1 // Copyright 2003-2009 The RE2 Authors. All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 #ifndef RE2_RE2_H
6 #define RE2_RE2_H
7
8 // C++ interface to the re2 regular-expression library.
9 // RE2 supports Perl-style regular expressions (with extensions like
10 // \d, \w, \s, ...).
11 //
12 // -----------------------------------------------------------------------
13 // REGEXP SYNTAX:
14 //
15 // This module uses the re2 library and hence supports
16 // its syntax for regular expressions, which is similar to Perl's with
17 // some of the more complicated things thrown away. In particular,
18 // backreferences and generalized assertions are not available, nor is \Z.
19 //
20 // See http://code.google.com/p/re2/wiki/Syntax for the syntax
21 // supported by RE2, and a comparison with PCRE and PERL regexps.
22 //
23 // For those not familiar with Perl's regular expressions,
24 // here are some examples of the most commonly used extensions:
25 //
26 // "hello (\\w+) world" -- \w matches a "word" character
27 // "version (\\d+)" -- \d matches a digit
28 // "hello\\s+world" -- \s matches any whitespace character
29 // "\\b(\\w+)\\b" -- \b matches non-empty string at word boundary
30 // "(?i)hello" -- (?i) turns on case-insensitive matching
31 // "/\\*(.*?)\\*/" -- .*? matches . minimum no. of times possible
32 //
33 // -----------------------------------------------------------------------
34 // MATCHING INTERFACE:
35 //
36 // The "FullMatch" operation checks that supplied text matches a
37 // supplied pattern exactly.
38 //
39 // Example: successful match
40 // CHECK(RE2::FullMatch("hello", "h.*o"));
41 //
42 // Example: unsuccessful match (requires full match):
43 // CHECK(!RE2::FullMatch("hello", "e"));
44 //
45 // -----------------------------------------------------------------------
46 // UTF-8 AND THE MATCHING INTERFACE:
47 //
48 // By default, the pattern and input text are interpreted as UTF-8.
49 // The RE2::Latin1 option causes them to be interpreted as Latin-1.
50 //
51 // Example:
52 // CHECK(RE2::FullMatch(utf8_string, RE2(utf8_pattern)));
53 // CHECK(RE2::FullMatch(latin1_string, RE2(latin1_pattern, RE2::Latin1)));
54 //
55 // -----------------------------------------------------------------------
56 // MATCHING WITH SUB-STRING EXTRACTION:
57 //
58 // You can supply extra pointer arguments to extract matched subpieces.
59 //
60 // Example: extracts "ruby" into "s" and 1234 into "i"
61 // int i;
62 // string s;
63 // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s, &i));
64 //
65 // Example: fails because string cannot be stored in integer
66 // CHECK(!RE2::FullMatch("ruby", "(.*)", &i));
67 //
68 // Example: fails because there aren't enough sub-patterns:
69 // CHECK(!RE2::FullMatch("ruby:1234", "\\w+:\\d+", &s));
70 //
71 // Example: does not try to extract any extra sub-patterns
72 // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s));
73 //
74 // Example: does not try to extract into NULL
75 // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", NULL, &i));
76 //
77 // Example: integer overflow causes failure
78 // CHECK(!RE2::FullMatch("ruby:1234567891234", "\\w+:(\\d+)", &i));
79 //
80 // NOTE(rsc): Asking for substrings slows successful matches quite a bit.
81 // This may get a little faster in the future, but right now is slower
82 // than PCRE. On the other hand, failed matches run *very* fast (faster
83 // than PCRE), as do matches without substring extraction.
84 //
85 // -----------------------------------------------------------------------
86 // PARTIAL MATCHES
87 //
88 // You can use the "PartialMatch" operation when you want the pattern
89 // to match any substring of the text.
90 //
91 // Example: simple search for a string:
92 // CHECK(RE2::PartialMatch("hello", "ell"));
93 //
94 // Example: find first number in a string
95 // int number;
96 // CHECK(RE2::PartialMatch("x*100 + 20", "(\\d+)", &number));
97 // CHECK_EQ(number, 100);
98 //
99 // -----------------------------------------------------------------------
100 // PRE-COMPILED REGULAR EXPRESSIONS
101 //
102 // RE2 makes it easy to use any string as a regular expression, without
103 // requiring a separate compilation step.
104 //
105 // If speed is of the essence, you can create a pre-compiled "RE2"
106 // object from the pattern and use it multiple times. If you do so,
107 // you can typically parse text faster than with sscanf.
108 //
109 // Example: precompile pattern for faster matching:
110 // RE2 pattern("h.*o");
111 // while (ReadLine(&str)) {
112 // if (RE2::FullMatch(str, pattern)) ...;
113 // }
114 //
115 // -----------------------------------------------------------------------
116 // SCANNING TEXT INCREMENTALLY
117 //
118 // The "Consume" operation may be useful if you want to repeatedly
119 // match regular expressions at the front of a string and skip over
120 // them as they match. This requires use of the "StringPiece" type,
121 // which represents a sub-range of a real string.
122 //
123 // Example: read lines of the form "var = value" from a string.
124 // string contents = ...; // Fill string somehow
125 // StringPiece input(contents); // Wrap a StringPiece around it
126 //
127 // string var;
128 // int value;
129 // while (RE2::Consume(&input, "(\\w+) = (\\d+)\n", &var, &value)) {
130 // ...;
131 // }
132 //
133 // Each successful call to "Consume" will set "var/value", and also
134 // advance "input" so it points past the matched text. Note that if the
135 // regular expression matches an empty string, input will advance
136 // by 0 bytes. If the regular expression being used might match
137 // an empty string, the loop body must check for this case and either
138 // advance the string or break out of the loop.
139 //
140 // The "FindAndConsume" operation is similar to "Consume" but does not
141 // anchor your match at the beginning of the string. For example, you
142 // could extract all words from a string by repeatedly calling
143 // RE2::FindAndConsume(&input, "(\\w+)", &word)
144 //
145 // -----------------------------------------------------------------------
146 // USING VARIABLE NUMBER OF ARGUMENTS
147 //
148 // The above operations require you to know the number of arguments
149 // when you write the code. This is not always possible or easy (for
150 // example, the regular expression may be calculated at run time).
151 // You can use the "N" version of the operations when the number of
152 // match arguments are determined at run time.
153 //
154 // Example:
155 // const RE2::Arg* args[10];
156 // int n;
157 // // ... populate args with pointers to RE2::Arg values ...
158 // // ... set n to the number of RE2::Arg objects ...
159 // bool match = RE2::FullMatchN(input, pattern, args, n);
160 //
161 // The last statement is equivalent to
162 //
163 // bool match = RE2::FullMatch(input, pattern,
164 // *args[0], *args[1], ..., *args[n - 1]);
165 //
166 // -----------------------------------------------------------------------
167 // PARSING HEX/OCTAL/C-RADIX NUMBERS
168 //
169 // By default, if you pass a pointer to a numeric value, the
170 // corresponding text is interpreted as a base-10 number. You can
171 // instead wrap the pointer with a call to one of the operators Hex(),
172 // Octal(), or CRadix() to interpret the text in another base. The
173 // CRadix operator interprets C-style "0" (base-8) and "0x" (base-16)
174 // prefixes, but defaults to base-10.
175 //
176 // Example:
177 // int a, b, c, d;
178 // CHECK(RE2::FullMatch("100 40 0100 0x40", "(.*) (.*) (.*) (.*)",
179 // RE2::Octal(&a), RE2::Hex(&b), RE2::CRadix(&c), RE2::CRadix(&d));
180 // will leave 64 in a, b, c, and d.
181
182
183 #include <stdint.h>
184 #include <map>
185 #include <string>
186 #include "re2/stringpiece.h"
187 #include "re2/variadic_function.h"
188
189 namespace re2 {
190
191 using std::string;
192 using std::map;
193 class Mutex;
194 class Prog;
195 class Regexp;
196
197 // The following enum should be used only as a constructor argument to indicate
198 // that the variable has static storage class, and that the constructor should
199 // do nothing to its state. It indicates to the reader that it is legal to
200 // declare a static instance of the class, provided the constructor is given
201 // the LINKER_INITIALIZED argument. Normally, it is unsafe to declare a
202 // static variable that has a constructor or a destructor because invocation
203 // order is undefined. However, IF the type can be initialized by filling with
204 // zeroes (which the loader does for static variables), AND the type's
205 // destructor does nothing to the storage, then a constructor for static
206 // initialization can be declared as
207 // explicit MyClass(LinkerInitialized x) {}
208 // and invoked as
209 // static MyClass my_variable_name(LINKER_INITIALIZED);
210 enum LinkerInitialized { LINKER_INITIALIZED };
211
212 // Interface for regular expression matching. Also corresponds to a
213 // pre-compiled regular expression. An "RE2" object is safe for
214 // concurrent use by multiple threads.
215 class RE2 {
216 public:
217 // We convert user-passed pointers into special Arg objects
218 class Arg;
219 class Options;
220
221 // Defined in set.h.
222 class Set;
223
224 enum ErrorCode {
225 NoError = 0,
226
227 // Unexpected error
228 ErrorInternal,
229
230 // Parse errors
231 ErrorBadEscape, // bad escape sequence
232 ErrorBadCharClass, // bad character class
233 ErrorBadCharRange, // bad character class range
234 ErrorMissingBracket, // missing closing ]
235 ErrorMissingParen, // missing closing )
236 ErrorTrailingBackslash, // trailing \ at end of regexp
237 ErrorRepeatArgument, // repeat argument missing, e.g. "*"
238 ErrorRepeatSize, // bad repetition argument
239 ErrorRepeatOp, // bad repetition operator
240 ErrorBadPerlOp, // bad perl operator
241 ErrorBadUTF8, // invalid UTF-8 in regexp
242 ErrorBadNamedCapture, // bad named capture group
243 ErrorPatternTooLarge, // pattern too large (compile failed)
244 };
245
246 // Predefined common options.
247 // If you need more complicated things, instantiate
248 // an Option class, possibly passing one of these to
249 // the Option constructor, change the settings, and pass that
250 // Option class to the RE2 constructor.
251 enum CannedOptions {
252 DefaultOptions = 0,
253 Latin1, // treat input as Latin-1 (default UTF-8)
254 POSIX, // POSIX syntax, leftmost-longest match
255 Quiet // do not log about regexp parse errors
256 };
257
258 // Need to have the const char* and const string& forms for implicit
259 // conversions when passing string literals to FullMatch and PartialMatch.
260 // Otherwise the StringPiece form would be sufficient.
261 #ifndef SWIG
262 RE2(const char* pattern);
263 RE2(const string& pattern);
264 #endif
265 RE2(const StringPiece& pattern);
266 RE2(const StringPiece& pattern, const Options& option);
267 ~RE2();
268
269 // Returns whether RE2 was created properly.
ok()270 bool ok() const { return error_code() == NoError; }
271
272 // The string specification for this RE2. E.g.
273 // RE2 re("ab*c?d+");
274 // re.pattern(); // "ab*c?d+"
pattern()275 const string& pattern() const { return pattern_; }
276
277 // If RE2 could not be created properly, returns an error string.
278 // Else returns the empty string.
error()279 const string& error() const { return *error_; }
280
281 // If RE2 could not be created properly, returns an error code.
282 // Else returns RE2::NoError (== 0).
error_code()283 ErrorCode error_code() const { return error_code_; }
284
285 // If RE2 could not be created properly, returns the offending
286 // portion of the regexp.
error_arg()287 const string& error_arg() const { return error_arg_; }
288
289 // Returns the program size, a very approximate measure of a regexp's "cost".
290 // Larger numbers are more expensive than smaller numbers.
291 int ProgramSize() const;
292
293 // Returns the underlying Regexp; not for general use.
294 // Returns entire_regexp_ so that callers don't need
295 // to know about prefix_ and prefix_foldcase_.
Regexp()296 re2::Regexp* Regexp() const { return entire_regexp_; }
297
298 /***** The useful part: the matching interface *****/
299
300 // Matches "text" against "pattern". If pointer arguments are
301 // supplied, copies matched sub-patterns into them.
302 //
303 // You can pass in a "const char*" or a "string" for "text".
304 // You can pass in a "const char*" or a "string" or a "RE2" for "pattern".
305 //
306 // The provided pointer arguments can be pointers to any scalar numeric
307 // type, or one of:
308 // string (matched piece is copied to string)
309 // StringPiece (StringPiece is mutated to point to matched piece)
310 // T (where "bool T::ParseFrom(const char*, int)" exists)
311 // (void*)NULL (the corresponding matched sub-pattern is not copied)
312 //
313 // Returns true iff all of the following conditions are satisfied:
314 // a. "text" matches "pattern" exactly
315 // b. The number of matched sub-patterns is >= number of supplied pointers
316 // c. The "i"th argument has a suitable type for holding the
317 // string captured as the "i"th sub-pattern. If you pass in
318 // NULL for the "i"th argument, or pass fewer arguments than
319 // number of sub-patterns, "i"th captured sub-pattern is
320 // ignored.
321 //
322 // CAVEAT: An optional sub-pattern that does not exist in the
323 // matched string is assigned the empty string. Therefore, the
324 // following will return false (because the empty string is not a
325 // valid number):
326 // int number;
327 // RE2::FullMatch("abc", "[a-z]+(\\d+)?", &number);
328 static bool FullMatchN(const StringPiece& text, const RE2& re,
329 const Arg* const args[], int argc);
330 static const VariadicFunction2<
331 bool, const StringPiece&, const RE2&, Arg, RE2::FullMatchN> FullMatch;
332
333 // Exactly like FullMatch(), except that "pattern" is allowed to match
334 // a substring of "text".
335 static bool PartialMatchN(const StringPiece& text, const RE2& re, // 3..16 args
336 const Arg* const args[], int argc);
337 static const VariadicFunction2<
338 bool, const StringPiece&, const RE2&, Arg, RE2::PartialMatchN> PartialMatch;
339
340 // Like FullMatch() and PartialMatch(), except that pattern has to
341 // match a prefix of "text", and "input" is advanced past the matched
342 // text. Note: "input" is modified iff this routine returns true.
343 static bool ConsumeN(StringPiece* input, const RE2& pattern, // 3..16 args
344 const Arg* const args[], int argc);
345 static const VariadicFunction2<
346 bool, StringPiece*, const RE2&, Arg, RE2::ConsumeN> Consume;
347
348 // Like Consume(..), but does not anchor the match at the beginning of the
349 // string. That is, "pattern" need not start its match at the beginning of
350 // "input". For example, "FindAndConsume(s, "(\\w+)", &word)" finds the next
351 // word in "s" and stores it in "word".
352 static bool FindAndConsumeN(StringPiece* input, const RE2& pattern,
353 const Arg* const args[], int argc);
354 static const VariadicFunction2<
355 bool, StringPiece*, const RE2&, Arg, RE2::FindAndConsumeN> FindAndConsume;
356
357 // Replace the first match of "pattern" in "str" with "rewrite".
358 // Within "rewrite", backslash-escaped digits (\1 to \9) can be
359 // used to insert text matching corresponding parenthesized group
360 // from the pattern. \0 in "rewrite" refers to the entire matching
361 // text. E.g.,
362 //
363 // string s = "yabba dabba doo";
364 // CHECK(RE2::Replace(&s, "b+", "d"));
365 //
366 // will leave "s" containing "yada dabba doo"
367 //
368 // Returns true if the pattern matches and a replacement occurs,
369 // false otherwise.
370 static bool Replace(string *str,
371 const RE2& pattern,
372 const StringPiece& rewrite);
373
374 // Like Replace(), except replaces successive non-overlapping occurrences
375 // of the pattern in the string with the rewrite. E.g.
376 //
377 // string s = "yabba dabba doo";
378 // CHECK(RE2::GlobalReplace(&s, "b+", "d"));
379 //
380 // will leave "s" containing "yada dada doo"
381 // Replacements are not subject to re-matching.
382 //
383 // Because GlobalReplace only replaces non-overlapping matches,
384 // replacing "ana" within "banana" makes only one replacement, not two.
385 //
386 // Returns the number of replacements made.
387 static int GlobalReplace(string *str,
388 const RE2& pattern,
389 const StringPiece& rewrite);
390
391 // Like Replace, except that if the pattern matches, "rewrite"
392 // is copied into "out" with substitutions. The non-matching
393 // portions of "text" are ignored.
394 //
395 // Returns true iff a match occurred and the extraction happened
396 // successfully; if no match occurs, the string is left unaffected.
397 static bool Extract(const StringPiece &text,
398 const RE2& pattern,
399 const StringPiece &rewrite,
400 string *out);
401
402 // Escapes all potentially meaningful regexp characters in
403 // 'unquoted'. The returned string, used as a regular expression,
404 // will exactly match the original string. For example,
405 // 1.5-2.0?
406 // may become:
407 // 1\.5\-2\.0\?
408 static string QuoteMeta(const StringPiece& unquoted);
409
410 // Computes range for any strings matching regexp. The min and max can in
411 // some cases be arbitrarily precise, so the caller gets to specify the
412 // maximum desired length of string returned.
413 //
414 // Assuming PossibleMatchRange(&min, &max, N) returns successfully, any
415 // string s that is an anchored match for this regexp satisfies
416 // min <= s && s <= max.
417 //
418 // Note that PossibleMatchRange() will only consider the first copy of an
419 // infinitely repeated element (i.e., any regexp element followed by a '*' or
420 // '+' operator). Regexps with "{N}" constructions are not affected, as those
421 // do not compile down to infinite repetitions.
422 //
423 // Returns true on success, false on error.
424 bool PossibleMatchRange(string* min, string* max, int maxlen) const;
425
426 // Generic matching interface
427
428 // Type of match.
429 enum Anchor {
430 UNANCHORED, // No anchoring
431 ANCHOR_START, // Anchor at start only
432 ANCHOR_BOTH, // Anchor at start and end
433 };
434
435 // Return the number of capturing subpatterns, or -1 if the
436 // regexp wasn't valid on construction. The overall match ($0)
437 // does not count: if the regexp is "(a)(b)", returns 2.
438 int NumberOfCapturingGroups() const;
439
440
441 // Return a map from names to capturing indices.
442 // The map records the index of the leftmost group
443 // with the given name.
444 // Only valid until the re is deleted.
445 const map<string, int>& NamedCapturingGroups() const;
446
447 // Return a map from capturing indices to names.
448 // The map has no entries for unnamed groups.
449 // Only valid until the re is deleted.
450 const map<int, string>& CapturingGroupNames() const;
451
452 // General matching routine.
453 // Match against text starting at offset startpos
454 // and stopping the search at offset endpos.
455 // Returns true if match found, false if not.
456 // On a successful match, fills in match[] (up to nmatch entries)
457 // with information about submatches.
458 // I.e. matching RE2("(foo)|(bar)baz") on "barbazbla" will return true,
459 // setting match[0] = "barbaz", match[1] = NULL, match[2] = "bar",
460 // match[3] = NULL, ..., up to match[nmatch-1] = NULL.
461 //
462 // Don't ask for more match information than you will use:
463 // runs much faster with nmatch == 1 than nmatch > 1, and
464 // runs even faster if nmatch == 0.
465 // Doesn't make sense to use nmatch > 1 + NumberOfCapturingGroups(),
466 // but will be handled correctly.
467 //
468 // Passing text == StringPiece(NULL, 0) will be handled like any other
469 // empty string, but note that on return, it will not be possible to tell
470 // whether submatch i matched the empty string or did not match:
471 // either way, match[i] == NULL.
472 bool Match(const StringPiece& text,
473 int startpos,
474 int endpos,
475 Anchor anchor,
476 StringPiece *match,
477 int nmatch) const;
478
479 // Check that the given rewrite string is suitable for use with this
480 // regular expression. It checks that:
481 // * The regular expression has enough parenthesized subexpressions
482 // to satisfy all of the \N tokens in rewrite
483 // * The rewrite string doesn't have any syntax errors. E.g.,
484 // '\' followed by anything other than a digit or '\'.
485 // A true return value guarantees that Replace() and Extract() won't
486 // fail because of a bad rewrite string.
487 bool CheckRewriteString(const StringPiece& rewrite, string* error) const;
488
489 // Returns the maximum submatch needed for the rewrite to be done by
490 // Replace(). E.g. if rewrite == "foo \\2,\\1", returns 2.
491 static int MaxSubmatch(const StringPiece& rewrite);
492
493 // Append the "rewrite" string, with backslash subsitutions from "vec",
494 // to string "out".
495 // Returns true on success. This method can fail because of a malformed
496 // rewrite string. CheckRewriteString guarantees that the rewrite will
497 // be sucessful.
498 bool Rewrite(string *out,
499 const StringPiece &rewrite,
500 const StringPiece* vec,
501 int veclen) const;
502
503 // Constructor options
504 class Options {
505 public:
506 // The options are (defaults in parentheses):
507 //
508 // utf8 (true) text and pattern are UTF-8; otherwise Latin-1
509 // posix_syntax (false) restrict regexps to POSIX egrep syntax
510 // longest_match (false) search for longest match, not first match
511 // log_errors (true) log syntax and execution errors to ERROR
512 // max_mem (see below) approx. max memory footprint of RE2
513 // literal (false) interpret string as literal, not regexp
514 // never_nl (false) never match \n, even if it is in regexp
515 // never_capture (false) parse all parens as non-capturing
516 // case_sensitive (true) match is case-sensitive (regexp can override
517 // with (?i) unless in posix_syntax mode)
518 //
519 // The following options are only consulted when posix_syntax == true.
520 // (When posix_syntax == false these features are always enabled and
521 // cannot be turned off.)
522 // perl_classes (false) allow Perl's \d \s \w \D \S \W
523 // word_boundary (false) allow Perl's \b \B (word boundary and not)
524 // one_line (false) ^ and $ only match beginning and end of text
525 //
526 // The max_mem option controls how much memory can be used
527 // to hold the compiled form of the regexp (the Prog) and
528 // its cached DFA graphs. Code Search placed limits on the number
529 // of Prog instructions and DFA states: 10,000 for both.
530 // In RE2, those limits would translate to about 240 KB per Prog
531 // and perhaps 2.5 MB per DFA (DFA state sizes vary by regexp; RE2 does a
532 // better job of keeping them small than Code Search did).
533 // Each RE2 has two Progs (one forward, one reverse), and each Prog
534 // can have two DFAs (one first match, one longest match).
535 // That makes 4 DFAs:
536 //
537 // forward, first-match - used for UNANCHORED or ANCHOR_LEFT searches
538 // if opt.longest_match() == false
539 // forward, longest-match - used for all ANCHOR_BOTH searches,
540 // and the other two kinds if
541 // opt.longest_match() == true
542 // reverse, first-match - never used
543 // reverse, longest-match - used as second phase for unanchored searches
544 //
545 // The RE2 memory budget is statically divided between the two
546 // Progs and then the DFAs: two thirds to the forward Prog
547 // and one third to the reverse Prog. The forward Prog gives half
548 // of what it has left over to each of its DFAs. The reverse Prog
549 // gives it all to its longest-match DFA.
550 //
551 // Once a DFA fills its budget, it flushes its cache and starts over.
552 // If this happens too often, RE2 falls back on the NFA implementation.
553
554 // For now, make the default budget something close to Code Search.
555 static const int kDefaultMaxMem = 8<<20;
556
557 enum Encoding {
558 EncodingUTF8 = 1,
559 EncodingLatin1
560 };
561
Options()562 Options() :
563 encoding_(EncodingUTF8),
564 posix_syntax_(false),
565 longest_match_(false),
566 log_errors_(true),
567 max_mem_(kDefaultMaxMem),
568 literal_(false),
569 never_nl_(false),
570 never_capture_(false),
571 case_sensitive_(true),
572 perl_classes_(false),
573 word_boundary_(false),
574 one_line_(false) {
575 }
576
577 /*implicit*/ Options(CannedOptions);
578
encoding()579 Encoding encoding() const { return encoding_; }
set_encoding(Encoding encoding)580 void set_encoding(Encoding encoding) { encoding_ = encoding; }
581
582 // Legacy interface to encoding.
583 // TODO(rsc): Remove once clients have been converted.
utf8()584 bool utf8() const { return encoding_ == EncodingUTF8; }
set_utf8(bool b)585 void set_utf8(bool b) {
586 if (b) {
587 encoding_ = EncodingUTF8;
588 } else {
589 encoding_ = EncodingLatin1;
590 }
591 }
592
posix_syntax()593 bool posix_syntax() const { return posix_syntax_; }
set_posix_syntax(bool b)594 void set_posix_syntax(bool b) { posix_syntax_ = b; }
595
longest_match()596 bool longest_match() const { return longest_match_; }
set_longest_match(bool b)597 void set_longest_match(bool b) { longest_match_ = b; }
598
log_errors()599 bool log_errors() const { return log_errors_; }
set_log_errors(bool b)600 void set_log_errors(bool b) { log_errors_ = b; }
601
max_mem()602 int max_mem() const { return max_mem_; }
set_max_mem(int m)603 void set_max_mem(int m) { max_mem_ = m; }
604
literal()605 bool literal() const { return literal_; }
set_literal(bool b)606 void set_literal(bool b) { literal_ = b; }
607
never_nl()608 bool never_nl() const { return never_nl_; }
set_never_nl(bool b)609 void set_never_nl(bool b) { never_nl_ = b; }
610
never_capture()611 bool never_capture() const { return never_capture_; }
set_never_capture(bool b)612 void set_never_capture(bool b) { never_capture_ = b; }
613
case_sensitive()614 bool case_sensitive() const { return case_sensitive_; }
set_case_sensitive(bool b)615 void set_case_sensitive(bool b) { case_sensitive_ = b; }
616
perl_classes()617 bool perl_classes() const { return perl_classes_; }
set_perl_classes(bool b)618 void set_perl_classes(bool b) { perl_classes_ = b; }
619
word_boundary()620 bool word_boundary() const { return word_boundary_; }
set_word_boundary(bool b)621 void set_word_boundary(bool b) { word_boundary_ = b; }
622
one_line()623 bool one_line() const { return one_line_; }
set_one_line(bool b)624 void set_one_line(bool b) { one_line_ = b; }
625
Copy(const Options & src)626 void Copy(const Options& src) {
627 encoding_ = src.encoding_;
628 posix_syntax_ = src.posix_syntax_;
629 longest_match_ = src.longest_match_;
630 log_errors_ = src.log_errors_;
631 max_mem_ = src.max_mem_;
632 literal_ = src.literal_;
633 never_nl_ = src.never_nl_;
634 never_capture_ = src.never_capture_;
635 case_sensitive_ = src.case_sensitive_;
636 perl_classes_ = src.perl_classes_;
637 word_boundary_ = src.word_boundary_;
638 one_line_ = src.one_line_;
639 }
640
641 int ParseFlags() const;
642
643 private:
644 Encoding encoding_;
645 bool posix_syntax_;
646 bool longest_match_;
647 bool log_errors_;
648 int64_t max_mem_;
649 bool literal_;
650 bool never_nl_;
651 bool never_capture_;
652 bool case_sensitive_;
653 bool perl_classes_;
654 bool word_boundary_;
655 bool one_line_;
656
657 //DISALLOW_EVIL_CONSTRUCTORS(Options);
658 Options(const Options&);
659 void operator=(const Options&);
660 };
661
662 // Returns the options set in the constructor.
options()663 const Options& options() const { return options_; };
664
665 // Argument converters; see below.
666 static inline Arg CRadix(short* x);
667 static inline Arg CRadix(unsigned short* x);
668 static inline Arg CRadix(int* x);
669 static inline Arg CRadix(unsigned int* x);
670 static inline Arg CRadix(long* x);
671 static inline Arg CRadix(unsigned long* x);
672 static inline Arg CRadix(long long* x);
673 static inline Arg CRadix(unsigned long long* x);
674
675 static inline Arg Hex(short* x);
676 static inline Arg Hex(unsigned short* x);
677 static inline Arg Hex(int* x);
678 static inline Arg Hex(unsigned int* x);
679 static inline Arg Hex(long* x);
680 static inline Arg Hex(unsigned long* x);
681 static inline Arg Hex(long long* x);
682 static inline Arg Hex(unsigned long long* x);
683
684 static inline Arg Octal(short* x);
685 static inline Arg Octal(unsigned short* x);
686 static inline Arg Octal(int* x);
687 static inline Arg Octal(unsigned int* x);
688 static inline Arg Octal(long* x);
689 static inline Arg Octal(unsigned long* x);
690 static inline Arg Octal(long long* x);
691 static inline Arg Octal(unsigned long long* x);
692
693 private:
694 void Init(const StringPiece& pattern, const Options& options);
695
696 bool DoMatch(const StringPiece& text,
697 Anchor anchor,
698 int* consumed,
699 const Arg* const args[],
700 int n) const;
701
702 re2::Prog* ReverseProg() const;
703
704 mutable Mutex* mutex_;
705 string pattern_; // string regular expression
706 Options options_; // option flags
707 string prefix_; // required prefix (before regexp_)
708 bool prefix_foldcase_; // prefix is ASCII case-insensitive
709 re2::Regexp* entire_regexp_; // parsed regular expression
710 re2::Regexp* suffix_regexp_; // parsed regular expression, prefix removed
711 re2::Prog* prog_; // compiled program for regexp
712 mutable re2::Prog* rprog_; // reverse program for regexp
713 bool is_one_pass_; // can use prog_->SearchOnePass?
714 mutable const string* error_; // Error indicator
715 // (or points to empty string)
716 mutable ErrorCode error_code_; // Error code
717 mutable string error_arg_; // Fragment of regexp showing error
718 mutable int num_captures_; // Number of capturing groups
719
720 // Map from capture names to indices
721 mutable const map<string, int>* named_groups_;
722
723 // Map from capture indices to names
724 mutable const map<int, string>* group_names_;
725
726 //DISALLOW_EVIL_CONSTRUCTORS(RE2);
727 RE2(const RE2&);
728 void operator=(const RE2&);
729 };
730
731 /***** Implementation details *****/
732
733 // Hex/Octal/Binary?
734
735 // Special class for parsing into objects that define a ParseFrom() method
736 template <class T>
737 class _RE2_MatchObject {
738 public:
Parse(const char * str,int n,void * dest)739 static inline bool Parse(const char* str, int n, void* dest) {
740 if (dest == NULL) return true;
741 T* object = reinterpret_cast<T*>(dest);
742 return object->ParseFrom(str, n);
743 }
744 };
745
746 class RE2::Arg {
747 public:
748 // Empty constructor so we can declare arrays of RE2::Arg
749 Arg();
750
751 // Constructor specially designed for NULL arguments
752 Arg(void*);
753
754 typedef bool (*Parser)(const char* str, int n, void* dest);
755
756 // Type-specific parsers
757 #define MAKE_PARSER(type,name) \
758 Arg(type* p) : arg_(p), parser_(name) { } \
759 Arg(type* p, Parser parser) : arg_(p), parser_(parser) { } \
760
761
762 MAKE_PARSER(char, parse_char);
763 MAKE_PARSER(signed char, parse_char);
764 MAKE_PARSER(unsigned char, parse_uchar);
765 MAKE_PARSER(short, parse_short);
766 MAKE_PARSER(unsigned short, parse_ushort);
767 MAKE_PARSER(int, parse_int);
768 MAKE_PARSER(unsigned int, parse_uint);
769 MAKE_PARSER(long, parse_long);
770 MAKE_PARSER(unsigned long, parse_ulong);
771 MAKE_PARSER(long long, parse_longlong);
772 MAKE_PARSER(unsigned long long, parse_ulonglong);
773 MAKE_PARSER(float, parse_float);
774 MAKE_PARSER(double, parse_double);
775 MAKE_PARSER(string, parse_string);
776 MAKE_PARSER(StringPiece, parse_stringpiece);
777
778 #undef MAKE_PARSER
779
780 // Generic constructor
781 template <class T> Arg(T*, Parser parser);
782 // Generic constructor template
Arg(T * p)783 template <class T> Arg(T* p)
784 : arg_(p), parser_(_RE2_MatchObject<T>::Parse) {
785 }
786
787 // Parse the data
788 bool Parse(const char* str, int n) const;
789
790 private:
791 void* arg_;
792 Parser parser_;
793
794 static bool parse_null (const char* str, int n, void* dest);
795 static bool parse_char (const char* str, int n, void* dest);
796 static bool parse_uchar (const char* str, int n, void* dest);
797 static bool parse_float (const char* str, int n, void* dest);
798 static bool parse_double (const char* str, int n, void* dest);
799 static bool parse_string (const char* str, int n, void* dest);
800 static bool parse_stringpiece (const char* str, int n, void* dest);
801
802 #define DECLARE_INTEGER_PARSER(name) \
803 private: \
804 static bool parse_ ## name(const char* str, int n, void* dest); \
805 static bool parse_ ## name ## _radix( \
806 const char* str, int n, void* dest, int radix); \
807 public: \
808 static bool parse_ ## name ## _hex(const char* str, int n, void* dest); \
809 static bool parse_ ## name ## _octal(const char* str, int n, void* dest); \
810 static bool parse_ ## name ## _cradix(const char* str, int n, void* dest)
811
812 DECLARE_INTEGER_PARSER(short);
813 DECLARE_INTEGER_PARSER(ushort);
814 DECLARE_INTEGER_PARSER(int);
815 DECLARE_INTEGER_PARSER(uint);
816 DECLARE_INTEGER_PARSER(long);
817 DECLARE_INTEGER_PARSER(ulong);
818 DECLARE_INTEGER_PARSER(longlong);
819 DECLARE_INTEGER_PARSER(ulonglong);
820
821 #undef DECLARE_INTEGER_PARSER
822 };
823
Arg()824 inline RE2::Arg::Arg() : arg_(NULL), parser_(parse_null) { }
Arg(void * p)825 inline RE2::Arg::Arg(void* p) : arg_(p), parser_(parse_null) { }
826
Parse(const char * str,int n)827 inline bool RE2::Arg::Parse(const char* str, int n) const {
828 return (*parser_)(str, n, arg_);
829 }
830
831 // This part of the parser, appropriate only for ints, deals with bases
832 #define MAKE_INTEGER_PARSER(type, name) \
833 inline RE2::Arg RE2::Hex(type* ptr) { \
834 return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _hex); } \
835 inline RE2::Arg RE2::Octal(type* ptr) { \
836 return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _octal); } \
837 inline RE2::Arg RE2::CRadix(type* ptr) { \
838 return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _cradix); }
839
840 MAKE_INTEGER_PARSER(short, short);
841 MAKE_INTEGER_PARSER(unsigned short, ushort);
842 MAKE_INTEGER_PARSER(int, int);
843 MAKE_INTEGER_PARSER(unsigned int, uint);
844 MAKE_INTEGER_PARSER(long, long);
845 MAKE_INTEGER_PARSER(unsigned long, ulong);
846 MAKE_INTEGER_PARSER(long long, longlong);
847 MAKE_INTEGER_PARSER(unsigned long long, ulonglong);
848
849 #undef MAKE_INTEGER_PARSER
850
851 } // namespace re2
852
853 using re2::RE2;
854
855 #endif /* RE2_RE2_H */
856