• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-
2  * Copyright 2009 Colin Percival
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * This file was originally written by Colin Percival as part of the Tarsnap
27  * online backup system.
28  */
29 #include "scrypt_platform.h"
30 
31 #include <errno.h>
32 #include <stdint.h>
33 #include <stdlib.h>
34 #include <string.h>
35 
36 #ifdef USE_OPENSSL_PBKDF2
37 #include <openssl/evp.h>
38 #else
39 #include "sha256.h"
40 #endif
41 #include "sysendian.h"
42 
43 #include "crypto_scrypt.h"
44 
45 static void blkcpy(uint8_t *, uint8_t *, size_t);
46 static void blkxor(uint8_t *, uint8_t *, size_t);
47 static void salsa20_8(uint8_t[64]);
48 static void blockmix_salsa8(uint8_t *, uint8_t *, size_t);
49 static uint64_t integerify(uint8_t *, size_t);
50 static void smix(uint8_t *, size_t, uint64_t, uint8_t *, uint8_t *);
51 
52 static void
blkcpy(uint8_t * dest,uint8_t * src,size_t len)53 blkcpy(uint8_t * dest, uint8_t * src, size_t len)
54 {
55 	size_t i;
56 
57 	for (i = 0; i < len; i++)
58 		dest[i] = src[i];
59 }
60 
61 static void
blkxor(uint8_t * dest,uint8_t * src,size_t len)62 blkxor(uint8_t * dest, uint8_t * src, size_t len)
63 {
64 	size_t i;
65 
66 	for (i = 0; i < len; i++)
67 		dest[i] ^= src[i];
68 }
69 
70 /**
71  * salsa20_8(B):
72  * Apply the salsa20/8 core to the provided block.
73  */
74 static void
salsa20_8(uint8_t B[64])75 salsa20_8(uint8_t B[64])
76 {
77 	uint32_t B32[16];
78 	uint32_t x[16];
79 	size_t i;
80 
81 	/* Convert little-endian values in. */
82 	for (i = 0; i < 16; i++)
83 		B32[i] = le32dec(&B[i * 4]);
84 
85 	/* Compute x = doubleround^4(B32). */
86 	for (i = 0; i < 16; i++)
87 		x[i] = B32[i];
88 	for (i = 0; i < 8; i += 2) {
89 #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
90 		/* Operate on columns. */
91 		x[ 4] ^= R(x[ 0]+x[12], 7);  x[ 8] ^= R(x[ 4]+x[ 0], 9);
92 		x[12] ^= R(x[ 8]+x[ 4],13);  x[ 0] ^= R(x[12]+x[ 8],18);
93 
94 		x[ 9] ^= R(x[ 5]+x[ 1], 7);  x[13] ^= R(x[ 9]+x[ 5], 9);
95 		x[ 1] ^= R(x[13]+x[ 9],13);  x[ 5] ^= R(x[ 1]+x[13],18);
96 
97 		x[14] ^= R(x[10]+x[ 6], 7);  x[ 2] ^= R(x[14]+x[10], 9);
98 		x[ 6] ^= R(x[ 2]+x[14],13);  x[10] ^= R(x[ 6]+x[ 2],18);
99 
100 		x[ 3] ^= R(x[15]+x[11], 7);  x[ 7] ^= R(x[ 3]+x[15], 9);
101 		x[11] ^= R(x[ 7]+x[ 3],13);  x[15] ^= R(x[11]+x[ 7],18);
102 
103 		/* Operate on rows. */
104 		x[ 1] ^= R(x[ 0]+x[ 3], 7);  x[ 2] ^= R(x[ 1]+x[ 0], 9);
105 		x[ 3] ^= R(x[ 2]+x[ 1],13);  x[ 0] ^= R(x[ 3]+x[ 2],18);
106 
107 		x[ 6] ^= R(x[ 5]+x[ 4], 7);  x[ 7] ^= R(x[ 6]+x[ 5], 9);
108 		x[ 4] ^= R(x[ 7]+x[ 6],13);  x[ 5] ^= R(x[ 4]+x[ 7],18);
109 
110 		x[11] ^= R(x[10]+x[ 9], 7);  x[ 8] ^= R(x[11]+x[10], 9);
111 		x[ 9] ^= R(x[ 8]+x[11],13);  x[10] ^= R(x[ 9]+x[ 8],18);
112 
113 		x[12] ^= R(x[15]+x[14], 7);  x[13] ^= R(x[12]+x[15], 9);
114 		x[14] ^= R(x[13]+x[12],13);  x[15] ^= R(x[14]+x[13],18);
115 #undef R
116 	}
117 
118 	/* Compute B32 = B32 + x. */
119 	for (i = 0; i < 16; i++)
120 		B32[i] += x[i];
121 
122 	/* Convert little-endian values out. */
123 	for (i = 0; i < 16; i++)
124 		le32enc(&B[4 * i], B32[i]);
125 }
126 
127 /**
128  * blockmix_salsa8(B, Y, r):
129  * Compute B = BlockMix_{salsa20/8, r}(B).  The input B must be 128r bytes in
130  * length; the temporary space Y must also be the same size.
131  */
132 static void
blockmix_salsa8(uint8_t * B,uint8_t * Y,size_t r)133 blockmix_salsa8(uint8_t * B, uint8_t * Y, size_t r)
134 {
135 	uint8_t X[64];
136 	size_t i;
137 
138 	/* 1: X <-- B_{2r - 1} */
139 	blkcpy(X, &B[(2 * r - 1) * 64], 64);
140 
141 	/* 2: for i = 0 to 2r - 1 do */
142 	for (i = 0; i < 2 * r; i++) {
143 		/* 3: X <-- H(X \xor B_i) */
144 		blkxor(X, &B[i * 64], 64);
145 		salsa20_8(X);
146 
147 		/* 4: Y_i <-- X */
148 		blkcpy(&Y[i * 64], X, 64);
149 	}
150 
151 	/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
152 	for (i = 0; i < r; i++)
153 		blkcpy(&B[i * 64], &Y[(i * 2) * 64], 64);
154 	for (i = 0; i < r; i++)
155 		blkcpy(&B[(i + r) * 64], &Y[(i * 2 + 1) * 64], 64);
156 }
157 
158 /**
159  * integerify(B, r):
160  * Return the result of parsing B_{2r-1} as a little-endian integer.
161  */
162 static uint64_t
integerify(uint8_t * B,size_t r)163 integerify(uint8_t * B, size_t r)
164 {
165 	uint8_t * X = &B[(2 * r - 1) * 64];
166 
167 	return (le64dec(X));
168 }
169 
170 /**
171  * smix(B, r, N, V, XY):
172  * Compute B = SMix_r(B, N).  The input B must be 128r bytes in length; the
173  * temporary storage V must be 128rN bytes in length; the temporary storage
174  * XY must be 256r bytes in length.  The value N must be a power of 2.
175  */
176 static void
smix(uint8_t * B,size_t r,uint64_t N,uint8_t * V,uint8_t * XY)177 smix(uint8_t * B, size_t r, uint64_t N, uint8_t * V, uint8_t * XY)
178 {
179 	uint8_t * X = XY;
180 	uint8_t * Y = &XY[128 * r];
181 	uint64_t i;
182 	uint64_t j;
183 
184 	/* 1: X <-- B */
185 	blkcpy(X, B, 128 * r);
186 
187 	/* 2: for i = 0 to N - 1 do */
188 	for (i = 0; i < N; i++) {
189 		/* 3: V_i <-- X */
190 		blkcpy(&V[i * (128 * r)], X, 128 * r);
191 
192 		/* 4: X <-- H(X) */
193 		blockmix_salsa8(X, Y, r);
194 	}
195 
196 	/* 6: for i = 0 to N - 1 do */
197 	for (i = 0; i < N; i++) {
198 		/* 7: j <-- Integerify(X) mod N */
199 		j = integerify(X, r) & (N - 1);
200 
201 		/* 8: X <-- H(X \xor V_j) */
202 		blkxor(X, &V[j * (128 * r)], 128 * r);
203 		blockmix_salsa8(X, Y, r);
204 	}
205 
206 	/* 10: B' <-- X */
207 	blkcpy(B, X, 128 * r);
208 }
209 
210 /**
211  * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
212  * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
213  * p, buflen) and write the result into buf.  The parameters r, p, and buflen
214  * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32.  The parameter N
215  * must be a power of 2.
216  *
217  * Return 0 on success; or -1 on error.
218  */
219 int
crypto_scrypt(const uint8_t * passwd,size_t passwdlen,const uint8_t * salt,size_t saltlen,uint64_t N,uint32_t r,uint32_t p,uint8_t * buf,size_t buflen)220 crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
221     const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
222     uint8_t * buf, size_t buflen)
223 {
224 	uint8_t * B;
225 	uint8_t * V;
226 	uint8_t * XY;
227 	uint32_t i;
228 
229 	/* Sanity-check parameters. */
230 #if SIZE_MAX > UINT32_MAX
231 	if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
232 		errno = EFBIG;
233 		goto err0;
234 	}
235 #endif
236 	if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
237 		errno = EFBIG;
238 		goto err0;
239 	}
240 	if (((N & (N - 1)) != 0) || (N == 0)) {
241 		errno = EINVAL;
242 		goto err0;
243 	}
244 	if ((r > SIZE_MAX / 128 / p) ||
245 #if SIZE_MAX / 256 <= UINT32_MAX
246 	    (r > SIZE_MAX / 256) ||
247 #endif
248 	    (N > SIZE_MAX / 128 / r)) {
249 		errno = ENOMEM;
250 		goto err0;
251 	}
252 
253 	/* Allocate memory. */
254 	if ((B = malloc(128 * r * p)) == NULL)
255 		goto err0;
256 	if ((XY = malloc(256 * r)) == NULL)
257 		goto err1;
258 	if ((V = malloc(128 * r * N)) == NULL)
259 		goto err2;
260 
261 	/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
262 #ifdef USE_OPENSSL_PBKDF2
263 	PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, salt, saltlen, 1, EVP_sha256(), p * 128 * r, B);
264 #else
265 	PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
266 #endif
267 
268 	/* 2: for i = 0 to p - 1 do */
269 	for (i = 0; i < p; i++) {
270 		/* 3: B_i <-- MF(B_i, N) */
271 		smix(&B[i * 128 * r], r, N, V, XY);
272 	}
273 
274 	/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
275 #ifdef USE_OPENSSL_PBKDF2
276 	PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, B, p * 128 * r, 1, EVP_sha256(), buflen, buf);
277 #else
278 	PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
279 #endif
280 
281 	/* Free memory. */
282 	free(V);
283 	free(XY);
284 	free(B);
285 
286 	/* Success! */
287 	return (0);
288 
289 err2:
290 	free(XY);
291 err1:
292 	free(B);
293 err0:
294 	/* Failure! */
295 	return (-1);
296 }
297