• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2003-2009 The RE2 Authors.  All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4 
5 #ifndef RE2_RE2_H
6 #define RE2_RE2_H
7 
8 // C++ interface to the re2 regular-expression library.
9 // RE2 supports Perl-style regular expressions (with extensions like
10 // \d, \w, \s, ...).
11 //
12 // -----------------------------------------------------------------------
13 // REGEXP SYNTAX:
14 //
15 // This module uses the re2 library and hence supports
16 // its syntax for regular expressions, which is similar to Perl's with
17 // some of the more complicated things thrown away.  In particular,
18 // backreferences and generalized assertions are not available, nor is \Z.
19 //
20 // See http://code.google.com/p/re2/wiki/Syntax for the syntax
21 // supported by RE2, and a comparison with PCRE and PERL regexps.
22 //
23 // For those not familiar with Perl's regular expressions,
24 // here are some examples of the most commonly used extensions:
25 //
26 //   "hello (\\w+) world"  -- \w matches a "word" character
27 //   "version (\\d+)"      -- \d matches a digit
28 //   "hello\\s+world"      -- \s matches any whitespace character
29 //   "\\b(\\w+)\\b"        -- \b matches non-empty string at word boundary
30 //   "(?i)hello"           -- (?i) turns on case-insensitive matching
31 //   "/\\*(.*?)\\*/"       -- .*? matches . minimum no. of times possible
32 //
33 // -----------------------------------------------------------------------
34 // MATCHING INTERFACE:
35 //
36 // The "FullMatch" operation checks that supplied text matches a
37 // supplied pattern exactly.
38 //
39 // Example: successful match
40 //    CHECK(RE2::FullMatch("hello", "h.*o"));
41 //
42 // Example: unsuccessful match (requires full match):
43 //    CHECK(!RE2::FullMatch("hello", "e"));
44 //
45 // -----------------------------------------------------------------------
46 // UTF-8 AND THE MATCHING INTERFACE:
47 //
48 // By default, the pattern and input text are interpreted as UTF-8.
49 // The RE2::Latin1 option causes them to be interpreted as Latin-1.
50 //
51 // Example:
52 //    CHECK(RE2::FullMatch(utf8_string, RE2(utf8_pattern)));
53 //    CHECK(RE2::FullMatch(latin1_string, RE2(latin1_pattern, RE2::Latin1)));
54 //
55 // -----------------------------------------------------------------------
56 // MATCHING WITH SUB-STRING EXTRACTION:
57 //
58 // You can supply extra pointer arguments to extract matched subpieces.
59 //
60 // Example: extracts "ruby" into "s" and 1234 into "i"
61 //    int i;
62 //    string s;
63 //    CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s, &i));
64 //
65 // Example: fails because string cannot be stored in integer
66 //    CHECK(!RE2::FullMatch("ruby", "(.*)", &i));
67 //
68 // Example: fails because there aren't enough sub-patterns:
69 //    CHECK(!RE2::FullMatch("ruby:1234", "\\w+:\\d+", &s));
70 //
71 // Example: does not try to extract any extra sub-patterns
72 //    CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s));
73 //
74 // Example: does not try to extract into NULL
75 //    CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", NULL, &i));
76 //
77 // Example: integer overflow causes failure
78 //    CHECK(!RE2::FullMatch("ruby:1234567891234", "\\w+:(\\d+)", &i));
79 //
80 // NOTE(rsc): Asking for substrings slows successful matches quite a bit.
81 // This may get a little faster in the future, but right now is slower
82 // than PCRE.  On the other hand, failed matches run *very* fast (faster
83 // than PCRE), as do matches without substring extraction.
84 //
85 // -----------------------------------------------------------------------
86 // PARTIAL MATCHES
87 //
88 // You can use the "PartialMatch" operation when you want the pattern
89 // to match any substring of the text.
90 //
91 // Example: simple search for a string:
92 //      CHECK(RE2::PartialMatch("hello", "ell"));
93 //
94 // Example: find first number in a string
95 //      int number;
96 //      CHECK(RE2::PartialMatch("x*100 + 20", "(\\d+)", &number));
97 //      CHECK_EQ(number, 100);
98 //
99 // -----------------------------------------------------------------------
100 // PRE-COMPILED REGULAR EXPRESSIONS
101 //
102 // RE2 makes it easy to use any string as a regular expression, without
103 // requiring a separate compilation step.
104 //
105 // If speed is of the essence, you can create a pre-compiled "RE2"
106 // object from the pattern and use it multiple times.  If you do so,
107 // you can typically parse text faster than with sscanf.
108 //
109 // Example: precompile pattern for faster matching:
110 //    RE2 pattern("h.*o");
111 //    while (ReadLine(&str)) {
112 //      if (RE2::FullMatch(str, pattern)) ...;
113 //    }
114 //
115 // -----------------------------------------------------------------------
116 // SCANNING TEXT INCREMENTALLY
117 //
118 // The "Consume" operation may be useful if you want to repeatedly
119 // match regular expressions at the front of a string and skip over
120 // them as they match.  This requires use of the "StringPiece" type,
121 // which represents a sub-range of a real string.
122 //
123 // Example: read lines of the form "var = value" from a string.
124 //      string contents = ...;          // Fill string somehow
125 //      StringPiece input(contents);    // Wrap a StringPiece around it
126 //
127 //      string var;
128 //      int value;
129 //      while (RE2::Consume(&input, "(\\w+) = (\\d+)\n", &var, &value)) {
130 //        ...;
131 //      }
132 //
133 // Each successful call to "Consume" will set "var/value", and also
134 // advance "input" so it points past the matched text.  Note that if the
135 // regular expression matches an empty string, input will advance
136 // by 0 bytes.  If the regular expression being used might match
137 // an empty string, the loop body must check for this case and either
138 // advance the string or break out of the loop.
139 //
140 // The "FindAndConsume" operation is similar to "Consume" but does not
141 // anchor your match at the beginning of the string.  For example, you
142 // could extract all words from a string by repeatedly calling
143 //     RE2::FindAndConsume(&input, "(\\w+)", &word)
144 //
145 // -----------------------------------------------------------------------
146 // USING VARIABLE NUMBER OF ARGUMENTS
147 //
148 // The above operations require you to know the number of arguments
149 // when you write the code.  This is not always possible or easy (for
150 // example, the regular expression may be calculated at run time).
151 // You can use the "N" version of the operations when the number of
152 // match arguments are determined at run time.
153 //
154 // Example:
155 //   const RE2::Arg* args[10];
156 //   int n;
157 //   // ... populate args with pointers to RE2::Arg values ...
158 //   // ... set n to the number of RE2::Arg objects ...
159 //   bool match = RE2::FullMatchN(input, pattern, args, n);
160 //
161 // The last statement is equivalent to
162 //
163 //   bool match = RE2::FullMatch(input, pattern,
164 //                               *args[0], *args[1], ..., *args[n - 1]);
165 //
166 // -----------------------------------------------------------------------
167 // PARSING HEX/OCTAL/C-RADIX NUMBERS
168 //
169 // By default, if you pass a pointer to a numeric value, the
170 // corresponding text is interpreted as a base-10 number.  You can
171 // instead wrap the pointer with a call to one of the operators Hex(),
172 // Octal(), or CRadix() to interpret the text in another base.  The
173 // CRadix operator interprets C-style "0" (base-8) and "0x" (base-16)
174 // prefixes, but defaults to base-10.
175 //
176 // Example:
177 //   int a, b, c, d;
178 //   CHECK(RE2::FullMatch("100 40 0100 0x40", "(.*) (.*) (.*) (.*)",
179 //         RE2::Octal(&a), RE2::Hex(&b), RE2::CRadix(&c), RE2::CRadix(&d));
180 // will leave 64 in a, b, c, and d.
181 
182 
183 #include <stdint.h>
184 #include <map>
185 #include <string>
186 #include "re2/stringpiece.h"
187 #include "re2/variadic_function.h"
188 
189 namespace re2 {
190 
191 using std::string;
192 using std::map;
193 class Mutex;
194 class Prog;
195 class Regexp;
196 
197 // The following enum should be used only as a constructor argument to indicate
198 // that the variable has static storage class, and that the constructor should
199 // do nothing to its state.  It indicates to the reader that it is legal to
200 // declare a static instance of the class, provided the constructor is given
201 // the LINKER_INITIALIZED argument.  Normally, it is unsafe to declare a
202 // static variable that has a constructor or a destructor because invocation
203 // order is undefined.  However, IF the type can be initialized by filling with
204 // zeroes (which the loader does for static variables), AND the type's
205 // destructor does nothing to the storage, then a constructor for static
206 // initialization can be declared as
207 //       explicit MyClass(LinkerInitialized x) {}
208 // and invoked as
209 //       static MyClass my_variable_name(LINKER_INITIALIZED);
210 enum LinkerInitialized { LINKER_INITIALIZED };
211 
212 // Interface for regular expression matching.  Also corresponds to a
213 // pre-compiled regular expression.  An "RE2" object is safe for
214 // concurrent use by multiple threads.
215 class RE2 {
216  public:
217   // We convert user-passed pointers into special Arg objects
218   class Arg;
219   class Options;
220 
221   // Defined in set.h.
222   class Set;
223 
224   enum ErrorCode {
225     NoError = 0,
226 
227     // Unexpected error
228     ErrorInternal,
229 
230     // Parse errors
231     ErrorBadEscape,          // bad escape sequence
232     ErrorBadCharClass,       // bad character class
233     ErrorBadCharRange,       // bad character class range
234     ErrorMissingBracket,     // missing closing ]
235     ErrorMissingParen,       // missing closing )
236     ErrorTrailingBackslash,  // trailing \ at end of regexp
237     ErrorRepeatArgument,     // repeat argument missing, e.g. "*"
238     ErrorRepeatSize,         // bad repetition argument
239     ErrorRepeatOp,           // bad repetition operator
240     ErrorBadPerlOp,          // bad perl operator
241     ErrorBadUTF8,            // invalid UTF-8 in regexp
242     ErrorBadNamedCapture,    // bad named capture group
243     ErrorPatternTooLarge,    // pattern too large (compile failed)
244   };
245 
246   // Predefined common options.
247   // If you need more complicated things, instantiate
248   // an Option class, possibly passing one of these to
249   // the Option constructor, change the settings, and pass that
250   // Option class to the RE2 constructor.
251   enum CannedOptions {
252     DefaultOptions = 0,
253     Latin1, // treat input as Latin-1 (default UTF-8)
254     POSIX, // POSIX syntax, leftmost-longest match
255     Quiet // do not log about regexp parse errors
256   };
257 
258   // Need to have the const char* and const string& forms for implicit
259   // conversions when passing string literals to FullMatch and PartialMatch.
260   // Otherwise the StringPiece form would be sufficient.
261 #ifndef SWIG
262   RE2(const char* pattern);
263   RE2(const string& pattern);
264 #endif
265   RE2(const StringPiece& pattern);
266   RE2(const StringPiece& pattern, const Options& option);
267   ~RE2();
268 
269   // Returns whether RE2 was created properly.
ok()270   bool ok() const { return error_code() == NoError; }
271 
272   // The string specification for this RE2.  E.g.
273   //   RE2 re("ab*c?d+");
274   //   re.pattern();    // "ab*c?d+"
pattern()275   const string& pattern() const { return pattern_; }
276 
277   // If RE2 could not be created properly, returns an error string.
278   // Else returns the empty string.
error()279   const string& error() const { return *error_; }
280 
281   // If RE2 could not be created properly, returns an error code.
282   // Else returns RE2::NoError (== 0).
error_code()283   ErrorCode error_code() const { return error_code_; }
284 
285   // If RE2 could not be created properly, returns the offending
286   // portion of the regexp.
error_arg()287   const string& error_arg() const { return error_arg_; }
288 
289   // Returns the program size, a very approximate measure of a regexp's "cost".
290   // Larger numbers are more expensive than smaller numbers.
291   int ProgramSize() const;
292 
293   // Returns the underlying Regexp; not for general use.
294   // Returns entire_regexp_ so that callers don't need
295   // to know about prefix_ and prefix_foldcase_.
Regexp()296   re2::Regexp* Regexp() const { return entire_regexp_; }
297 
298   /***** The useful part: the matching interface *****/
299 
300   // Matches "text" against "pattern".  If pointer arguments are
301   // supplied, copies matched sub-patterns into them.
302   //
303   // You can pass in a "const char*" or a "string" for "text".
304   // You can pass in a "const char*" or a "string" or a "RE2" for "pattern".
305   //
306   // The provided pointer arguments can be pointers to any scalar numeric
307   // type, or one of:
308   //    string          (matched piece is copied to string)
309   //    StringPiece     (StringPiece is mutated to point to matched piece)
310   //    T               (where "bool T::ParseFrom(const char*, int)" exists)
311   //    (void*)NULL     (the corresponding matched sub-pattern is not copied)
312   //
313   // Returns true iff all of the following conditions are satisfied:
314   //   a. "text" matches "pattern" exactly
315   //   b. The number of matched sub-patterns is >= number of supplied pointers
316   //   c. The "i"th argument has a suitable type for holding the
317   //      string captured as the "i"th sub-pattern.  If you pass in
318   //      NULL for the "i"th argument, or pass fewer arguments than
319   //      number of sub-patterns, "i"th captured sub-pattern is
320   //      ignored.
321   //
322   // CAVEAT: An optional sub-pattern that does not exist in the
323   // matched string is assigned the empty string.  Therefore, the
324   // following will return false (because the empty string is not a
325   // valid number):
326   //    int number;
327   //    RE2::FullMatch("abc", "[a-z]+(\\d+)?", &number);
328   static bool FullMatchN(const StringPiece& text, const RE2& re,
329                          const Arg* const args[], int argc);
330   static const VariadicFunction2<
331       bool, const StringPiece&, const RE2&, Arg, RE2::FullMatchN> FullMatch;
332 
333   // Exactly like FullMatch(), except that "pattern" is allowed to match
334   // a substring of "text".
335   static bool PartialMatchN(const StringPiece& text, const RE2& re, // 3..16 args
336                             const Arg* const args[], int argc);
337   static const VariadicFunction2<
338       bool, const StringPiece&, const RE2&, Arg, RE2::PartialMatchN> PartialMatch;
339 
340   // Like FullMatch() and PartialMatch(), except that pattern has to
341   // match a prefix of "text", and "input" is advanced past the matched
342   // text.  Note: "input" is modified iff this routine returns true.
343   static bool ConsumeN(StringPiece* input, const RE2& pattern, // 3..16 args
344                        const Arg* const args[], int argc);
345   static const VariadicFunction2<
346       bool, StringPiece*, const RE2&, Arg, RE2::ConsumeN> Consume;
347 
348   // Like Consume(..), but does not anchor the match at the beginning of the
349   // string.  That is, "pattern" need not start its match at the beginning of
350   // "input".  For example, "FindAndConsume(s, "(\\w+)", &word)" finds the next
351   // word in "s" and stores it in "word".
352   static bool FindAndConsumeN(StringPiece* input, const RE2& pattern,
353                              const Arg* const args[], int argc);
354   static const VariadicFunction2<
355       bool, StringPiece*, const RE2&, Arg, RE2::FindAndConsumeN> FindAndConsume;
356 
357   // Replace the first match of "pattern" in "str" with "rewrite".
358   // Within "rewrite", backslash-escaped digits (\1 to \9) can be
359   // used to insert text matching corresponding parenthesized group
360   // from the pattern.  \0 in "rewrite" refers to the entire matching
361   // text.  E.g.,
362   //
363   //   string s = "yabba dabba doo";
364   //   CHECK(RE2::Replace(&s, "b+", "d"));
365   //
366   // will leave "s" containing "yada dabba doo"
367   //
368   // Returns true if the pattern matches and a replacement occurs,
369   // false otherwise.
370   static bool Replace(string *str,
371                       const RE2& pattern,
372                       const StringPiece& rewrite);
373 
374   // Like Replace(), except replaces successive non-overlapping occurrences
375   // of the pattern in the string with the rewrite. E.g.
376   //
377   //   string s = "yabba dabba doo";
378   //   CHECK(RE2::GlobalReplace(&s, "b+", "d"));
379   //
380   // will leave "s" containing "yada dada doo"
381   // Replacements are not subject to re-matching.
382   //
383   // Because GlobalReplace only replaces non-overlapping matches,
384   // replacing "ana" within "banana" makes only one replacement, not two.
385   //
386   // Returns the number of replacements made.
387   static int GlobalReplace(string *str,
388                            const RE2& pattern,
389                            const StringPiece& rewrite);
390 
391   // Like Replace, except that if the pattern matches, "rewrite"
392   // is copied into "out" with substitutions.  The non-matching
393   // portions of "text" are ignored.
394   //
395   // Returns true iff a match occurred and the extraction happened
396   // successfully;  if no match occurs, the string is left unaffected.
397   static bool Extract(const StringPiece &text,
398                       const RE2& pattern,
399                       const StringPiece &rewrite,
400                       string *out);
401 
402   // Escapes all potentially meaningful regexp characters in
403   // 'unquoted'.  The returned string, used as a regular expression,
404   // will exactly match the original string.  For example,
405   //           1.5-2.0?
406   // may become:
407   //           1\.5\-2\.0\?
408   static string QuoteMeta(const StringPiece& unquoted);
409 
410   // Computes range for any strings matching regexp. The min and max can in
411   // some cases be arbitrarily precise, so the caller gets to specify the
412   // maximum desired length of string returned.
413   //
414   // Assuming PossibleMatchRange(&min, &max, N) returns successfully, any
415   // string s that is an anchored match for this regexp satisfies
416   //   min <= s && s <= max.
417   //
418   // Note that PossibleMatchRange() will only consider the first copy of an
419   // infinitely repeated element (i.e., any regexp element followed by a '*' or
420   // '+' operator). Regexps with "{N}" constructions are not affected, as those
421   // do not compile down to infinite repetitions.
422   //
423   // Returns true on success, false on error.
424   bool PossibleMatchRange(string* min, string* max, int maxlen) const;
425 
426   // Generic matching interface
427 
428   // Type of match.
429   enum Anchor {
430     UNANCHORED,         // No anchoring
431     ANCHOR_START,       // Anchor at start only
432     ANCHOR_BOTH,        // Anchor at start and end
433   };
434 
435   // Return the number of capturing subpatterns, or -1 if the
436   // regexp wasn't valid on construction.  The overall match ($0)
437   // does not count: if the regexp is "(a)(b)", returns 2.
438   int NumberOfCapturingGroups() const;
439 
440 
441   // Return a map from names to capturing indices.
442   // The map records the index of the leftmost group
443   // with the given name.
444   // Only valid until the re is deleted.
445   const map<string, int>& NamedCapturingGroups() const;
446 
447   // Return a map from capturing indices to names.
448   // The map has no entries for unnamed groups.
449   // Only valid until the re is deleted.
450   const map<int, string>& CapturingGroupNames() const;
451 
452   // General matching routine.
453   // Match against text starting at offset startpos
454   // and stopping the search at offset endpos.
455   // Returns true if match found, false if not.
456   // On a successful match, fills in match[] (up to nmatch entries)
457   // with information about submatches.
458   // I.e. matching RE2("(foo)|(bar)baz") on "barbazbla" will return true,
459   // setting match[0] = "barbaz", match[1] = NULL, match[2] = "bar",
460   // match[3] = NULL, ..., up to match[nmatch-1] = NULL.
461   //
462   // Don't ask for more match information than you will use:
463   // runs much faster with nmatch == 1 than nmatch > 1, and
464   // runs even faster if nmatch == 0.
465   // Doesn't make sense to use nmatch > 1 + NumberOfCapturingGroups(),
466   // but will be handled correctly.
467   //
468   // Passing text == StringPiece(NULL, 0) will be handled like any other
469   // empty string, but note that on return, it will not be possible to tell
470   // whether submatch i matched the empty string or did not match:
471   // either way, match[i] == NULL.
472   bool Match(const StringPiece& text,
473              int startpos,
474              int endpos,
475              Anchor anchor,
476              StringPiece *match,
477              int nmatch) const;
478 
479   // Check that the given rewrite string is suitable for use with this
480   // regular expression.  It checks that:
481   //   * The regular expression has enough parenthesized subexpressions
482   //     to satisfy all of the \N tokens in rewrite
483   //   * The rewrite string doesn't have any syntax errors.  E.g.,
484   //     '\' followed by anything other than a digit or '\'.
485   // A true return value guarantees that Replace() and Extract() won't
486   // fail because of a bad rewrite string.
487   bool CheckRewriteString(const StringPiece& rewrite, string* error) const;
488 
489   // Returns the maximum submatch needed for the rewrite to be done by
490   // Replace(). E.g. if rewrite == "foo \\2,\\1", returns 2.
491   static int MaxSubmatch(const StringPiece& rewrite);
492 
493   // Append the "rewrite" string, with backslash subsitutions from "vec",
494   // to string "out".
495   // Returns true on success.  This method can fail because of a malformed
496   // rewrite string.  CheckRewriteString guarantees that the rewrite will
497   // be sucessful.
498   bool Rewrite(string *out,
499                const StringPiece &rewrite,
500                const StringPiece* vec,
501                int veclen) const;
502 
503   // Constructor options
504   class Options {
505    public:
506     // The options are (defaults in parentheses):
507     //
508     //   utf8             (true)  text and pattern are UTF-8; otherwise Latin-1
509     //   posix_syntax     (false) restrict regexps to POSIX egrep syntax
510     //   longest_match    (false) search for longest match, not first match
511     //   log_errors       (true)  log syntax and execution errors to ERROR
512     //   max_mem          (see below)  approx. max memory footprint of RE2
513     //   literal          (false) interpret string as literal, not regexp
514     //   never_nl         (false) never match \n, even if it is in regexp
515     //   never_capture    (false) parse all parens as non-capturing
516     //   case_sensitive   (true)  match is case-sensitive (regexp can override
517     //                              with (?i) unless in posix_syntax mode)
518     //
519     // The following options are only consulted when posix_syntax == true.
520     // (When posix_syntax == false these features are always enabled and
521     // cannot be turned off.)
522     //   perl_classes     (false) allow Perl's \d \s \w \D \S \W
523     //   word_boundary    (false) allow Perl's \b \B (word boundary and not)
524     //   one_line         (false) ^ and $ only match beginning and end of text
525     //
526     // The max_mem option controls how much memory can be used
527     // to hold the compiled form of the regexp (the Prog) and
528     // its cached DFA graphs.  Code Search placed limits on the number
529     // of Prog instructions and DFA states: 10,000 for both.
530     // In RE2, those limits would translate to about 240 KB per Prog
531     // and perhaps 2.5 MB per DFA (DFA state sizes vary by regexp; RE2 does a
532     // better job of keeping them small than Code Search did).
533     // Each RE2 has two Progs (one forward, one reverse), and each Prog
534     // can have two DFAs (one first match, one longest match).
535     // That makes 4 DFAs:
536     //
537     //   forward, first-match    - used for UNANCHORED or ANCHOR_LEFT searches
538     //                               if opt.longest_match() == false
539     //   forward, longest-match  - used for all ANCHOR_BOTH searches,
540     //                               and the other two kinds if
541     //                               opt.longest_match() == true
542     //   reverse, first-match    - never used
543     //   reverse, longest-match  - used as second phase for unanchored searches
544     //
545     // The RE2 memory budget is statically divided between the two
546     // Progs and then the DFAs: two thirds to the forward Prog
547     // and one third to the reverse Prog.  The forward Prog gives half
548     // of what it has left over to each of its DFAs.  The reverse Prog
549     // gives it all to its longest-match DFA.
550     //
551     // Once a DFA fills its budget, it flushes its cache and starts over.
552     // If this happens too often, RE2 falls back on the NFA implementation.
553 
554     // For now, make the default budget something close to Code Search.
555     static const int kDefaultMaxMem = 8<<20;
556 
557     enum Encoding {
558       EncodingUTF8 = 1,
559       EncodingLatin1
560     };
561 
Options()562     Options() :
563       encoding_(EncodingUTF8),
564       posix_syntax_(false),
565       longest_match_(false),
566       log_errors_(true),
567       max_mem_(kDefaultMaxMem),
568       literal_(false),
569       never_nl_(false),
570       never_capture_(false),
571       case_sensitive_(true),
572       perl_classes_(false),
573       word_boundary_(false),
574       one_line_(false) {
575     }
576 
577     /*implicit*/ Options(CannedOptions);
578 
encoding()579     Encoding encoding() const { return encoding_; }
set_encoding(Encoding encoding)580     void set_encoding(Encoding encoding) { encoding_ = encoding; }
581 
582     // Legacy interface to encoding.
583     // TODO(rsc): Remove once clients have been converted.
utf8()584     bool utf8() const { return encoding_ == EncodingUTF8; }
set_utf8(bool b)585     void set_utf8(bool b) {
586       if (b) {
587         encoding_ = EncodingUTF8;
588       } else {
589         encoding_ = EncodingLatin1;
590       }
591     }
592 
posix_syntax()593     bool posix_syntax() const { return posix_syntax_; }
set_posix_syntax(bool b)594     void set_posix_syntax(bool b) { posix_syntax_ = b; }
595 
longest_match()596     bool longest_match() const { return longest_match_; }
set_longest_match(bool b)597     void set_longest_match(bool b) { longest_match_ = b; }
598 
log_errors()599     bool log_errors() const { return log_errors_; }
set_log_errors(bool b)600     void set_log_errors(bool b) { log_errors_ = b; }
601 
max_mem()602     int max_mem() const { return max_mem_; }
set_max_mem(int m)603     void set_max_mem(int m) { max_mem_ = m; }
604 
literal()605     bool literal() const { return literal_; }
set_literal(bool b)606     void set_literal(bool b) { literal_ = b; }
607 
never_nl()608     bool never_nl() const { return never_nl_; }
set_never_nl(bool b)609     void set_never_nl(bool b) { never_nl_ = b; }
610 
never_capture()611     bool never_capture() const { return never_capture_; }
set_never_capture(bool b)612     void set_never_capture(bool b) { never_capture_ = b; }
613 
case_sensitive()614     bool case_sensitive() const { return case_sensitive_; }
set_case_sensitive(bool b)615     void set_case_sensitive(bool b) { case_sensitive_ = b; }
616 
perl_classes()617     bool perl_classes() const { return perl_classes_; }
set_perl_classes(bool b)618     void set_perl_classes(bool b) { perl_classes_ = b; }
619 
word_boundary()620     bool word_boundary() const { return word_boundary_; }
set_word_boundary(bool b)621     void set_word_boundary(bool b) { word_boundary_ = b; }
622 
one_line()623     bool one_line() const { return one_line_; }
set_one_line(bool b)624     void set_one_line(bool b) { one_line_ = b; }
625 
Copy(const Options & src)626     void Copy(const Options& src) {
627       encoding_ = src.encoding_;
628       posix_syntax_ = src.posix_syntax_;
629       longest_match_ = src.longest_match_;
630       log_errors_ = src.log_errors_;
631       max_mem_ = src.max_mem_;
632       literal_ = src.literal_;
633       never_nl_ = src.never_nl_;
634       never_capture_ = src.never_capture_;
635       case_sensitive_ = src.case_sensitive_;
636       perl_classes_ = src.perl_classes_;
637       word_boundary_ = src.word_boundary_;
638       one_line_ = src.one_line_;
639     }
640 
641     int ParseFlags() const;
642 
643    private:
644     Encoding encoding_;
645     bool posix_syntax_;
646     bool longest_match_;
647     bool log_errors_;
648     int64_t max_mem_;
649     bool literal_;
650     bool never_nl_;
651     bool never_capture_;
652     bool case_sensitive_;
653     bool perl_classes_;
654     bool word_boundary_;
655     bool one_line_;
656 
657     //DISALLOW_EVIL_CONSTRUCTORS(Options);
658     Options(const Options&);
659     void operator=(const Options&);
660   };
661 
662   // Returns the options set in the constructor.
options()663   const Options& options() const { return options_; };
664 
665   // Argument converters; see below.
666   static inline Arg CRadix(short* x);
667   static inline Arg CRadix(unsigned short* x);
668   static inline Arg CRadix(int* x);
669   static inline Arg CRadix(unsigned int* x);
670   static inline Arg CRadix(long* x);
671   static inline Arg CRadix(unsigned long* x);
672   static inline Arg CRadix(long long* x);
673   static inline Arg CRadix(unsigned long long* x);
674 
675   static inline Arg Hex(short* x);
676   static inline Arg Hex(unsigned short* x);
677   static inline Arg Hex(int* x);
678   static inline Arg Hex(unsigned int* x);
679   static inline Arg Hex(long* x);
680   static inline Arg Hex(unsigned long* x);
681   static inline Arg Hex(long long* x);
682   static inline Arg Hex(unsigned long long* x);
683 
684   static inline Arg Octal(short* x);
685   static inline Arg Octal(unsigned short* x);
686   static inline Arg Octal(int* x);
687   static inline Arg Octal(unsigned int* x);
688   static inline Arg Octal(long* x);
689   static inline Arg Octal(unsigned long* x);
690   static inline Arg Octal(long long* x);
691   static inline Arg Octal(unsigned long long* x);
692 
693  private:
694   void Init(const StringPiece& pattern, const Options& options);
695 
696   bool DoMatch(const StringPiece& text,
697                    Anchor anchor,
698                    int* consumed,
699                    const Arg* const args[],
700                    int n) const;
701 
702   re2::Prog* ReverseProg() const;
703 
704   mutable Mutex*           mutex_;
705   string                   pattern_;       // string regular expression
706   Options                  options_;       // option flags
707   string        prefix_;           // required prefix (before regexp_)
708   bool          prefix_foldcase_;  // prefix is ASCII case-insensitive
709   re2::Regexp*  entire_regexp_;    // parsed regular expression
710   re2::Regexp*  suffix_regexp_;    // parsed regular expression, prefix removed
711   re2::Prog*    prog_;             // compiled program for regexp
712   mutable re2::Prog* rprog_;       // reverse program for regexp
713   bool                     is_one_pass_;   // can use prog_->SearchOnePass?
714   mutable const string*    error_;         // Error indicator
715                                            // (or points to empty string)
716   mutable ErrorCode        error_code_;    // Error code
717   mutable string           error_arg_;     // Fragment of regexp showing error
718   mutable int              num_captures_;  // Number of capturing groups
719 
720   // Map from capture names to indices
721   mutable const map<string, int>* named_groups_;
722 
723   // Map from capture indices to names
724   mutable const map<int, string>* group_names_;
725 
726   //DISALLOW_EVIL_CONSTRUCTORS(RE2);
727   RE2(const RE2&);
728   void operator=(const RE2&);
729 };
730 
731 /***** Implementation details *****/
732 
733 // Hex/Octal/Binary?
734 
735 // Special class for parsing into objects that define a ParseFrom() method
736 template <class T>
737 class _RE2_MatchObject {
738  public:
Parse(const char * str,int n,void * dest)739   static inline bool Parse(const char* str, int n, void* dest) {
740     if (dest == NULL) return true;
741     T* object = reinterpret_cast<T*>(dest);
742     return object->ParseFrom(str, n);
743   }
744 };
745 
746 class RE2::Arg {
747  public:
748   // Empty constructor so we can declare arrays of RE2::Arg
749   Arg();
750 
751   // Constructor specially designed for NULL arguments
752   Arg(void*);
753 
754   typedef bool (*Parser)(const char* str, int n, void* dest);
755 
756 // Type-specific parsers
757 #define MAKE_PARSER(type,name) \
758   Arg(type* p) : arg_(p), parser_(name) { } \
759   Arg(type* p, Parser parser) : arg_(p), parser_(parser) { } \
760 
761 
762   MAKE_PARSER(char,               parse_char);
763   MAKE_PARSER(signed char,        parse_char);
764   MAKE_PARSER(unsigned char,      parse_uchar);
765   MAKE_PARSER(short,              parse_short);
766   MAKE_PARSER(unsigned short,     parse_ushort);
767   MAKE_PARSER(int,                parse_int);
768   MAKE_PARSER(unsigned int,       parse_uint);
769   MAKE_PARSER(long,               parse_long);
770   MAKE_PARSER(unsigned long,      parse_ulong);
771   MAKE_PARSER(long long,          parse_longlong);
772   MAKE_PARSER(unsigned long long, parse_ulonglong);
773   MAKE_PARSER(float,              parse_float);
774   MAKE_PARSER(double,             parse_double);
775   MAKE_PARSER(string,             parse_string);
776   MAKE_PARSER(StringPiece,        parse_stringpiece);
777 
778 #undef MAKE_PARSER
779 
780   // Generic constructor
781   template <class T> Arg(T*, Parser parser);
782   // Generic constructor template
Arg(T * p)783   template <class T> Arg(T* p)
784     : arg_(p), parser_(_RE2_MatchObject<T>::Parse) {
785   }
786 
787   // Parse the data
788   bool Parse(const char* str, int n) const;
789 
790  private:
791   void*         arg_;
792   Parser        parser_;
793 
794   static bool parse_null          (const char* str, int n, void* dest);
795   static bool parse_char          (const char* str, int n, void* dest);
796   static bool parse_uchar         (const char* str, int n, void* dest);
797   static bool parse_float         (const char* str, int n, void* dest);
798   static bool parse_double        (const char* str, int n, void* dest);
799   static bool parse_string        (const char* str, int n, void* dest);
800   static bool parse_stringpiece   (const char* str, int n, void* dest);
801 
802 #define DECLARE_INTEGER_PARSER(name)                                        \
803  private:                                                                   \
804   static bool parse_ ## name(const char* str, int n, void* dest);           \
805   static bool parse_ ## name ## _radix(                                     \
806     const char* str, int n, void* dest, int radix);                         \
807  public:                                                                    \
808   static bool parse_ ## name ## _hex(const char* str, int n, void* dest);   \
809   static bool parse_ ## name ## _octal(const char* str, int n, void* dest); \
810   static bool parse_ ## name ## _cradix(const char* str, int n, void* dest)
811 
812   DECLARE_INTEGER_PARSER(short);
813   DECLARE_INTEGER_PARSER(ushort);
814   DECLARE_INTEGER_PARSER(int);
815   DECLARE_INTEGER_PARSER(uint);
816   DECLARE_INTEGER_PARSER(long);
817   DECLARE_INTEGER_PARSER(ulong);
818   DECLARE_INTEGER_PARSER(longlong);
819   DECLARE_INTEGER_PARSER(ulonglong);
820 
821 #undef DECLARE_INTEGER_PARSER
822 };
823 
Arg()824 inline RE2::Arg::Arg() : arg_(NULL), parser_(parse_null) { }
Arg(void * p)825 inline RE2::Arg::Arg(void* p) : arg_(p), parser_(parse_null) { }
826 
Parse(const char * str,int n)827 inline bool RE2::Arg::Parse(const char* str, int n) const {
828   return (*parser_)(str, n, arg_);
829 }
830 
831 // This part of the parser, appropriate only for ints, deals with bases
832 #define MAKE_INTEGER_PARSER(type, name) \
833   inline RE2::Arg RE2::Hex(type* ptr) { \
834     return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _hex); } \
835   inline RE2::Arg RE2::Octal(type* ptr) { \
836     return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _octal); } \
837   inline RE2::Arg RE2::CRadix(type* ptr) { \
838     return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _cradix); }
839 
840 MAKE_INTEGER_PARSER(short,              short);
841 MAKE_INTEGER_PARSER(unsigned short,     ushort);
842 MAKE_INTEGER_PARSER(int,                int);
843 MAKE_INTEGER_PARSER(unsigned int,       uint);
844 MAKE_INTEGER_PARSER(long,               long);
845 MAKE_INTEGER_PARSER(unsigned long,      ulong);
846 MAKE_INTEGER_PARSER(long long,          longlong);
847 MAKE_INTEGER_PARSER(unsigned long long, ulonglong);
848 
849 #undef MAKE_INTEGER_PARSER
850 
851 }  // namespace re2
852 
853 using re2::RE2;
854 
855 #endif /* RE2_RE2_H */
856