemp <= 0)
411 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
412 if (ltemp < (long) numrows)
413 rowsperchunk = (JDIMENSION) ltemp;
414 else
415 rowsperchunk = numrows;
416 mem->last_rowsperchunk = rowsperchunk;
417
418 /* Get space for row pointers (small object) */
419 result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
420 (size_t) (numrows * SIZEOF(JSAMPROW)));
421
422 /* Get the rows themselves (large objects) */
423 currow = 0;
424 while (currow < numrows) {
425 rowsperchunk = MIN(rowsperchunk, numrows - currow);
426 workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
427 (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
428 * SIZEOF(JSAMPLE)));
429 for (i = rowsperchunk; i > 0; i--) {
430 result[currow++] = workspace;
431 workspace += samplesperrow;
432 }
433 }
434
435 return result;
436 }
437
438
439 /*
440 * Creation of 2-D coefficient-block arrays.
441 * This is essentially the same as the code for sample arrays, above.
442 */
443
444 METHODDEF(JBLOCKARRAY)
alloc_barray(j_common_ptr cinfo,int pool_id,JDIMENSION blocksperrow,JDIMENSION numrows)445 alloc_barray (j_common_ptr cinfo, int pool_id,
446 JDIMENSION blocksperrow, JDIMENSION numrows)
447 /* Allocate a 2-D coefficient-block array */
448 {
449 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
450 JBLOCKARRAY result;
451 JBLOCKROW workspace;
452 JDIMENSION rowsperchunk, currow, i;
453 long ltemp;
454
455 /* Calculate max # of rows allowed in one allocation chunk */
456 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
457 ((long) blocksperrow * SIZEOF(JBLOCK));
458 if (ltemp <= 0)
459 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
460 if (ltemp < (long) numrows)
461 rowsperchunk = (JDIMENSION) ltemp;
462 else
463 rowsperchunk = numrows;
464 mem->last_rowsperchunk = rowsperchunk;
465
466 /* Get space for row pointers (small object) */
467 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
468 (size_t) (numrows * SIZEOF(JBLOCKROW)));
469
470 /* Get the rows themselves (large objects) */
471 currow = 0;
472 while (currow < numrows) {
473 rowsperchunk = MIN(rowsperchunk, numrows - currow);
474 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
475 (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
476 * SIZEOF(JBLOCK)));
477 for (i = rowsperchunk; i > 0; i--) {
478 result[currow++] = workspace;
479 workspace += blocksperrow;
480 }
481 }
482
483 return result;
484 }
485
486
487 /*
488 * About virtual array management:
489 *
490 * The above "normal" array routines are only used to allocate strip buffers
491 * (as wide as the image, but just a few rows high). Full-image-sized buffers
492 * are handled as "virtual" arrays. The array is still accessed a strip at a
493 * time, but the memory manager must save the whole array for repeated
494 * accesses. The intended implementation is that there is a strip buffer in
495 * memory (as high as is possible given the desired memory limit), plus a
496 * backing file that holds the rest of the array.
497 *
498 * The request_virt_array routines are told the total size of the image and
499 * the maximum number of rows that will be accessed at once. The in-memory
500 * buffer must be at least as large as the maxaccess value.
501 *
502 * The request routines create control blocks but not the in-memory buffers.
503 * That is postponed until realize_virt_arrays is called. At that time the
504 * total amount of space needed is known (approximately, anyway), so free
505 * memory can be divided up fairly.
506 *
507 * The access_virt_array routines are responsible for making a specific strip
508 * area accessible (after reading or writing the backing file, if necessary).
509 * Note that the access routines are told whether the caller intends to modify
510 * the accessed strip; during a read-only pass this saves having to rewrite
511 * data to disk. The access routines are also responsible for pre-zeroing
512 * any newly accessed rows, if pre-zeroing was requested.
513 *
514 * In current usage, the access requests are usually for nonoverlapping
515 * strips; that is, successive access start_row numbers differ by exactly
516 * num_rows = maxaccess. This means we can get good performance with simple
517 * buffer dump/reload logic, by making the in-memory buffer be a multiple
518 * of the access height; then there will never be accesses across bufferload
519 * boundaries. The code will still work with overlapping access requests,
520 * but it doesn't handle bufferload overlaps very efficiently.
521 */
522
523
524 METHODDEF(jvirt_sarray_ptr)
request_virt_sarray(j_common_ptr cinfo,int pool_id,boolean pre_zero,JDIMENSION samplesperrow,JDIMENSION numrows,JDIMENSION maxaccess)525 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
526 JDIMENSION samplesperrow, JDIMENSION numrows,
527 JDIMENSION maxaccess)
528 /* Request a virtual 2-D sample array */
529 {
530 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
531 jvirt_sarray_ptr result;
532
533 /* Only IMAGE-lifetime virtual arrays are currently supported */
534 if (pool_id != JPOOL_IMAGE)
535 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
536
537 /* get control block */
538 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
539 SIZEOF(struct jvirt_sarray_control));
540
541 result->mem_buffer = NULL; /* marks array not yet realized */
542 result->rows_in_array = numrows;
543 result->samplesperrow = samplesperrow;
544 result->maxaccess = maxaccess;
545 result->pre_zero = pre_zero;
546 result->b_s_open = FALSE; /* no associated backing-store object */
547 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
548 mem->virt_sarray_list = result;
549
550 return result;
551 }
552
553
554 METHODDEF(jvirt_barray_ptr)
request_virt_barray(j_common_ptr cinfo,int pool_id,boolean pre_zero,JDIMENSION blocksperrow,JDIMENSION numrows,JDIMENSION maxaccess)555 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
556 JDIMENSION blocksperrow, JDIMENSION numrows,
557 JDIMENSION maxaccess)
558 /* Request a virtual 2-D coefficient-block array */
559 {
560 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
561 jvirt_barray_ptr result;
562
563 /* Only IMAGE-lifetime virtual arrays are currently supported */
564 if (pool_id != JPOOL_IMAGE)
565 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
566
567 /* get control block */
568 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
569 SIZEOF(struct jvirt_barray_control));
570
571 result->mem_buffer = NULL; /* marks array not yet realized */
572 result->rows_in_array = numrows;
573 result->blocksperrow = blocksperrow;
574 result->maxaccess = maxaccess;
575 result->pre_zero = pre_zero;
576 result->b_s_open = FALSE; /* no associated backing-store object */
577 result->next = mem->virt_barray_list; /* add to list of virtual arrays */
578 mem->virt_barray_list = result;
579
580 return result;
581 }
582
583
584 METHODDEF(void)
realize_virt_arrays(j_common_ptr cinfo)585 realize_virt_arrays (j_common_ptr cinfo)
586 /* Allocate the in-memory buffers for any unrealized virtual arrays */
587 {
588 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
589 long space_per_minheight, maximum_space, avail_mem;
590 long minheights, max_minheights;
591 jvirt_sarray_ptr sptr;
592 jvirt_barray_ptr bptr;
593
594 /* Compute the minimum space needed (maxaccess rows in each buffer)
595 * and the maximum space needed (full image height in each buffer).
596 * These may be of use to the system-dependent jpeg_mem_available routine.
597 */
598 space_per_minheight = 0;
599 maximum_space = 0;
600 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
601 if (sptr->mem_buffer == NULL) { /* if not realized yet */
602 space_per_minheight += (long) sptr->maxaccess *
603 (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
604 maximum_space += (long) sptr->rows_in_array *
605 (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
606 }
607 }
608 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
609 if (bptr->mem_buffer == NULL) { /* if not realized yet */
610 space_per_minheight += (long) bptr->maxaccess *
611 (long) bptr->blocksperrow * SIZEOF(JBLOCK);
612 maximum_space += (long) bptr->rows_in_array *
613 (long) bptr->blocksperrow * SIZEOF(JBLOCK);
614 }
615 }
616
617 if (space_per_minheight <= 0)
618 return; /* no unrealized arrays, no work */
619
620 /* Determine amount of memory to actually use; this is system-dependent. */
621 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
622 mem->total_space_allocated);
623
624 /* If the maximum space needed is available, make all the buffers full
625 * height; otherwise parcel it out with the same number of minheights
626 * in each buffer.
627 */
628 if (avail_mem >= maximum_space)
629 max_minheights = 1000000000L;
630 else {
631 max_minheights = avail_mem / space_per_minheight;
632 /* If there doesn't seem to be enough space, try to get the minimum
633 * anyway. This allows a "stub" implementation of jpeg_mem_available().
634 */
635 if (max_minheights <= 0)
636 max_minheights = 1;
637 }
638
639 /* Allocate the in-memory buffers and initialize backing store as needed. */
640
641 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
642 if (sptr->mem_buffer == NULL) { /* if not realized yet */
643 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
644 if (minheights <= max_minheights) {
645 /* This buffer fits in memory */
646 sptr->rows_in_mem = sptr->rows_in_array;
647 } else {
648 /* It doesn't fit in memory, create backing store. */
649 sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
650 jpeg_open_backing_store(cinfo, & sptr->b_s_info,
651 (long) sptr->rows_in_array *
652 (long) sptr->samplesperrow *
653 (long) SIZEOF(JSAMPLE));
654 sptr->b_s_open = TRUE;
655 }
656 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
657 sptr->samplesperrow, sptr->rows_in_mem);
658 sptr->rowsperchunk = mem->last_rowsperchunk;
659 sptr->cur_start_row = 0;
660 sptr->first_undef_row = 0;
661 sptr->dirty = FALSE;
662 }
663 }
664
665 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
666 if (bptr->mem_buffer == NULL) { /* if not realized yet */
667 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
668 if (minheights <= max_minheights) {
669 /* This buffer fits in memory */
670 bptr->rows_in_mem = bptr->rows_in_array;
671 } else {
672 /* It doesn't fit in memory, create backing store. */
673 bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
674 jpeg_open_backing_store(cinfo, & bptr->b_s_info,
675 (long) bptr->rows_in_array *
676 (long) bptr->blocksperrow *
677 (long) SIZEOF(JBLOCK));
678 bptr->b_s_open = TRUE;
679 }
680 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
681 bptr->blocksperrow, bptr->rows_in_mem);
682 bptr->rowsperchunk = mem->last_rowsperchunk;
683 bptr->cur_start_row = 0;
684 bptr->first_undef_row = 0;
685 bptr->dirty = FALSE;
686 }
687 }
688 }
689
690
691 LOCAL(void)
do_sarray_io(j_common_ptr cinfo,jvirt_sarray_ptr ptr,boolean writing)692 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
693 /* Do backing store read or write of a virtual sample array */
694 {
695 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
696
697 bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
698 file_offset = ptr->cur_start_row * bytesperrow;
699 /* Loop to read or write each allocation chunk in mem_buffer */
700 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
701 /* One chunk, but check for short chunk at end of buffer */
702 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
703 /* Transfer no more than is currently defined */
704 thisrow = (long) ptr->cur_start_row + i;
705 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
706 /* Transfer no more than fits in file */
707 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
708 if (rows <= 0) /* this chunk might be past end of file! */
709 break;
710 byte_count = rows * bytesperrow;
711 if (writing)
712 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
713 (void FAR *) ptr->mem_buffer[i],
714 file_offset, byte_count);
715 else
716 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
717 (void FAR *) ptr->mem_buffer[i],
718 file_offset, byte_count);
719 file_offset += byte_count;
720 }
721 }
722
723
724 LOCAL(void)
do_barray_io(j_common_ptr cinfo,jvirt_barray_ptr ptr,boolean writing)725 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
726 /* Do backing store read or write of a virtual coefficient-block array */
727 {
728 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
729
730 bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
731 file_offset = ptr->cur_start_row * bytesperrow;
732 /* Loop to read or write each allocation chunk in mem_buffer */
733 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
734 /* One chunk, but check for short chunk at end of buffer */
735 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
736 /* Transfer no more than is currently defined */
737 thisrow = (long) ptr->cur_start_row + i;
738 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
739 /* Transfer no more than fits in file */
740 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
741 if (rows <= 0) /* this chunk might be past end of file! */
742 break;
743 byte_count = rows * bytesperrow;
744 if (writing)
745 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
746 (void FAR *) ptr->mem_buffer[i],
747 file_offset, byte_count);
748 else
749 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
750 (void FAR *) ptr->mem_buffer[i],
751 file_offset, byte_count);
752 file_offset += byte_count;
753 }
754 }
755
756
757 METHODDEF(JSAMPARRAY)
access_virt_sarray(j_common_ptr cinfo,jvirt_sarray_ptr ptr,JDIMENSION start_row,JDIMENSION num_rows,boolean writable)758 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
759 JDIMENSION start_row, JDIMENSION num_rows,
760 boolean writable)
761 /* Access the part of a virtual sample array starting at start_row */
762 /* and extending for num_rows rows. writable is true if */
763 /* caller intends to modify the accessed area. */
764 {
765 JDIMENSION end_row = start_row + num_rows;
766 JDIMENSION undef_row;
767
768 /* debugging check */
769 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
770 ptr->mem_buffer == NULL)
771 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
772
773 /* Make the desired part of the virtual array accessible */
774 if (start_row < ptr->cur_start_row ||
775 end_row > ptr->cur_start_row+ptr->rows_in_mem) {
776 if (! ptr->b_s_open)
777 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
778 /* Flush old buffer contents if necessary */
779 if (ptr->dirty) {
780 do_sarray_io(cinfo, ptr, TRUE);
781 ptr->dirty = FALSE;
782 }
783 /* Decide what part of virtual array to access.
784 * Algorithm: if target address > current window, assume forward scan,
785 * load starting at target address. If target address < current window,
786 * assume backward scan, load so that target area is top of window.
787 * Note that when switching from forward write to forward read, will have
788 * start_row = 0, so the limiting case applies and we load from 0 anyway.
789 */
790 if (start_row > ptr->cur_start_row) {
791 ptr->cur_start_row = start_row;
792 } else {
793 /* use long arithmetic here to avoid overflow & unsigned problems */
794 long ltemp;
795
796 ltemp = (long) end_row - (long) ptr->rows_in_mem;
797 if (ltemp < 0)
798 ltemp = 0; /* don't fall off front end of file */
799 ptr->cur_start_row = (JDIMENSION) ltemp;
800 }
801 /* Read in the selected part of the array.
802 * During the initial write pass, we will do no actual read
803 * because the selected part is all undefined.
804 */
805 do_sarray_io(cinfo, ptr, FALSE);
806 }
807 /* Ensure the accessed part of the array is defined; prezero if needed.
808 * To improve locality of access, we only prezero the part of the array
809 * that the caller is about to access, not the entire in-memory array.
810 */
811 if (ptr->first_undef_row < end_row) {
812 if (ptr->first_undef_row < start_row) {
813 if (writable) /* writer skipped over a section of array */
814 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
815 undef_row = start_row; /* but reader is allowed to read ahead */
816 } else {
817 undef_row = ptr->first_undef_row;
818 }
819 if (writable)
820 ptr->first_undef_row = end_row;
821 if (ptr->pre_zero) {
822 size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
823 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
824 end_row -= ptr->cur_start_row;
825 while (undef_row < end_row) {
826 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
827 undef_row++;
828 }
829 } else {
830 if (! writable) /* reader looking at undefined data */
831 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
832 }
833 }
834 /* Flag the buffer dirty if caller will write in it */
835 if (writable)
836 ptr->dirty = TRUE;
837 /* Return address of proper part of the buffer */
838 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
839 }
840
841
842 METHODDEF(JBLOCKARRAY)
access_virt_barray(j_common_ptr cinfo,jvirt_barray_ptr ptr,JDIMENSION start_row,JDIMENSION num_rows,boolean writable)843 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
844 JDIMENSION start_row, JDIMENSION num_rows,
845 boolean writable)
846 /* Access the part of a virtual block array starting at start_row */
847 /* and extending for num_rows rows. writable is true if */
848 /* caller intends to modify the accessed area. */
849 {
850 JDIMENSION end_row = start_row + num_rows;
851 JDIMENSION undef_row;
852
853 /* debugging check */
854 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
855 ptr->mem_buffer == NULL)
856 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
857
858 /* Make the desired part of the virtual array accessible */
859 if (start_row < ptr->cur_start_row ||
860 end_row > ptr->cur_start_row+ptr->rows_in_mem) {
861 if (! ptr->b_s_open)
862 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
863 /* Flush old buffer contents if necessary */
864 if (ptr->dirty) {
865 do_barray_io(cinfo, ptr, TRUE);
866 ptr->dirty = FALSE;
867 }
868 /* Decide what part of virtual array to access.
869 * Algorithm: if target address > current window, assume forward scan,
870 * load starting at target address. If target address < current window,
871 * assume backward scan, load so that target area is top of window.
872 * Note that when switching from forward write to forward read, will have
873 * start_row = 0, so the limiting case applies and we load from 0 anyway.
874 */
875 if (start_row > ptr->cur_start_row) {
876 ptr->cur_start_row = start_row;
877 } else {
878 /* use long arithmetic here to avoid overflow & unsigned problems */
879 long ltemp;
880
881 ltemp = (long) end_row - (long) ptr->rows_in_mem;
882 if (ltemp < 0)
883 ltemp = 0; /* don't fall off front end of file */
884 ptr->cur_start_row = (JDIMENSION) ltemp;
885 }
886 /* Read in the selected part of the array.
887 * During the initial write pass, we will do no actual read
888 * because the selected part is all undefined.
889 */
890 do_barray_io(cinfo, ptr, FALSE);
891 }
892 /* Ensure the accessed part of the array is defined; prezero if needed.
893 * To improve locality of access, we only prezero the part of the array
894 * that the caller is about to access, not the entire in-memory array.
895 */
896 if (ptr->first_undef_row < end_row) {
897 if (ptr->first_undef_row < start_row) {
898 if (writable) /* writer skipped over a section of array */
899 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
900 undef_row = start_row; /* but reader is allowed to read ahead */
901 } else {
902 undef_row = ptr->first_undef_row;
903 }
904 if (writable)
905 ptr->first_undef_row = end_row;
906 if (ptr->pre_zero) {
907 size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
908 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
909 end_row -= ptr->cur_start_row;
910 while (undef_row < end_row) {
911 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
912 undef_row++;
913 }
914 } else {
915 if (! writable) /* reader looking at undefined data */
916 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
917 }
918 }
919 /* Flag the buffer dirty if caller will write in it */
920 if (writable)
921 ptr->dirty = TRUE;
922 /* Return address of proper part of the buffer */
923 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
924 }
925
926
927 /*
928 * Release all objects belonging to a specified pool.
929 */
930
931 METHODDEF(void)
free_pool(j_common_ptr cinfo,int pool_id)932 free_pool (j_common_ptr cinfo, int pool_id)
933 {
934 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
935 small_pool_ptr shdr_ptr;
936 large_pool_ptr lhdr_ptr;
937 size_t space_freed;
938
939 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
940 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
941
942 #ifdef MEM_STATS
943 if (cinfo->err->trace_level > 1)
944 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
945 #endif
946
947 /* If freeing IMAGE pool, close any virtual arrays first */
948 if (pool_id == JPOOL_IMAGE) {
949 jvirt_sarray_ptr sptr;
950 jvirt_barray_ptr bptr;
951
952 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
953 if (sptr->b_s_open) { /* there may be no backing store */
954 sptr->b_s_open = FALSE; /* prevent recursive close if error */
955 (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
956 }
957 }
958 mem->virt_sarray_list = NULL;
959 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
960 if (bptr->b_s_open) { /* there may be no backing store */
961 bptr->b_s_open = FALSE; /* prevent recursive close if error */
962 (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
963 }
964 }
965 mem->virt_barray_list = NULL;
966 }
967
968 /* Release large objects */
969 lhdr_ptr = mem->large_list[pool_id];
970 mem->large_list[pool_id] = NULL;
971
972 while (lhdr_ptr != NULL) {
973 large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
974 space_freed = lhdr_ptr->hdr.bytes_used +
975 lhdr_ptr->hdr.bytes_left +
976 SIZEOF(large_pool_hdr);
977 jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
978 mem->total_space_allocated -= space_freed;
979 lhdr_ptr = next_lhdr_ptr;
980 }
981
982 /* Release small objects */
983 shdr_ptr = mem->small_list[pool_id];
984 mem->small_list[pool_id] = NULL;
985
986 while (shdr_ptr != NULL) {
987 small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
988 space_freed = shdr_ptr->hdr.bytes_used +
989 shdr_ptr->hdr.bytes_left +
990 SIZEOF(small_pool_hdr);
991 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
992 mem->total_space_allocated -= space_freed;
993 shdr_ptr = next_shdr_ptr;
994 }
995 }
996
997
998 /*
999 * Close up shop entirely.
1000 * Note that this cannot be called unless cinfo->mem is non-NULL.
1001 */
1002
1003 METHODDEF(void)
self_destruct(j_common_ptr cinfo)1004 self_destruct (j_common_ptr cinfo)
1005 {
1006 int pool;
1007
1008 /* Close all backing store, release all memory.
1009 * Releasing pools in reverse order might help avoid fragmentation
1010 * with some (brain-damaged) malloc libraries.
1011 */
1012 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1013 free_pool(cinfo, pool);
1014 }
1015
1016 /* Release the memory manager control block too. */
1017 jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1018 cinfo->mem = NULL; /* ensures I will be called only once */
1019
1020 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1021 }
1022
1023
1024 /*
1025 * Memory manager initialization.
1026 * When this is called, only the error manager pointer is valid in cinfo!
1027 */
1028
1029 GLOBAL(void)
jinit_memory_mgr(j_common_ptr cinfo)1030 jinit_memory_mgr (j_common_ptr cinfo)
1031 {
1032 my_mem_ptr mem;
1033 long max_to_use;
1034 int pool;
1035 size_t test_mac;
1036
1037 cinfo->mem = NULL; /* for safety if init fails */
1038
1039 /* Check for configuration errors.
1040 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1041 * doesn't reflect any real hardware alignment requirement.
1042 * The test is a little tricky: for X>0, X and X-1 have no one-bits
1043 * in common if and only if X is a power of 2, ie has only one one-bit.
1044 * Some compilers may give an "unreachable code" warning here; ignore it.
1045 */
1046 if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1047 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1048 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1049 * a multiple of SIZEOF(ALIGN_TYPE).
1050 * Again, an "unreachable code" warning may be ignored here.
1051 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1052 */
1053 test_mac = (size_t) MAX_ALLOC_CHUNK;
1054 if ((long) test_mac != MAX_ALLOC_CHUNK ||
1055 (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1056 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1057
1058 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1059
1060 /* Attempt to allocate memory manager's control block */
1061 mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1062
1063 if (mem == NULL) {
1064 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1065 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1066 }
1067
1068 /* OK, fill in the method pointers */
1069 mem->pub.alloc_small = alloc_small;
1070 mem->pub.alloc_large = alloc_large;
1071 mem->pub.alloc_sarray = alloc_sarray;
1072 mem->pub.alloc_barray = alloc_barray;
1073 mem->pub.request_virt_sarray = request_virt_sarray;
1074 mem->pub.request_virt_barray = request_virt_barray;
1075 mem->pub.realize_virt_arrays = realize_virt_arrays;
1076 mem->pub.access_virt_sarray = access_virt_sarray;
1077 mem->pub.access_virt_barray = access_virt_barray;
1078 mem->pub.free_pool = free_pool;
1079 mem->pub.self_destruct = self_destruct;
1080
1081 /* Make MAX_ALLOC_CHUNK accessible to other modules */
1082 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1083
1084 /* Initialize working state */
1085 mem->pub.max_memory_to_use = max_to_use;
1086
1087 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1088 mem->small_list[pool] = NULL;
1089 mem->large_list[pool] = NULL;
1090 }
1091 mem->virt_sarray_list = NULL;
1092 mem->virt_barray_list = NULL;
1093
1094 mem->total_space_allocated = SIZEOF(my_memory_mgr);
1095
1096 /* Declare ourselves open for business */
1097 cinfo->mem = & mem->pub;
1098
1099 /* Check for an environment variable JPEGMEM; if found, override the
1100 * default max_memory setting from jpeg_mem_init. Note that the
1101 * surrounding application may again override this value.
1102 * If your system doesn't support getenv(), define NO_GETENV to disable
1103 * this feature.
1104 */
1105 #ifndef NO_GETENV
1106 { char * memenv;
1107
1108 if ((memenv = getenv("JPEGMEM")) != NULL) {
1109 char ch = 'x';
1110
1111 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1112 if (ch == 'm' || ch == 'M')
1113 max_to_use *= 1000L;
1114 mem->pub.max_memory_to_use = max_to_use * 1000L;
1115 }
1116 }
1117 }
1118 #endif
1119
1120 }
1121