1 // Copyright 2008 The RE2 Authors. All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // A DFA (deterministic finite automaton)-based regular expression search.
6 //
7 // The DFA search has two main parts: the construction of the automaton,
8 // which is represented by a graph of State structures, and the execution
9 // of the automaton over a given input string.
10 //
11 // The basic idea is that the State graph is constructed so that the
12 // execution can simply start with a state s, and then for each byte c in
13 // the input string, execute "s = s->next[c]", checking at each point whether
14 // the current s represents a matching state.
15 //
16 // The simple explanation just given does convey the essence of this code,
17 // but it omits the details of how the State graph gets constructed as well
18 // as some performance-driven optimizations to the execution of the automaton.
19 // All these details are explained in the comments for the code following
20 // the definition of class DFA.
21 //
22 // See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent.
23
24 #include "re2/prog.h"
25 #include "re2/stringpiece.h"
26 #include "util/atomicops.h"
27 #include "util/flags.h"
28 #include "util/sparse_set.h"
29
30 DEFINE_bool(re2_dfa_bail_when_slow, true,
31 "Whether the RE2 DFA should bail out early "
32 "if the NFA would be faster (for testing).");
33
34 namespace re2 {
35
36 #if !defined(__linux__) /* only Linux seems to have memrchr */
memrchr(const void * s,int c,size_t n)37 static void* memrchr(const void* s, int c, size_t n) {
38 const unsigned char* p = (const unsigned char*)s;
39 for (p += n; n > 0; n--)
40 if (*--p == c)
41 return (void*)p;
42
43 return NULL;
44 }
45 #endif
46
47 // Changing this to true compiles in prints that trace execution of the DFA.
48 // Generates a lot of output -- only useful for debugging.
49 static const bool DebugDFA = false;
50
51 // A DFA implementation of a regular expression program.
52 // Since this is entirely a forward declaration mandated by C++,
53 // some of the comments here are better understood after reading
54 // the comments in the sections that follow the DFA definition.
55 class DFA {
56 public:
57 DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem);
58 ~DFA();
ok() const59 bool ok() const { return !init_failed_; }
kind()60 Prog::MatchKind kind() { return kind_; }
61
62 // Searches for the regular expression in text, which is considered
63 // as a subsection of context for the purposes of interpreting flags
64 // like ^ and $ and \A and \z.
65 // Returns whether a match was found.
66 // If a match is found, sets *ep to the end point of the best match in text.
67 // If "anchored", the match must begin at the start of text.
68 // If "want_earliest_match", the match that ends first is used, not
69 // necessarily the best one.
70 // If "run_forward" is true, the DFA runs from text.begin() to text.end().
71 // If it is false, the DFA runs from text.end() to text.begin(),
72 // returning the leftmost end of the match instead of the rightmost one.
73 // If the DFA cannot complete the search (for example, if it is out of
74 // memory), it sets *failed and returns false.
75 bool Search(const StringPiece& text, const StringPiece& context,
76 bool anchored, bool want_earliest_match, bool run_forward,
77 bool* failed, const char** ep, vector<int>* matches);
78
79 // Builds out all states for the entire DFA. FOR TESTING ONLY
80 // Returns number of states.
81 int BuildAllStates();
82
83 // Computes min and max for matching strings. Won't return strings
84 // bigger than maxlen.
85 bool PossibleMatchRange(string* min, string* max, int maxlen);
86
87 // These data structures are logically private, but C++ makes it too
88 // difficult to mark them as such.
89 class Workq;
90 class RWLocker;
91 class StateSaver;
92
93 // A single DFA state. The DFA is represented as a graph of these
94 // States, linked by the next_ pointers. If in state s and reading
95 // byte c, the next state should be s->next_[c].
96 struct State {
IsMatchre2::DFA::State97 inline bool IsMatch() const { return flag_ & kFlagMatch; }
98 void SaveMatch(vector<int>* v);
99
100 int* inst_; // Instruction pointers in the state.
101 int ninst_; // # of inst_ pointers.
102 uint flag_; // Empty string bitfield flags in effect on the way
103 // into this state, along with kFlagMatch if this
104 // is a matching state.
105 State** next_; // Outgoing arrows from State,
106 // one per input byte class
107 };
108
109 enum {
110 kByteEndText = 256, // imaginary byte at end of text
111
112 kFlagEmptyMask = 0xFFF, // State.flag_: bits holding kEmptyXXX flags
113 kFlagMatch = 0x1000, // State.flag_: this is a matching state
114 kFlagLastWord = 0x2000, // State.flag_: last byte was a word char
115 kFlagNeedShift = 16, // needed kEmpty bits are or'ed in shifted left
116 };
117
118 #ifndef STL_MSVC
119 // STL function structures for use with unordered_set.
120 struct StateEqual {
operator ()re2::DFA::StateEqual121 bool operator()(const State* a, const State* b) const {
122 if (a == b)
123 return true;
124 if (a == NULL || b == NULL)
125 return false;
126 if (a->ninst_ != b->ninst_)
127 return false;
128 if (a->flag_ != b->flag_)
129 return false;
130 for (int i = 0; i < a->ninst_; i++)
131 if (a->inst_[i] != b->inst_[i])
132 return false;
133 return true; // they're equal
134 }
135 };
136 #endif // STL_MSVC
137 struct StateHash {
operator ()re2::DFA::StateHash138 size_t operator()(const State* a) const {
139 if (a == NULL)
140 return 0;
141 const char* s = reinterpret_cast<const char*>(a->inst_);
142 int len = a->ninst_ * sizeof a->inst_[0];
143 if (sizeof(size_t) == sizeof(uint32))
144 return Hash32StringWithSeed(s, len, a->flag_);
145 else
146 return Hash64StringWithSeed(s, len, a->flag_);
147 }
148 #ifdef STL_MSVC
149 // Less than operator.
operator ()re2::DFA::StateHash150 bool operator()(const State* a, const State* b) const {
151 if (a == b)
152 return false;
153 if (a == NULL || b == NULL)
154 return a == NULL;
155 if (a->ninst_ != b->ninst_)
156 return a->ninst_ < b->ninst_;
157 if (a->flag_ != b->flag_)
158 return a->flag_ < b->flag_;
159 for (int i = 0; i < a->ninst_; ++i)
160 if (a->inst_[i] != b->inst_[i])
161 return a->inst_[i] < b->inst_[i];
162 return false; // they're equal
163 }
164 // The two public members are required by msvc. 4 and 8 are default values.
165 // Reference: http://msdn.microsoft.com/en-us/library/1s1byw77.aspx
166 static const size_t bucket_size = 4;
167 static const size_t min_buckets = 8;
168 #endif // STL_MSVC
169 };
170
171 #ifdef STL_MSVC
172 typedef unordered_set<State*, StateHash> StateSet;
173 #else // !STL_MSVC
174 typedef unordered_set<State*, StateHash, StateEqual> StateSet;
175 #endif // STL_MSVC
176
177
178 private:
179 // Special "firstbyte" values for a state. (Values >= 0 denote actual bytes.)
180 enum {
181 kFbUnknown = -1, // No analysis has been performed.
182 kFbMany = -2, // Many bytes will lead out of this state.
183 kFbNone = -3, // No bytes lead out of this state.
184 };
185
186 enum {
187 // Indices into start_ for unanchored searches.
188 // Add kStartAnchored for anchored searches.
189 kStartBeginText = 0, // text at beginning of context
190 kStartBeginLine = 2, // text at beginning of line
191 kStartAfterWordChar = 4, // text follows a word character
192 kStartAfterNonWordChar = 6, // text follows non-word character
193 kMaxStart = 8,
194
195 kStartAnchored = 1,
196 };
197
198 // Resets the DFA State cache, flushing all saved State* information.
199 // Releases and reacquires cache_mutex_ via cache_lock, so any
200 // State* existing before the call are not valid after the call.
201 // Use a StateSaver to preserve important states across the call.
202 // cache_mutex_.r <= L < mutex_
203 // After: cache_mutex_.w <= L < mutex_
204 void ResetCache(RWLocker* cache_lock);
205
206 // Looks up and returns the State corresponding to a Workq.
207 // L >= mutex_
208 State* WorkqToCachedState(Workq* q, uint flag);
209
210 // Looks up and returns a State matching the inst, ninst, and flag.
211 // L >= mutex_
212 State* CachedState(int* inst, int ninst, uint flag);
213
214 // Clear the cache entirely.
215 // Must hold cache_mutex_.w or be in destructor.
216 void ClearCache();
217
218 // Converts a State into a Workq: the opposite of WorkqToCachedState.
219 // L >= mutex_
220 static void StateToWorkq(State* s, Workq* q);
221
222 // Runs a State on a given byte, returning the next state.
223 State* RunStateOnByteUnlocked(State*, int); // cache_mutex_.r <= L < mutex_
224 State* RunStateOnByte(State*, int); // L >= mutex_
225
226 // Runs a Workq on a given byte followed by a set of empty-string flags,
227 // producing a new Workq in nq. If a match instruction is encountered,
228 // sets *ismatch to true.
229 // L >= mutex_
230 void RunWorkqOnByte(Workq* q, Workq* nq,
231 int c, uint flag, bool* ismatch,
232 Prog::MatchKind kind,
233 int new_byte_loop);
234
235 // Runs a Workq on a set of empty-string flags, producing a new Workq in nq.
236 // L >= mutex_
237 void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint flag);
238
239 // Adds the instruction id to the Workq, following empty arrows
240 // according to flag.
241 // L >= mutex_
242 void AddToQueue(Workq* q, int id, uint flag);
243
244 // For debugging, returns a text representation of State.
245 static string DumpState(State* state);
246
247 // For debugging, returns a text representation of a Workq.
248 static string DumpWorkq(Workq* q);
249
250 // Search parameters
251 struct SearchParams {
SearchParamsre2::DFA::SearchParams252 SearchParams(const StringPiece& text, const StringPiece& context,
253 RWLocker* cache_lock)
254 : text(text), context(context),
255 anchored(false),
256 want_earliest_match(false),
257 run_forward(false),
258 start(NULL),
259 firstbyte(kFbUnknown),
260 cache_lock(cache_lock),
261 failed(false),
262 ep(NULL),
263 matches(NULL) { }
264
265 StringPiece text;
266 StringPiece context;
267 bool anchored;
268 bool want_earliest_match;
269 bool run_forward;
270 State* start;
271 int firstbyte;
272 RWLocker *cache_lock;
273 bool failed; // "out" parameter: whether search gave up
274 const char* ep; // "out" parameter: end pointer for match
275 vector<int>* matches;
276
277 private:
278 DISALLOW_EVIL_CONSTRUCTORS(SearchParams);
279 };
280
281 // Before each search, the parameters to Search are analyzed by
282 // AnalyzeSearch to determine the state in which to start and the
283 // "firstbyte" for that state, if any.
284 struct StartInfo {
StartInfore2::DFA::StartInfo285 StartInfo() : start(NULL), firstbyte(kFbUnknown) { }
286 State* start;
287 volatile int firstbyte;
288 };
289
290 // Fills in params->start and params->firstbyte using
291 // the other search parameters. Returns true on success,
292 // false on failure.
293 // cache_mutex_.r <= L < mutex_
294 bool AnalyzeSearch(SearchParams* params);
295 bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info, uint flags);
296
297 // The generic search loop, inlined to create specialized versions.
298 // cache_mutex_.r <= L < mutex_
299 // Might unlock and relock cache_mutex_ via params->cache_lock.
300 inline bool InlinedSearchLoop(SearchParams* params,
301 bool have_firstbyte,
302 bool want_earliest_match,
303 bool run_forward);
304
305 // The specialized versions of InlinedSearchLoop. The three letters
306 // at the ends of the name denote the true/false values used as the
307 // last three parameters of InlinedSearchLoop.
308 // cache_mutex_.r <= L < mutex_
309 // Might unlock and relock cache_mutex_ via params->cache_lock.
310 bool SearchFFF(SearchParams* params);
311 bool SearchFFT(SearchParams* params);
312 bool SearchFTF(SearchParams* params);
313 bool SearchFTT(SearchParams* params);
314 bool SearchTFF(SearchParams* params);
315 bool SearchTFT(SearchParams* params);
316 bool SearchTTF(SearchParams* params);
317 bool SearchTTT(SearchParams* params);
318
319 // The main search loop: calls an appropriate specialized version of
320 // InlinedSearchLoop.
321 // cache_mutex_.r <= L < mutex_
322 // Might unlock and relock cache_mutex_ via params->cache_lock.
323 bool FastSearchLoop(SearchParams* params);
324
325 // For debugging, a slow search loop that calls InlinedSearchLoop
326 // directly -- because the booleans passed are not constants, the
327 // loop is not specialized like the SearchFFF etc. versions, so it
328 // runs much more slowly. Useful only for debugging.
329 // cache_mutex_.r <= L < mutex_
330 // Might unlock and relock cache_mutex_ via params->cache_lock.
331 bool SlowSearchLoop(SearchParams* params);
332
333 // Looks up bytes in bytemap_ but handles case c == kByteEndText too.
ByteMap(int c)334 int ByteMap(int c) {
335 if (c == kByteEndText)
336 return prog_->bytemap_range();
337 return prog_->bytemap()[c];
338 }
339
340 // Constant after initialization.
341 Prog* prog_; // The regular expression program to run.
342 Prog::MatchKind kind_; // The kind of DFA.
343 int start_unanchored_; // start of unanchored program
344 bool init_failed_; // initialization failed (out of memory)
345
346 Mutex mutex_; // mutex_ >= cache_mutex_.r
347
348 // Scratch areas, protected by mutex_.
349 Workq* q0_; // Two pre-allocated work queues.
350 Workq* q1_;
351 int* astack_; // Pre-allocated stack for AddToQueue
352 int nastack_;
353
354 // State* cache. Many threads use and add to the cache simultaneously,
355 // holding cache_mutex_ for reading and mutex_ (above) when adding.
356 // If the cache fills and needs to be discarded, the discarding is done
357 // while holding cache_mutex_ for writing, to avoid interrupting other
358 // readers. Any State* pointers are only valid while cache_mutex_
359 // is held.
360 Mutex cache_mutex_;
361 int64 mem_budget_; // Total memory budget for all States.
362 int64 state_budget_; // Amount of memory remaining for new States.
363 StateSet state_cache_; // All States computed so far.
364 StartInfo start_[kMaxStart];
365 bool cache_warned_; // have printed to LOG(INFO) about the cache
366 };
367
368 // Shorthand for casting to uint8*.
BytePtr(const void * v)369 static inline const uint8* BytePtr(const void* v) {
370 return reinterpret_cast<const uint8*>(v);
371 }
372
373 // Work queues
374
375 // Marks separate thread groups of different priority
376 // in the work queue when in leftmost-longest matching mode.
377 #define Mark (-1)
378
379 // Internally, the DFA uses a sparse array of
380 // program instruction pointers as a work queue.
381 // In leftmost longest mode, marks separate sections
382 // of workq that started executing at different
383 // locations in the string (earlier locations first).
384 class DFA::Workq : public SparseSet {
385 public:
386 // Constructor: n is number of normal slots, maxmark number of mark slots.
Workq(int n,int maxmark)387 Workq(int n, int maxmark) :
388 SparseSet(n+maxmark),
389 n_(n),
390 maxmark_(maxmark),
391 nextmark_(n),
392 last_was_mark_(true) {
393 }
394
is_mark(int i)395 bool is_mark(int i) { return i >= n_; }
396
maxmark()397 int maxmark() { return maxmark_; }
398
clear()399 void clear() {
400 SparseSet::clear();
401 nextmark_ = n_;
402 }
403
mark()404 void mark() {
405 if (last_was_mark_)
406 return;
407 last_was_mark_ = false;
408 SparseSet::insert_new(nextmark_++);
409 }
410
size()411 int size() {
412 return n_ + maxmark_;
413 }
414
insert(int id)415 void insert(int id) {
416 if (contains(id))
417 return;
418 insert_new(id);
419 }
420
insert_new(int id)421 void insert_new(int id) {
422 last_was_mark_ = false;
423 SparseSet::insert_new(id);
424 }
425
426 private:
427 int n_; // size excluding marks
428 int maxmark_; // maximum number of marks
429 int nextmark_; // id of next mark
430 bool last_was_mark_; // last inserted was mark
431 DISALLOW_EVIL_CONSTRUCTORS(Workq);
432 };
433
DFA(Prog * prog,Prog::MatchKind kind,int64 max_mem)434 DFA::DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem)
435 : prog_(prog),
436 kind_(kind),
437 init_failed_(false),
438 q0_(NULL),
439 q1_(NULL),
440 astack_(NULL),
441 mem_budget_(max_mem),
442 cache_warned_(false) {
443 if (DebugDFA)
444 fprintf(stderr, "\nkind %d\n%s\n", (int)kind_, prog_->DumpUnanchored().c_str());
445 int nmark = 0;
446 start_unanchored_ = 0;
447 if (kind_ == Prog::kLongestMatch) {
448 nmark = prog->size();
449 start_unanchored_ = prog->start_unanchored();
450 }
451 nastack_ = 2 * prog->size() + nmark;
452
453 // Account for space needed for DFA, q0, q1, astack.
454 mem_budget_ -= sizeof(DFA);
455 mem_budget_ -= (prog_->size() + nmark) *
456 (sizeof(int)+sizeof(int)) * 2; // q0, q1
457 mem_budget_ -= nastack_ * sizeof(int); // astack
458 if (mem_budget_ < 0) {
459 LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld",
460 prog_->size(), max_mem);
461 init_failed_ = true;
462 return;
463 }
464
465 state_budget_ = mem_budget_;
466
467 // Make sure there is a reasonable amount of working room left.
468 // At minimum, the search requires room for two states in order
469 // to limp along, restarting frequently. We'll get better performance
470 // if there is room for a larger number of states, say 20.
471 int64 one_state = sizeof(State) + (prog_->size()+nmark)*sizeof(int) +
472 (prog_->bytemap_range()+1)*sizeof(State*);
473 if (state_budget_ < 20*one_state) {
474 LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld",
475 prog_->size(), max_mem);
476 init_failed_ = true;
477 return;
478 }
479
480 q0_ = new Workq(prog->size(), nmark);
481 q1_ = new Workq(prog->size(), nmark);
482 astack_ = new int[nastack_];
483 }
484
~DFA()485 DFA::~DFA() {
486 delete q0_;
487 delete q1_;
488 delete[] astack_;
489 ClearCache();
490 }
491
492 // In the DFA state graph, s->next[c] == NULL means that the
493 // state has not yet been computed and needs to be. We need
494 // a different special value to signal that s->next[c] is a
495 // state that can never lead to a match (and thus the search
496 // can be called off). Hence DeadState.
497 #define DeadState reinterpret_cast<State*>(1)
498
499 // Signals that the rest of the string matches no matter what it is.
500 #define FullMatchState reinterpret_cast<State*>(2)
501
502 #define SpecialStateMax FullMatchState
503
504 // Debugging printouts
505
506 // For debugging, returns a string representation of the work queue.
DumpWorkq(Workq * q)507 string DFA::DumpWorkq(Workq* q) {
508 string s;
509 const char* sep = "";
510 for (DFA::Workq::iterator it = q->begin(); it != q->end(); ++it) {
511 if (q->is_mark(*it)) {
512 StringAppendF(&s, "|");
513 sep = "";
514 } else {
515 StringAppendF(&s, "%s%d", sep, *it);
516 sep = ",";
517 }
518 }
519 return s;
520 }
521
522 // For debugging, returns a string representation of the state.
DumpState(State * state)523 string DFA::DumpState(State* state) {
524 if (state == NULL)
525 return "_";
526 if (state == DeadState)
527 return "X";
528 if (state == FullMatchState)
529 return "*";
530 string s;
531 const char* sep = "";
532 StringAppendF(&s, "(%p)", state);
533 for (int i = 0; i < state->ninst_; i++) {
534 if (state->inst_[i] == Mark) {
535 StringAppendF(&s, "|");
536 sep = "";
537 } else {
538 StringAppendF(&s, "%s%d", sep, state->inst_[i]);
539 sep = ",";
540 }
541 }
542 StringAppendF(&s, " flag=%#x", state->flag_);
543 return s;
544 }
545
546 //////////////////////////////////////////////////////////////////////
547 //
548 // DFA state graph construction.
549 //
550 // The DFA state graph is a heavily-linked collection of State* structures.
551 // The state_cache_ is a set of all the State structures ever allocated,
552 // so that if the same state is reached by two different paths,
553 // the same State structure can be used. This reduces allocation
554 // requirements and also avoids duplication of effort across the two
555 // identical states.
556 //
557 // A State is defined by an ordered list of instruction ids and a flag word.
558 //
559 // The choice of an ordered list of instructions differs from a typical
560 // textbook DFA implementation, which would use an unordered set.
561 // Textbook descriptions, however, only care about whether
562 // the DFA matches, not where it matches in the text. To decide where the
563 // DFA matches, we need to mimic the behavior of the dominant backtracking
564 // implementations like PCRE, which try one possible regular expression
565 // execution, then another, then another, stopping when one of them succeeds.
566 // The DFA execution tries these many executions in parallel, representing
567 // each by an instruction id. These pointers are ordered in the State.inst_
568 // list in the same order that the executions would happen in a backtracking
569 // search: if a match is found during execution of inst_[2], inst_[i] for i>=3
570 // can be discarded.
571 //
572 // Textbooks also typically do not consider context-aware empty string operators
573 // like ^ or $. These are handled by the flag word, which specifies the set
574 // of empty-string operators that should be matched when executing at the
575 // current text position. These flag bits are defined in prog.h.
576 // The flag word also contains two DFA-specific bits: kFlagMatch if the state
577 // is a matching state (one that reached a kInstMatch in the program)
578 // and kFlagLastWord if the last processed byte was a word character, for the
579 // implementation of \B and \b.
580 //
581 // The flag word also contains, shifted up 16 bits, the bits looked for by
582 // any kInstEmptyWidth instructions in the state. These provide a useful
583 // summary indicating when new flags might be useful.
584 //
585 // The permanent representation of a State's instruction ids is just an array,
586 // but while a state is being analyzed, these instruction ids are represented
587 // as a Workq, which is an array that allows iteration in insertion order.
588
589 // NOTE(rsc): The choice of State construction determines whether the DFA
590 // mimics backtracking implementations (so-called leftmost first matching) or
591 // traditional DFA implementations (so-called leftmost longest matching as
592 // prescribed by POSIX). This implementation chooses to mimic the
593 // backtracking implementations, because we want to replace PCRE. To get
594 // POSIX behavior, the states would need to be considered not as a simple
595 // ordered list of instruction ids, but as a list of unordered sets of instruction
596 // ids. A match by a state in one set would inhibit the running of sets
597 // farther down the list but not other instruction ids in the same set. Each
598 // set would correspond to matches beginning at a given point in the string.
599 // This is implemented by separating different sets with Mark pointers.
600
601 // Looks in the State cache for a State matching q, flag.
602 // If one is found, returns it. If one is not found, allocates one,
603 // inserts it in the cache, and returns it.
WorkqToCachedState(Workq * q,uint flag)604 DFA::State* DFA::WorkqToCachedState(Workq* q, uint flag) {
605 if (DEBUG_MODE)
606 mutex_.AssertHeld();
607
608 // Construct array of instruction ids for the new state.
609 // Only ByteRange, EmptyWidth, and Match instructions are useful to keep:
610 // those are the only operators with any effect in
611 // RunWorkqOnEmptyString or RunWorkqOnByte.
612 int* inst = new int[q->size()];
613 int n = 0;
614 uint needflags = 0; // flags needed by kInstEmptyWidth instructions
615 bool sawmatch = false; // whether queue contains guaranteed kInstMatch
616 bool sawmark = false; // whether queue contains a Mark
617 if (DebugDFA)
618 fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag);
619 for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
620 int id = *it;
621 if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id)))
622 break;
623 if (q->is_mark(id)) {
624 if (n > 0 && inst[n-1] != Mark) {
625 sawmark = true;
626 inst[n++] = Mark;
627 }
628 continue;
629 }
630 Prog::Inst* ip = prog_->inst(id);
631 switch (ip->opcode()) {
632 case kInstAltMatch:
633 // This state will continue to a match no matter what
634 // the rest of the input is. If it is the highest priority match
635 // being considered, return the special FullMatchState
636 // to indicate that it's all matches from here out.
637 if (kind_ != Prog::kManyMatch &&
638 (kind_ != Prog::kFirstMatch ||
639 (it == q->begin() && ip->greedy(prog_))) &&
640 (kind_ != Prog::kLongestMatch || !sawmark) &&
641 (flag & kFlagMatch)) {
642 delete[] inst;
643 if (DebugDFA)
644 fprintf(stderr, " -> FullMatchState\n");
645 return FullMatchState;
646 }
647 // Fall through.
648 case kInstByteRange: // These are useful.
649 case kInstEmptyWidth:
650 case kInstMatch:
651 case kInstAlt: // Not useful, but necessary [*]
652 inst[n++] = *it;
653 if (ip->opcode() == kInstEmptyWidth)
654 needflags |= ip->empty();
655 if (ip->opcode() == kInstMatch && !prog_->anchor_end())
656 sawmatch = true;
657 break;
658
659 default: // The rest are not.
660 break;
661 }
662
663 // [*] kInstAlt would seem useless to record in a state, since
664 // we've already followed both its arrows and saved all the
665 // interesting states we can reach from there. The problem
666 // is that one of the empty-width instructions might lead
667 // back to the same kInstAlt (if an empty-width operator is starred),
668 // producing a different evaluation order depending on whether
669 // we keep the kInstAlt to begin with. Sigh.
670 // A specific case that this affects is /(^|a)+/ matching "a".
671 // If we don't save the kInstAlt, we will match the whole "a" (0,1)
672 // but in fact the correct leftmost-first match is the leading "" (0,0).
673 }
674 DCHECK_LE(n, q->size());
675 if (n > 0 && inst[n-1] == Mark)
676 n--;
677
678 // If there are no empty-width instructions waiting to execute,
679 // then the extra flag bits will not be used, so there is no
680 // point in saving them. (Discarding them reduces the number
681 // of distinct states.)
682 if (needflags == 0)
683 flag &= kFlagMatch;
684
685 // NOTE(rsc): The code above cannot do flag &= needflags,
686 // because if the right flags were present to pass the current
687 // kInstEmptyWidth instructions, new kInstEmptyWidth instructions
688 // might be reached that in turn need different flags.
689 // The only sure thing is that if there are no kInstEmptyWidth
690 // instructions at all, no flags will be needed.
691 // We could do the extra work to figure out the full set of
692 // possibly needed flags by exploring past the kInstEmptyWidth
693 // instructions, but the check above -- are any flags needed
694 // at all? -- handles the most common case. More fine-grained
695 // analysis can only be justified by measurements showing that
696 // too many redundant states are being allocated.
697
698 // If there are no Insts in the list, it's a dead state,
699 // which is useful to signal with a special pointer so that
700 // the execution loop can stop early. This is only okay
701 // if the state is *not* a matching state.
702 if (n == 0 && flag == 0) {
703 delete[] inst;
704 if (DebugDFA)
705 fprintf(stderr, " -> DeadState\n");
706 return DeadState;
707 }
708
709 // If we're in longest match mode, the state is a sequence of
710 // unordered state sets separated by Marks. Sort each set
711 // to canonicalize, to reduce the number of distinct sets stored.
712 if (kind_ == Prog::kLongestMatch) {
713 int* ip = inst;
714 int* ep = ip + n;
715 while (ip < ep) {
716 int* markp = ip;
717 while (markp < ep && *markp != Mark)
718 markp++;
719 sort(ip, markp);
720 if (markp < ep)
721 markp++;
722 ip = markp;
723 }
724 }
725
726 // Save the needed empty-width flags in the top bits for use later.
727 flag |= needflags << kFlagNeedShift;
728
729 State* state = CachedState(inst, n, flag);
730 delete[] inst;
731 return state;
732 }
733
734 // Looks in the State cache for a State matching inst, ninst, flag.
735 // If one is found, returns it. If one is not found, allocates one,
736 // inserts it in the cache, and returns it.
CachedState(int * inst,int ninst,uint flag)737 DFA::State* DFA::CachedState(int* inst, int ninst, uint flag) {
738 if (DEBUG_MODE)
739 mutex_.AssertHeld();
740
741 // Look in the cache for a pre-existing state.
742 State state = { inst, ninst, flag, NULL };
743 StateSet::iterator it = state_cache_.find(&state);
744 if (it != state_cache_.end()) {
745 if (DebugDFA)
746 fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str());
747 return *it;
748 }
749
750 // Must have enough memory for new state.
751 // In addition to what we're going to allocate,
752 // the state cache hash table seems to incur about 32 bytes per
753 // State*, empirically.
754 const int kStateCacheOverhead = 32;
755 int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot
756 int mem = sizeof(State) + nnext*sizeof(State*) + ninst*sizeof(int);
757 if (mem_budget_ < mem + kStateCacheOverhead) {
758 mem_budget_ = -1;
759 return NULL;
760 }
761 mem_budget_ -= mem + kStateCacheOverhead;
762
763 // Allocate new state, along with room for next and inst.
764 char* space = new char[mem];
765 State* s = reinterpret_cast<State*>(space);
766 s->next_ = reinterpret_cast<State**>(s + 1);
767 s->inst_ = reinterpret_cast<int*>(s->next_ + nnext);
768 memset(s->next_, 0, nnext*sizeof s->next_[0]);
769 memmove(s->inst_, inst, ninst*sizeof s->inst_[0]);
770 s->ninst_ = ninst;
771 s->flag_ = flag;
772 if (DebugDFA)
773 fprintf(stderr, " -> %s\n", DumpState(s).c_str());
774
775 // Put state in cache and return it.
776 state_cache_.insert(s);
777 return s;
778 }
779
780 // Clear the cache. Must hold cache_mutex_.w or be in destructor.
ClearCache()781 void DFA::ClearCache() {
782 // In case state_cache_ doesn't support deleting entries
783 // during iteration, copy into a vector and then delete.
784 vector<State*> v;
785 v.reserve(state_cache_.size());
786 for (StateSet::iterator it = state_cache_.begin();
787 it != state_cache_.end(); ++it)
788 v.push_back(*it);
789 state_cache_.clear();
790 for (int i = 0; i < v.size(); i++)
791 delete[] reinterpret_cast<const char*>(v[i]);
792 }
793
794 // Copies insts in state s to the work queue q.
StateToWorkq(State * s,Workq * q)795 void DFA::StateToWorkq(State* s, Workq* q) {
796 q->clear();
797 for (int i = 0; i < s->ninst_; i++) {
798 if (s->inst_[i] == Mark)
799 q->mark();
800 else
801 q->insert_new(s->inst_[i]);
802 }
803 }
804
805 // Adds ip to the work queue, following empty arrows according to flag
806 // and expanding kInstAlt instructions (two-target gotos).
AddToQueue(Workq * q,int id,uint flag)807 void DFA::AddToQueue(Workq* q, int id, uint flag) {
808
809 // Use astack_ to hold our stack of states yet to process.
810 // It is sized to have room for nastack_ == 2*prog->size() + nmark
811 // instructions, which is enough: each instruction can be
812 // processed by the switch below only once, and the processing
813 // pushes at most two instructions plus maybe a mark.
814 // (If we're using marks, nmark == prog->size(); otherwise nmark == 0.)
815 int* stk = astack_;
816 int nstk = 0;
817
818 stk[nstk++] = id;
819 while (nstk > 0) {
820 DCHECK_LE(nstk, nastack_);
821 id = stk[--nstk];
822
823 if (id == Mark) {
824 q->mark();
825 continue;
826 }
827
828 if (id == 0)
829 continue;
830
831 // If ip is already on the queue, nothing to do.
832 // Otherwise add it. We don't actually keep all the ones
833 // that get added -- for example, kInstAlt is ignored
834 // when on a work queue -- but adding all ip's here
835 // increases the likelihood of q->contains(id),
836 // reducing the amount of duplicated work.
837 if (q->contains(id))
838 continue;
839 q->insert_new(id);
840
841 // Process instruction.
842 Prog::Inst* ip = prog_->inst(id);
843 switch (ip->opcode()) {
844 case kInstFail: // can't happen: discarded above
845 break;
846
847 case kInstByteRange: // just save these on the queue
848 case kInstMatch:
849 break;
850
851 case kInstCapture: // DFA treats captures as no-ops.
852 case kInstNop:
853 stk[nstk++] = ip->out();
854 break;
855
856 case kInstAlt: // two choices: expand both, in order
857 case kInstAltMatch:
858 // Want to visit out then out1, so push on stack in reverse order.
859 // This instruction is the [00-FF]* loop at the beginning of
860 // a leftmost-longest unanchored search, separate out from out1
861 // with a Mark, so that out1's threads (which will start farther
862 // to the right in the string being searched) are lower priority
863 // than the current ones.
864 stk[nstk++] = ip->out1();
865 if (q->maxmark() > 0 &&
866 id == prog_->start_unanchored() && id != prog_->start())
867 stk[nstk++] = Mark;
868 stk[nstk++] = ip->out();
869 break;
870
871 case kInstEmptyWidth:
872 if ((ip->empty() & flag) == ip->empty())
873 stk[nstk++] = ip->out();
874 break;
875 }
876 }
877 }
878
879 // Running of work queues. In the work queue, order matters:
880 // the queue is sorted in priority order. If instruction i comes before j,
881 // then the instructions that i produces during the run must come before
882 // the ones that j produces. In order to keep this invariant, all the
883 // work queue runners have to take an old queue to process and then
884 // also a new queue to fill in. It's not acceptable to add to the end of
885 // an existing queue, because new instructions will not end up in the
886 // correct position.
887
888 // Runs the work queue, processing the empty strings indicated by flag.
889 // For example, flag == kEmptyBeginLine|kEmptyEndLine means to match
890 // both ^ and $. It is important that callers pass all flags at once:
891 // processing both ^ and $ is not the same as first processing only ^
892 // and then processing only $. Doing the two-step sequence won't match
893 // ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior
894 // exhibited by existing implementations).
RunWorkqOnEmptyString(Workq * oldq,Workq * newq,uint flag)895 void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint flag) {
896 newq->clear();
897 for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
898 if (oldq->is_mark(*i))
899 AddToQueue(newq, Mark, flag);
900 else
901 AddToQueue(newq, *i, flag);
902 }
903 }
904
905 // Runs the work queue, processing the single byte c followed by any empty
906 // strings indicated by flag. For example, c == 'a' and flag == kEmptyEndLine,
907 // means to match c$. Sets the bool *ismatch to true if the end of the
908 // regular expression program has been reached (the regexp has matched).
RunWorkqOnByte(Workq * oldq,Workq * newq,int c,uint flag,bool * ismatch,Prog::MatchKind kind,int new_byte_loop)909 void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq,
910 int c, uint flag, bool* ismatch,
911 Prog::MatchKind kind,
912 int new_byte_loop) {
913 if (DEBUG_MODE)
914 mutex_.AssertHeld();
915
916 newq->clear();
917 for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
918 if (oldq->is_mark(*i)) {
919 if (*ismatch)
920 return;
921 newq->mark();
922 continue;
923 }
924 int id = *i;
925 Prog::Inst* ip = prog_->inst(id);
926 switch (ip->opcode()) {
927 case kInstFail: // never succeeds
928 case kInstCapture: // already followed
929 case kInstNop: // already followed
930 case kInstAlt: // already followed
931 case kInstAltMatch: // already followed
932 case kInstEmptyWidth: // already followed
933 break;
934
935 case kInstByteRange: // can follow if c is in range
936 if (ip->Matches(c))
937 AddToQueue(newq, ip->out(), flag);
938 break;
939
940 case kInstMatch:
941 if (prog_->anchor_end() && c != kByteEndText)
942 break;
943 *ismatch = true;
944 if (kind == Prog::kFirstMatch) {
945 // Can stop processing work queue since we found a match.
946 return;
947 }
948 break;
949 }
950 }
951
952 if (DebugDFA)
953 fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n", DumpWorkq(oldq).c_str(),
954 c, flag, DumpWorkq(newq).c_str(), *ismatch);
955 }
956
957 // Processes input byte c in state, returning new state.
958 // Caller does not hold mutex.
RunStateOnByteUnlocked(State * state,int c)959 DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) {
960 // Keep only one RunStateOnByte going
961 // even if the DFA is being run by multiple threads.
962 MutexLock l(&mutex_);
963 return RunStateOnByte(state, c);
964 }
965
966 // Processes input byte c in state, returning new state.
RunStateOnByte(State * state,int c)967 DFA::State* DFA::RunStateOnByte(State* state, int c) {
968 if (DEBUG_MODE)
969 mutex_.AssertHeld();
970 if (state <= SpecialStateMax) {
971 if (state == FullMatchState) {
972 // It is convenient for routines like PossibleMatchRange
973 // if we implement RunStateOnByte for FullMatchState:
974 // once you get into this state you never get out,
975 // so it's pretty easy.
976 return FullMatchState;
977 }
978 if (state == DeadState) {
979 LOG(DFATAL) << "DeadState in RunStateOnByte";
980 return NULL;
981 }
982 if (state == NULL) {
983 LOG(DFATAL) << "NULL state in RunStateOnByte";
984 return NULL;
985 }
986 LOG(DFATAL) << "Unexpected special state in RunStateOnByte";
987 return NULL;
988 }
989
990 // If someone else already computed this, return it.
991 MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
992 State* ns = state->next_[ByteMap(c)];
993 ANNOTATE_HAPPENS_AFTER(ns);
994 if (ns != NULL)
995 return ns;
996
997 // Convert state into Workq.
998 StateToWorkq(state, q0_);
999
1000 // Flags marking the kinds of empty-width things (^ $ etc)
1001 // around this byte. Before the byte we have the flags recorded
1002 // in the State structure itself. After the byte we have
1003 // nothing yet (but that will change: read on).
1004 uint needflag = state->flag_ >> kFlagNeedShift;
1005 uint beforeflag = state->flag_ & kFlagEmptyMask;
1006 uint oldbeforeflag = beforeflag;
1007 uint afterflag = 0;
1008
1009 if (c == '\n') {
1010 // Insert implicit $ and ^ around \n
1011 beforeflag |= kEmptyEndLine;
1012 afterflag |= kEmptyBeginLine;
1013 }
1014
1015 if (c == kByteEndText) {
1016 // Insert implicit $ and \z before the fake "end text" byte.
1017 beforeflag |= kEmptyEndLine | kEmptyEndText;
1018 }
1019
1020 // The state flag kFlagLastWord says whether the last
1021 // byte processed was a word character. Use that info to
1022 // insert empty-width (non-)word boundaries.
1023 bool islastword = state->flag_ & kFlagLastWord;
1024 bool isword = (c != kByteEndText && Prog::IsWordChar(c));
1025 if (isword == islastword)
1026 beforeflag |= kEmptyNonWordBoundary;
1027 else
1028 beforeflag |= kEmptyWordBoundary;
1029
1030 // Okay, finally ready to run.
1031 // Only useful to rerun on empty string if there are new, useful flags.
1032 if (beforeflag & ~oldbeforeflag & needflag) {
1033 RunWorkqOnEmptyString(q0_, q1_, beforeflag);
1034 swap(q0_, q1_);
1035 }
1036 bool ismatch = false;
1037 RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch, kind_, start_unanchored_);
1038
1039 // Most of the time, we build the state from the output of
1040 // RunWorkqOnByte, so swap q0_ and q1_ here. However, so that
1041 // RE2::Set can tell exactly which match instructions
1042 // contributed to the match, don't swap if c is kByteEndText.
1043 // The resulting state wouldn't be correct for further processing
1044 // of the string, but we're at the end of the text so that's okay.
1045 // Leaving q0_ alone preseves the match instructions that led to
1046 // the current setting of ismatch.
1047 if (c != kByteEndText || kind_ != Prog::kManyMatch)
1048 swap(q0_, q1_);
1049
1050 // Save afterflag along with ismatch and isword in new state.
1051 uint flag = afterflag;
1052 if (ismatch)
1053 flag |= kFlagMatch;
1054 if (isword)
1055 flag |= kFlagLastWord;
1056
1057 ns = WorkqToCachedState(q0_, flag);
1058
1059 // Write barrier before updating state->next_ so that the
1060 // main search loop can proceed without any locking, for speed.
1061 // (Otherwise it would need one mutex operation per input byte.)
1062 // The annotations below tell race detectors that:
1063 // a) the access to next_ should be ignored,
1064 // b) 'ns' is properly published.
1065 WriteMemoryBarrier(); // Flush ns before linking to it.
1066
1067 ANNOTATE_IGNORE_WRITES_BEGIN();
1068 ANNOTATE_HAPPENS_BEFORE(ns);
1069 state->next_[ByteMap(c)] = ns;
1070 ANNOTATE_IGNORE_WRITES_END();
1071 return ns;
1072 }
1073
1074
1075 //////////////////////////////////////////////////////////////////////
1076 // DFA cache reset.
1077
1078 // Reader-writer lock helper.
1079 //
1080 // The DFA uses a reader-writer mutex to protect the state graph itself.
1081 // Traversing the state graph requires holding the mutex for reading,
1082 // and discarding the state graph and starting over requires holding the
1083 // lock for writing. If a search needs to expand the graph but is out
1084 // of memory, it will need to drop its read lock and then acquire the
1085 // write lock. Since it cannot then atomically downgrade from write lock
1086 // to read lock, it runs the rest of the search holding the write lock.
1087 // (This probably helps avoid repeated contention, but really the decision
1088 // is forced by the Mutex interface.) It's a bit complicated to keep
1089 // track of whether the lock is held for reading or writing and thread
1090 // that through the search, so instead we encapsulate it in the RWLocker
1091 // and pass that around.
1092
1093 class DFA::RWLocker {
1094 public:
1095 explicit RWLocker(Mutex* mu);
1096 ~RWLocker();
1097
1098 // If the lock is only held for reading right now,
1099 // drop the read lock and re-acquire for writing.
1100 // Subsequent calls to LockForWriting are no-ops.
1101 // Notice that the lock is *released* temporarily.
1102 void LockForWriting();
1103
1104 // Returns whether the lock is already held for writing.
IsLockedForWriting()1105 bool IsLockedForWriting() {
1106 return writing_;
1107 }
1108
1109 private:
1110 Mutex* mu_;
1111 bool writing_;
1112
1113 DISALLOW_EVIL_CONSTRUCTORS(RWLocker);
1114 };
1115
RWLocker(Mutex * mu)1116 DFA::RWLocker::RWLocker(Mutex* mu)
1117 : mu_(mu), writing_(false) {
1118
1119 mu_->ReaderLock();
1120 }
1121
1122 // This function is marked as NO_THREAD_SAFETY_ANALYSIS because the annotations
1123 // does not support lock upgrade.
LockForWriting()1124 void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS {
1125 if (!writing_) {
1126 mu_->ReaderUnlock();
1127 mu_->Lock();
1128 writing_ = true;
1129 }
1130 }
1131
~RWLocker()1132 DFA::RWLocker::~RWLocker() {
1133 if (writing_)
1134 mu_->WriterUnlock();
1135 else
1136 mu_->ReaderUnlock();
1137 }
1138
1139
1140 // When the DFA's State cache fills, we discard all the states in the
1141 // cache and start over. Many threads can be using and adding to the
1142 // cache at the same time, so we synchronize using the cache_mutex_
1143 // to keep from stepping on other threads. Specifically, all the
1144 // threads using the current cache hold cache_mutex_ for reading.
1145 // When a thread decides to flush the cache, it drops cache_mutex_
1146 // and then re-acquires it for writing. That ensures there are no
1147 // other threads accessing the cache anymore. The rest of the search
1148 // runs holding cache_mutex_ for writing, avoiding any contention
1149 // with or cache pollution caused by other threads.
1150
ResetCache(RWLocker * cache_lock)1151 void DFA::ResetCache(RWLocker* cache_lock) {
1152 // Re-acquire the cache_mutex_ for writing (exclusive use).
1153 bool was_writing = cache_lock->IsLockedForWriting();
1154 cache_lock->LockForWriting();
1155
1156 // If we already held cache_mutex_ for writing, it means
1157 // this invocation of Search() has already reset the
1158 // cache once already. That's a pretty clear indication
1159 // that the cache is too small. Warn about that, once.
1160 // TODO(rsc): Only warn if state_cache_.size() < some threshold.
1161 if (was_writing && !cache_warned_) {
1162 LOG(INFO) << "DFA memory cache could be too small: "
1163 << "only room for " << state_cache_.size() << " states.";
1164 cache_warned_ = true;
1165 }
1166
1167 // Clear the cache, reset the memory budget.
1168 for (int i = 0; i < kMaxStart; i++) {
1169 start_[i].start = NULL;
1170 start_[i].firstbyte = kFbUnknown;
1171 }
1172 ClearCache();
1173 mem_budget_ = state_budget_;
1174 }
1175
1176 // Typically, a couple States do need to be preserved across a cache
1177 // reset, like the State at the current point in the search.
1178 // The StateSaver class helps keep States across cache resets.
1179 // It makes a copy of the state's guts outside the cache (before the reset)
1180 // and then can be asked, after the reset, to recreate the State
1181 // in the new cache. For example, in a DFA method ("this" is a DFA):
1182 //
1183 // StateSaver saver(this, s);
1184 // ResetCache(cache_lock);
1185 // s = saver.Restore();
1186 //
1187 // The saver should always have room in the cache to re-create the state,
1188 // because resetting the cache locks out all other threads, and the cache
1189 // is known to have room for at least a couple states (otherwise the DFA
1190 // constructor fails).
1191
1192 class DFA::StateSaver {
1193 public:
1194 explicit StateSaver(DFA* dfa, State* state);
1195 ~StateSaver();
1196
1197 // Recreates and returns a state equivalent to the
1198 // original state passed to the constructor.
1199 // Returns NULL if the cache has filled, but
1200 // since the DFA guarantees to have room in the cache
1201 // for a couple states, should never return NULL
1202 // if used right after ResetCache.
1203 State* Restore();
1204
1205 private:
1206 DFA* dfa_; // the DFA to use
1207 int* inst_; // saved info from State
1208 int ninst_;
1209 uint flag_;
1210 bool is_special_; // whether original state was special
1211 State* special_; // if is_special_, the original state
1212
1213 DISALLOW_EVIL_CONSTRUCTORS(StateSaver);
1214 };
1215
StateSaver(DFA * dfa,State * state)1216 DFA::StateSaver::StateSaver(DFA* dfa, State* state) {
1217 dfa_ = dfa;
1218 if (state <= SpecialStateMax) {
1219 inst_ = NULL;
1220 ninst_ = 0;
1221 flag_ = 0;
1222 is_special_ = true;
1223 special_ = state;
1224 return;
1225 }
1226 is_special_ = false;
1227 special_ = NULL;
1228 flag_ = state->flag_;
1229 ninst_ = state->ninst_;
1230 inst_ = new int[ninst_];
1231 memmove(inst_, state->inst_, ninst_*sizeof inst_[0]);
1232 }
1233
~StateSaver()1234 DFA::StateSaver::~StateSaver() {
1235 if (!is_special_)
1236 delete[] inst_;
1237 }
1238
Restore()1239 DFA::State* DFA::StateSaver::Restore() {
1240 if (is_special_)
1241 return special_;
1242 MutexLock l(&dfa_->mutex_);
1243 State* s = dfa_->CachedState(inst_, ninst_, flag_);
1244 if (s == NULL)
1245 LOG(DFATAL) << "StateSaver failed to restore state.";
1246 return s;
1247 }
1248
1249
1250 //////////////////////////////////////////////////////////////////////
1251 //
1252 // DFA execution.
1253 //
1254 // The basic search loop is easy: start in a state s and then for each
1255 // byte c in the input, s = s->next[c].
1256 //
1257 // This simple description omits a few efficiency-driven complications.
1258 //
1259 // First, the State graph is constructed incrementally: it is possible
1260 // that s->next[c] is null, indicating that that state has not been
1261 // fully explored. In this case, RunStateOnByte must be invoked to
1262 // determine the next state, which is cached in s->next[c] to save
1263 // future effort. An alternative reason for s->next[c] to be null is
1264 // that the DFA has reached a so-called "dead state", in which any match
1265 // is no longer possible. In this case RunStateOnByte will return NULL
1266 // and the processing of the string can stop early.
1267 //
1268 // Second, a 256-element pointer array for s->next_ makes each State
1269 // quite large (2kB on 64-bit machines). Instead, dfa->bytemap_[]
1270 // maps from bytes to "byte classes" and then next_ only needs to have
1271 // as many pointers as there are byte classes. A byte class is simply a
1272 // range of bytes that the regexp never distinguishes between.
1273 // A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1,
1274 // 'a', 'b' to 'c', and 'c' to 0xFF. The bytemap slows us a little bit
1275 // but in exchange we typically cut the size of a State (and thus our
1276 // memory footprint) by about 5-10x. The comments still refer to
1277 // s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]].
1278 //
1279 // Third, it is common for a DFA for an unanchored match to begin in a
1280 // state in which only one particular byte value can take the DFA to a
1281 // different state. That is, s->next[c] != s for only one c. In this
1282 // situation, the DFA can do better than executing the simple loop.
1283 // Instead, it can call memchr to search very quickly for the byte c.
1284 // Whether the start state has this property is determined during a
1285 // pre-compilation pass, and if so, the byte b is passed to the search
1286 // loop as the "firstbyte" argument, along with a boolean "have_firstbyte".
1287 //
1288 // Fourth, the desired behavior is to search for the leftmost-best match
1289 // (approximately, the same one that Perl would find), which is not
1290 // necessarily the match ending earliest in the string. Each time a
1291 // match is found, it must be noted, but the DFA must continue on in
1292 // hope of finding a higher-priority match. In some cases, the caller only
1293 // cares whether there is any match at all, not which one is found.
1294 // The "want_earliest_match" flag causes the search to stop at the first
1295 // match found.
1296 //
1297 // Fifth, one algorithm that uses the DFA needs it to run over the
1298 // input string backward, beginning at the end and ending at the beginning.
1299 // Passing false for the "run_forward" flag causes the DFA to run backward.
1300 //
1301 // The checks for these last three cases, which in a naive implementation
1302 // would be performed once per input byte, slow the general loop enough
1303 // to merit specialized versions of the search loop for each of the
1304 // eight possible settings of the three booleans. Rather than write
1305 // eight different functions, we write one general implementation and then
1306 // inline it to create the specialized ones.
1307 //
1308 // Note that matches are delayed by one byte, to make it easier to
1309 // accomodate match conditions depending on the next input byte (like $ and \b).
1310 // When s->next[c]->IsMatch(), it means that there is a match ending just
1311 // *before* byte c.
1312
1313 // The generic search loop. Searches text for a match, returning
1314 // the pointer to the end of the chosen match, or NULL if no match.
1315 // The bools are equal to the same-named variables in params, but
1316 // making them function arguments lets the inliner specialize
1317 // this function to each combination (see two paragraphs above).
InlinedSearchLoop(SearchParams * params,bool have_firstbyte,bool want_earliest_match,bool run_forward)1318 inline bool DFA::InlinedSearchLoop(SearchParams* params,
1319 bool have_firstbyte,
1320 bool want_earliest_match,
1321 bool run_forward) {
1322 State* start = params->start;
1323 const uint8* bp = BytePtr(params->text.begin()); // start of text
1324 const uint8* p = bp; // text scanning point
1325 const uint8* ep = BytePtr(params->text.end()); // end of text
1326 const uint8* resetp = NULL; // p at last cache reset
1327 if (!run_forward)
1328 swap(p, ep);
1329
1330 const uint8* bytemap = prog_->bytemap();
1331 const uint8* lastmatch = NULL; // most recent matching position in text
1332 bool matched = false;
1333 State* s = start;
1334
1335 if (s->IsMatch()) {
1336 matched = true;
1337 lastmatch = p;
1338 if (want_earliest_match) {
1339 params->ep = reinterpret_cast<const char*>(lastmatch);
1340 return true;
1341 }
1342 }
1343
1344 while (p != ep) {
1345 if (DebugDFA)
1346 fprintf(stderr, "@%d: %s\n", static_cast<int>(p - bp),
1347 DumpState(s).c_str());
1348 if (have_firstbyte && s == start) {
1349 // In start state, only way out is to find firstbyte,
1350 // so use optimized assembly in memchr to skip ahead.
1351 // If firstbyte isn't found, we can skip to the end
1352 // of the string.
1353 if (run_forward) {
1354 if ((p = BytePtr(memchr(p, params->firstbyte, ep - p))) == NULL) {
1355 p = ep;
1356 break;
1357 }
1358 } else {
1359 if ((p = BytePtr(memrchr(ep, params->firstbyte, p - ep))) == NULL) {
1360 p = ep;
1361 break;
1362 }
1363 p++;
1364 }
1365 }
1366
1367 int c;
1368 if (run_forward)
1369 c = *p++;
1370 else
1371 c = *--p;
1372
1373 // Note that multiple threads might be consulting
1374 // s->next_[bytemap[c]] simultaneously.
1375 // RunStateOnByte takes care of the appropriate locking,
1376 // including a memory barrier so that the unlocked access
1377 // (sometimes known as "double-checked locking") is safe.
1378 // The alternative would be either one DFA per thread
1379 // or one mutex operation per input byte.
1380 //
1381 // ns == DeadState means the state is known to be dead
1382 // (no more matches are possible).
1383 // ns == NULL means the state has not yet been computed
1384 // (need to call RunStateOnByteUnlocked).
1385 // RunStateOnByte returns ns == NULL if it is out of memory.
1386 // ns == FullMatchState means the rest of the string matches.
1387 //
1388 // Okay to use bytemap[] not ByteMap() here, because
1389 // c is known to be an actual byte and not kByteEndText.
1390
1391 MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
1392 State* ns = s->next_[bytemap[c]];
1393 ANNOTATE_HAPPENS_AFTER(ns);
1394 if (ns == NULL) {
1395 ns = RunStateOnByteUnlocked(s, c);
1396 if (ns == NULL) {
1397 // After we reset the cache, we hold cache_mutex exclusively,
1398 // so if resetp != NULL, it means we filled the DFA state
1399 // cache with this search alone (without any other threads).
1400 // Benchmarks show that doing a state computation on every
1401 // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the
1402 // same at about 2 MB/s. Unless we're processing an average
1403 // of 10 bytes per state computation, fail so that RE2 can
1404 // fall back to the NFA.
1405 if (FLAGS_re2_dfa_bail_when_slow && resetp != NULL &&
1406 (p - resetp) < 10*state_cache_.size()) {
1407 params->failed = true;
1408 return false;
1409 }
1410 resetp = p;
1411
1412 // Prepare to save start and s across the reset.
1413 StateSaver save_start(this, start);
1414 StateSaver save_s(this, s);
1415
1416 // Discard all the States in the cache.
1417 ResetCache(params->cache_lock);
1418
1419 // Restore start and s so we can continue.
1420 if ((start = save_start.Restore()) == NULL ||
1421 (s = save_s.Restore()) == NULL) {
1422 // Restore already did LOG(DFATAL).
1423 params->failed = true;
1424 return false;
1425 }
1426 ns = RunStateOnByteUnlocked(s, c);
1427 if (ns == NULL) {
1428 LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache";
1429 params->failed = true;
1430 return false;
1431 }
1432 }
1433 }
1434 if (ns <= SpecialStateMax) {
1435 if (ns == DeadState) {
1436 params->ep = reinterpret_cast<const char*>(lastmatch);
1437 return matched;
1438 }
1439 // FullMatchState
1440 params->ep = reinterpret_cast<const char*>(ep);
1441 return true;
1442 }
1443 s = ns;
1444
1445 if (s->IsMatch()) {
1446 matched = true;
1447 // The DFA notices the match one byte late,
1448 // so adjust p before using it in the match.
1449 if (run_forward)
1450 lastmatch = p - 1;
1451 else
1452 lastmatch = p + 1;
1453 if (DebugDFA)
1454 fprintf(stderr, "match @%d! [%s]\n",
1455 static_cast<int>(lastmatch - bp),
1456 DumpState(s).c_str());
1457
1458 if (want_earliest_match) {
1459 params->ep = reinterpret_cast<const char*>(lastmatch);
1460 return true;
1461 }
1462 }
1463 }
1464
1465 // Process one more byte to see if it triggers a match.
1466 // (Remember, matches are delayed one byte.)
1467 int lastbyte;
1468 if (run_forward) {
1469 if (params->text.end() == params->context.end())
1470 lastbyte = kByteEndText;
1471 else
1472 lastbyte = params->text.end()[0] & 0xFF;
1473 } else {
1474 if (params->text.begin() == params->context.begin())
1475 lastbyte = kByteEndText;
1476 else
1477 lastbyte = params->text.begin()[-1] & 0xFF;
1478 }
1479
1480 MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
1481 State* ns = s->next_[ByteMap(lastbyte)];
1482 ANNOTATE_HAPPENS_AFTER(ns);
1483 if (ns == NULL) {
1484 ns = RunStateOnByteUnlocked(s, lastbyte);
1485 if (ns == NULL) {
1486 StateSaver save_s(this, s);
1487 ResetCache(params->cache_lock);
1488 if ((s = save_s.Restore()) == NULL) {
1489 params->failed = true;
1490 return false;
1491 }
1492 ns = RunStateOnByteUnlocked(s, lastbyte);
1493 if (ns == NULL) {
1494 LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset";
1495 params->failed = true;
1496 return false;
1497 }
1498 }
1499 }
1500 s = ns;
1501 if (DebugDFA)
1502 fprintf(stderr, "@_: %s\n", DumpState(s).c_str());
1503 if (s == FullMatchState) {
1504 params->ep = reinterpret_cast<const char*>(ep);
1505 return true;
1506 }
1507 if (s > SpecialStateMax && s->IsMatch()) {
1508 matched = true;
1509 lastmatch = p;
1510 if (params->matches && kind_ == Prog::kManyMatch) {
1511 vector<int>* v = params->matches;
1512 v->clear();
1513 for (int i = 0; i < s->ninst_; i++) {
1514 Prog::Inst* ip = prog_->inst(s->inst_[i]);
1515 if (ip->opcode() == kInstMatch)
1516 v->push_back(ip->match_id());
1517 }
1518 }
1519 if (DebugDFA)
1520 fprintf(stderr, "match @%d! [%s]\n", static_cast<int>(lastmatch - bp),
1521 DumpState(s).c_str());
1522 }
1523 params->ep = reinterpret_cast<const char*>(lastmatch);
1524 return matched;
1525 }
1526
1527 // Inline specializations of the general loop.
SearchFFF(SearchParams * params)1528 bool DFA::SearchFFF(SearchParams* params) {
1529 return InlinedSearchLoop(params, 0, 0, 0);
1530 }
SearchFFT(SearchParams * params)1531 bool DFA::SearchFFT(SearchParams* params) {
1532 return InlinedSearchLoop(params, 0, 0, 1);
1533 }
SearchFTF(SearchParams * params)1534 bool DFA::SearchFTF(SearchParams* params) {
1535 return InlinedSearchLoop(params, 0, 1, 0);
1536 }
SearchFTT(SearchParams * params)1537 bool DFA::SearchFTT(SearchParams* params) {
1538 return InlinedSearchLoop(params, 0, 1, 1);
1539 }
SearchTFF(SearchParams * params)1540 bool DFA::SearchTFF(SearchParams* params) {
1541 return InlinedSearchLoop(params, 1, 0, 0);
1542 }
SearchTFT(SearchParams * params)1543 bool DFA::SearchTFT(SearchParams* params) {
1544 return InlinedSearchLoop(params, 1, 0, 1);
1545 }
SearchTTF(SearchParams * params)1546 bool DFA::SearchTTF(SearchParams* params) {
1547 return InlinedSearchLoop(params, 1, 1, 0);
1548 }
SearchTTT(SearchParams * params)1549 bool DFA::SearchTTT(SearchParams* params) {
1550 return InlinedSearchLoop(params, 1, 1, 1);
1551 }
1552
1553 // For debugging, calls the general code directly.
SlowSearchLoop(SearchParams * params)1554 bool DFA::SlowSearchLoop(SearchParams* params) {
1555 return InlinedSearchLoop(params,
1556 params->firstbyte >= 0,
1557 params->want_earliest_match,
1558 params->run_forward);
1559 }
1560
1561 // For performance, calls the appropriate specialized version
1562 // of InlinedSearchLoop.
FastSearchLoop(SearchParams * params)1563 bool DFA::FastSearchLoop(SearchParams* params) {
1564 // Because the methods are private, the Searches array
1565 // cannot be declared at top level.
1566 static bool (DFA::*Searches[])(SearchParams*) = {
1567 &DFA::SearchFFF,
1568 &DFA::SearchFFT,
1569 &DFA::SearchFTF,
1570 &DFA::SearchFTT,
1571 &DFA::SearchTFF,
1572 &DFA::SearchTFT,
1573 &DFA::SearchTTF,
1574 &DFA::SearchTTT,
1575 };
1576
1577 bool have_firstbyte = (params->firstbyte >= 0);
1578 int index = 4 * have_firstbyte +
1579 2 * params->want_earliest_match +
1580 1 * params->run_forward;
1581 return (this->*Searches[index])(params);
1582 }
1583
1584
1585 // The discussion of DFA execution above ignored the question of how
1586 // to determine the initial state for the search loop. There are two
1587 // factors that influence the choice of start state.
1588 //
1589 // The first factor is whether the search is anchored or not.
1590 // The regexp program (Prog*) itself has
1591 // two different entry points: one for anchored searches and one for
1592 // unanchored searches. (The unanchored version starts with a leading ".*?"
1593 // and then jumps to the anchored one.)
1594 //
1595 // The second factor is where text appears in the larger context, which
1596 // determines which empty-string operators can be matched at the beginning
1597 // of execution. If text is at the very beginning of context, \A and ^ match.
1598 // Otherwise if text is at the beginning of a line, then ^ matches.
1599 // Otherwise it matters whether the character before text is a word character
1600 // or a non-word character.
1601 //
1602 // The two cases (unanchored vs not) and four cases (empty-string flags)
1603 // combine to make the eight cases recorded in the DFA's begin_text_[2],
1604 // begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached
1605 // StartInfos. The start state for each is filled in the first time it
1606 // is used for an actual search.
1607
1608 // Examines text, context, and anchored to determine the right start
1609 // state for the DFA search loop. Fills in params and returns true on success.
1610 // Returns false on failure.
AnalyzeSearch(SearchParams * params)1611 bool DFA::AnalyzeSearch(SearchParams* params) {
1612 const StringPiece& text = params->text;
1613 const StringPiece& context = params->context;
1614
1615 // Sanity check: make sure that text lies within context.
1616 if (text.begin() < context.begin() || text.end() > context.end()) {
1617 LOG(DFATAL) << "Text is not inside context.";
1618 params->start = DeadState;
1619 return true;
1620 }
1621
1622 // Determine correct search type.
1623 int start;
1624 uint flags;
1625 if (params->run_forward) {
1626 if (text.begin() == context.begin()) {
1627 start = kStartBeginText;
1628 flags = kEmptyBeginText|kEmptyBeginLine;
1629 } else if (text.begin()[-1] == '\n') {
1630 start = kStartBeginLine;
1631 flags = kEmptyBeginLine;
1632 } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) {
1633 start = kStartAfterWordChar;
1634 flags = kFlagLastWord;
1635 } else {
1636 start = kStartAfterNonWordChar;
1637 flags = 0;
1638 }
1639 } else {
1640 if (text.end() == context.end()) {
1641 start = kStartBeginText;
1642 flags = kEmptyBeginText|kEmptyBeginLine;
1643 } else if (text.end()[0] == '\n') {
1644 start = kStartBeginLine;
1645 flags = kEmptyBeginLine;
1646 } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) {
1647 start = kStartAfterWordChar;
1648 flags = kFlagLastWord;
1649 } else {
1650 start = kStartAfterNonWordChar;
1651 flags = 0;
1652 }
1653 }
1654 if (params->anchored || prog_->anchor_start())
1655 start |= kStartAnchored;
1656 StartInfo* info = &start_[start];
1657
1658 // Try once without cache_lock for writing.
1659 // Try again after resetting the cache
1660 // (ResetCache will relock cache_lock for writing).
1661 if (!AnalyzeSearchHelper(params, info, flags)) {
1662 ResetCache(params->cache_lock);
1663 if (!AnalyzeSearchHelper(params, info, flags)) {
1664 LOG(DFATAL) << "Failed to analyze start state.";
1665 params->failed = true;
1666 return false;
1667 }
1668 }
1669
1670 if (DebugDFA)
1671 fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s firstbyte=%d\n",
1672 params->anchored, params->run_forward, flags,
1673 DumpState(info->start).c_str(), info->firstbyte);
1674
1675 params->start = info->start;
1676 params->firstbyte = ANNOTATE_UNPROTECTED_READ(info->firstbyte);
1677
1678 return true;
1679 }
1680
1681 // Fills in info if needed. Returns true on success, false on failure.
AnalyzeSearchHelper(SearchParams * params,StartInfo * info,uint flags)1682 bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
1683 uint flags) {
1684 // Quick check; okay because of memory barriers below.
1685 if (ANNOTATE_UNPROTECTED_READ(info->firstbyte) != kFbUnknown) {
1686 ANNOTATE_HAPPENS_AFTER(&info->firstbyte);
1687 return true;
1688 }
1689
1690 MutexLock l(&mutex_);
1691 if (info->firstbyte != kFbUnknown) {
1692 ANNOTATE_HAPPENS_AFTER(&info->firstbyte);
1693 return true;
1694 }
1695
1696 q0_->clear();
1697 AddToQueue(q0_,
1698 params->anchored ? prog_->start() : prog_->start_unanchored(),
1699 flags);
1700 info->start = WorkqToCachedState(q0_, flags);
1701 if (info->start == NULL)
1702 return false;
1703
1704 if (info->start == DeadState) {
1705 ANNOTATE_HAPPENS_BEFORE(&info->firstbyte);
1706 WriteMemoryBarrier(); // Synchronize with "quick check" above.
1707 info->firstbyte = kFbNone;
1708 return true;
1709 }
1710
1711 if (info->start == FullMatchState) {
1712 ANNOTATE_HAPPENS_BEFORE(&info->firstbyte);
1713 WriteMemoryBarrier(); // Synchronize with "quick check" above.
1714 info->firstbyte = kFbNone; // will be ignored
1715 return true;
1716 }
1717
1718 // Compute info->firstbyte by running state on all
1719 // possible byte values, looking for a single one that
1720 // leads to a different state.
1721 int firstbyte = kFbNone;
1722 for (int i = 0; i < 256; i++) {
1723 State* s = RunStateOnByte(info->start, i);
1724 if (s == NULL) {
1725 ANNOTATE_HAPPENS_BEFORE(&info->firstbyte);
1726 WriteMemoryBarrier(); // Synchronize with "quick check" above.
1727 info->firstbyte = firstbyte;
1728 return false;
1729 }
1730 if (s == info->start)
1731 continue;
1732 // Goes to new state...
1733 if (firstbyte == kFbNone) {
1734 firstbyte = i; // ... first one
1735 } else {
1736 firstbyte = kFbMany; // ... too many
1737 break;
1738 }
1739 }
1740 ANNOTATE_HAPPENS_BEFORE(&info->firstbyte);
1741 WriteMemoryBarrier(); // Synchronize with "quick check" above.
1742 info->firstbyte = firstbyte;
1743 return true;
1744 }
1745
1746 // The actual DFA search: calls AnalyzeSearch and then FastSearchLoop.
Search(const StringPiece & text,const StringPiece & context,bool anchored,bool want_earliest_match,bool run_forward,bool * failed,const char ** epp,vector<int> * matches)1747 bool DFA::Search(const StringPiece& text,
1748 const StringPiece& context,
1749 bool anchored,
1750 bool want_earliest_match,
1751 bool run_forward,
1752 bool* failed,
1753 const char** epp,
1754 vector<int>* matches) {
1755 *epp = NULL;
1756 if (!ok()) {
1757 *failed = true;
1758 return false;
1759 }
1760 *failed = false;
1761
1762 if (DebugDFA) {
1763 fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str());
1764 fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n",
1765 text.as_string().c_str(), anchored, want_earliest_match,
1766 run_forward, kind_);
1767 }
1768
1769 RWLocker l(&cache_mutex_);
1770 SearchParams params(text, context, &l);
1771 params.anchored = anchored;
1772 params.want_earliest_match = want_earliest_match;
1773 params.run_forward = run_forward;
1774 params.matches = matches;
1775
1776 if (!AnalyzeSearch(¶ms)) {
1777 *failed = true;
1778 return false;
1779 }
1780 if (params.start == DeadState)
1781 return false;
1782 if (params.start == FullMatchState) {
1783 if (run_forward == want_earliest_match)
1784 *epp = text.begin();
1785 else
1786 *epp = text.end();
1787 return true;
1788 }
1789 if (DebugDFA)
1790 fprintf(stderr, "start %s\n", DumpState(params.start).c_str());
1791 bool ret = FastSearchLoop(¶ms);
1792 if (params.failed) {
1793 *failed = true;
1794 return false;
1795 }
1796 *epp = params.ep;
1797 return ret;
1798 }
1799
1800 // Deletes dfa.
1801 //
1802 // This is a separate function so that
1803 // prog.h can be used without moving the definition of
1804 // class DFA out of this file. If you set
1805 // prog->dfa_ = dfa;
1806 // then you also have to set
1807 // prog->delete_dfa_ = DeleteDFA;
1808 // so that ~Prog can delete the dfa.
DeleteDFA(DFA * dfa)1809 static void DeleteDFA(DFA* dfa) {
1810 delete dfa;
1811 }
1812
GetDFA(MatchKind kind)1813 DFA* Prog::GetDFA(MatchKind kind) {
1814 DFA*volatile* pdfa;
1815 if (kind == kFirstMatch || kind == kManyMatch) {
1816 pdfa = &dfa_first_;
1817 } else {
1818 kind = kLongestMatch;
1819 pdfa = &dfa_longest_;
1820 }
1821
1822 // Quick check; okay because of memory barrier below.
1823 DFA *dfa = ANNOTATE_UNPROTECTED_READ(*pdfa);
1824 if (dfa != NULL) {
1825 ANNOTATE_HAPPENS_AFTER(dfa);
1826 return dfa;
1827 }
1828
1829 MutexLock l(&dfa_mutex_);
1830 dfa = *pdfa;
1831 if (dfa != NULL) {
1832 ANNOTATE_HAPPENS_AFTER(dfa);
1833 return dfa;
1834 }
1835
1836 // For a forward DFA, half the memory goes to each DFA.
1837 // For a reverse DFA, all the memory goes to the
1838 // "longest match" DFA, because RE2 never does reverse
1839 // "first match" searches.
1840 int64 m = dfa_mem_/2;
1841 if (reversed_) {
1842 if (kind == kLongestMatch || kind == kManyMatch)
1843 m = dfa_mem_;
1844 else
1845 m = 0;
1846 }
1847 dfa = new DFA(this, kind, m);
1848 delete_dfa_ = DeleteDFA;
1849
1850 // Synchronize with "quick check" above.
1851 ANNOTATE_HAPPENS_BEFORE(dfa);
1852 WriteMemoryBarrier();
1853 *pdfa = dfa;
1854
1855 return dfa;
1856 }
1857
1858
1859 // Executes the regexp program to search in text,
1860 // which itself is inside the larger context. (As a convenience,
1861 // passing a NULL context is equivalent to passing text.)
1862 // Returns true if a match is found, false if not.
1863 // If a match is found, fills in match0->end() to point at the end of the match
1864 // and sets match0->begin() to text.begin(), since the DFA can't track
1865 // where the match actually began.
1866 //
1867 // This is the only external interface (class DFA only exists in this file).
1868 //
SearchDFA(const StringPiece & text,const StringPiece & const_context,Anchor anchor,MatchKind kind,StringPiece * match0,bool * failed,vector<int> * matches)1869 bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context,
1870 Anchor anchor, MatchKind kind,
1871 StringPiece* match0, bool* failed, vector<int>* matches) {
1872 *failed = false;
1873
1874 StringPiece context = const_context;
1875 if (context.begin() == NULL)
1876 context = text;
1877 bool carat = anchor_start();
1878 bool dollar = anchor_end();
1879 if (reversed_) {
1880 bool t = carat;
1881 carat = dollar;
1882 dollar = t;
1883 }
1884 if (carat && context.begin() != text.begin())
1885 return false;
1886 if (dollar && context.end() != text.end())
1887 return false;
1888
1889 // Handle full match by running an anchored longest match
1890 // and then checking if it covers all of text.
1891 bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch;
1892 bool endmatch = false;
1893 if (kind == kManyMatch) {
1894 endmatch = true;
1895 } else if (kind == kFullMatch || anchor_end()) {
1896 endmatch = true;
1897 kind = kLongestMatch;
1898 }
1899
1900 // If the caller doesn't care where the match is (just whether one exists),
1901 // then we can stop at the very first match we find, the so-called
1902 // "shortest match".
1903 bool want_shortest_match = false;
1904 if (match0 == NULL && !endmatch) {
1905 want_shortest_match = true;
1906 kind = kLongestMatch;
1907 }
1908
1909 DFA* dfa = GetDFA(kind);
1910 const char* ep;
1911 bool matched = dfa->Search(text, context, anchored,
1912 want_shortest_match, !reversed_,
1913 failed, &ep, matches);
1914 if (*failed)
1915 return false;
1916 if (!matched)
1917 return false;
1918 if (endmatch && ep != (reversed_ ? text.begin() : text.end()))
1919 return false;
1920
1921 // If caller cares, record the boundary of the match.
1922 // We only know where it ends, so use the boundary of text
1923 // as the beginning.
1924 if (match0) {
1925 if (reversed_)
1926 *match0 = StringPiece(ep, text.end() - ep);
1927 else
1928 *match0 = StringPiece(text.begin(), ep - text.begin());
1929 }
1930 return true;
1931 }
1932
1933 // Build out all states in DFA. Returns number of states.
BuildAllStates()1934 int DFA::BuildAllStates() {
1935 if (!ok())
1936 return 0;
1937
1938 // Pick out start state for unanchored search
1939 // at beginning of text.
1940 RWLocker l(&cache_mutex_);
1941 SearchParams params(NULL, NULL, &l);
1942 params.anchored = false;
1943 if (!AnalyzeSearch(¶ms) || params.start <= SpecialStateMax)
1944 return 0;
1945
1946 // Add start state to work queue.
1947 StateSet queued;
1948 vector<State*> q;
1949 queued.insert(params.start);
1950 q.push_back(params.start);
1951
1952 // Flood to expand every state.
1953 for (int i = 0; i < q.size(); i++) {
1954 State* s = q[i];
1955 for (int c = 0; c < 257; c++) {
1956 State* ns = RunStateOnByteUnlocked(s, c);
1957 if (ns > SpecialStateMax && queued.find(ns) == queued.end()) {
1958 queued.insert(ns);
1959 q.push_back(ns);
1960 }
1961 }
1962 }
1963
1964 return q.size();
1965 }
1966
1967 // Build out all states in DFA for kind. Returns number of states.
BuildEntireDFA(MatchKind kind)1968 int Prog::BuildEntireDFA(MatchKind kind) {
1969 //LOG(ERROR) << "BuildEntireDFA is only for testing.";
1970 return GetDFA(kind)->BuildAllStates();
1971 }
1972
1973 // Computes min and max for matching string.
1974 // Won't return strings bigger than maxlen.
PossibleMatchRange(string * min,string * max,int maxlen)1975 bool DFA::PossibleMatchRange(string* min, string* max, int maxlen) {
1976 if (!ok())
1977 return false;
1978
1979 // NOTE: if future users of PossibleMatchRange want more precision when
1980 // presented with infinitely repeated elements, consider making this a
1981 // parameter to PossibleMatchRange.
1982 static int kMaxEltRepetitions = 0;
1983
1984 // Keep track of the number of times we've visited states previously. We only
1985 // revisit a given state if it's part of a repeated group, so if the value
1986 // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set
1987 // |*max| to |PrefixSuccessor(*max)|.
1988 //
1989 // Also note that previously_visited_states[UnseenStatePtr] will, in the STL
1990 // tradition, implicitly insert a '0' value at first use. We take advantage
1991 // of that property below.
1992 map<State*, int> previously_visited_states;
1993
1994 // Pick out start state for anchored search at beginning of text.
1995 RWLocker l(&cache_mutex_);
1996 SearchParams params(NULL, NULL, &l);
1997 params.anchored = true;
1998 if (!AnalyzeSearch(¶ms))
1999 return false;
2000 if (params.start == DeadState) { // No matching strings
2001 *min = "";
2002 *max = "";
2003 return true;
2004 }
2005 if (params.start == FullMatchState) // Every string matches: no max
2006 return false;
2007
2008 // The DFA is essentially a big graph rooted at params.start,
2009 // and paths in the graph correspond to accepted strings.
2010 // Each node in the graph has potentially 256+1 arrows
2011 // coming out, one for each byte plus the magic end of
2012 // text character kByteEndText.
2013
2014 // To find the smallest possible prefix of an accepted
2015 // string, we just walk the graph preferring to follow
2016 // arrows with the lowest bytes possible. To find the
2017 // largest possible prefix, we follow the largest bytes
2018 // possible.
2019
2020 // The test for whether there is an arrow from s on byte j is
2021 // ns = RunStateOnByteUnlocked(s, j);
2022 // if (ns == NULL)
2023 // return false;
2024 // if (ns != DeadState && ns->ninst > 0)
2025 // The RunStateOnByteUnlocked call asks the DFA to build out the graph.
2026 // It returns NULL only if the DFA has run out of memory,
2027 // in which case we can't be sure of anything.
2028 // The second check sees whether there was graph built
2029 // and whether it is interesting graph. Nodes might have
2030 // ns->ninst == 0 if they exist only to represent the fact
2031 // that a match was found on the previous byte.
2032
2033 // Build minimum prefix.
2034 State* s = params.start;
2035 min->clear();
2036 for (int i = 0; i < maxlen; i++) {
2037 if (previously_visited_states[s] > kMaxEltRepetitions) {
2038 VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions
2039 << " for state s=" << s << " and min=" << CEscape(*min);
2040 break;
2041 }
2042 previously_visited_states[s]++;
2043
2044 // Stop if min is a match.
2045 State* ns = RunStateOnByteUnlocked(s, kByteEndText);
2046 if (ns == NULL) // DFA out of memory
2047 return false;
2048 if (ns != DeadState && (ns == FullMatchState || ns->IsMatch()))
2049 break;
2050
2051 // Try to extend the string with low bytes.
2052 bool extended = false;
2053 for (int j = 0; j < 256; j++) {
2054 ns = RunStateOnByteUnlocked(s, j);
2055 if (ns == NULL) // DFA out of memory
2056 return false;
2057 if (ns == FullMatchState ||
2058 (ns > SpecialStateMax && ns->ninst_ > 0)) {
2059 extended = true;
2060 min->append(1, j);
2061 s = ns;
2062 break;
2063 }
2064 }
2065 if (!extended)
2066 break;
2067 }
2068
2069 // Build maximum prefix.
2070 previously_visited_states.clear();
2071 s = params.start;
2072 max->clear();
2073 for (int i = 0; i < maxlen; i++) {
2074 if (previously_visited_states[s] > kMaxEltRepetitions) {
2075 VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions
2076 << " for state s=" << s << " and max=" << CEscape(*max);
2077 break;
2078 }
2079 previously_visited_states[s] += 1;
2080
2081 // Try to extend the string with high bytes.
2082 bool extended = false;
2083 for (int j = 255; j >= 0; j--) {
2084 State* ns = RunStateOnByteUnlocked(s, j);
2085 if (ns == NULL)
2086 return false;
2087 if (ns == FullMatchState ||
2088 (ns > SpecialStateMax && ns->ninst_ > 0)) {
2089 extended = true;
2090 max->append(1, j);
2091 s = ns;
2092 break;
2093 }
2094 }
2095 if (!extended) {
2096 // Done, no need for PrefixSuccessor.
2097 return true;
2098 }
2099 }
2100
2101 // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b
2102 *max = PrefixSuccessor(*max);
2103
2104 // If there are no bytes left, we have no way to say "there is no maximum
2105 // string". We could make the interface more complicated and be able to
2106 // return "there is no maximum but here is a minimum", but that seems like
2107 // overkill -- the most common no-max case is all possible strings, so not
2108 // telling the caller that the empty string is the minimum match isn't a
2109 // great loss.
2110 if (max->empty())
2111 return false;
2112
2113 return true;
2114 }
2115
2116 // PossibleMatchRange for a Prog.
PossibleMatchRange(string * min,string * max,int maxlen)2117 bool Prog::PossibleMatchRange(string* min, string* max, int maxlen) {
2118 DFA* dfa = NULL;
2119 {
2120 MutexLock l(&dfa_mutex_);
2121 // Have to use dfa_longest_ to get all strings for full matches.
2122 // For example, (a|aa) never matches aa in first-match mode.
2123 if (dfa_longest_ == NULL) {
2124 dfa_longest_ = new DFA(this, Prog::kLongestMatch, dfa_mem_/2);
2125 delete_dfa_ = DeleteDFA;
2126 }
2127 dfa = dfa_longest_;
2128 }
2129 return dfa->PossibleMatchRange(min, max, maxlen);
2130 }
2131
2132 } // namespace re2
2133