• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkRandom_DEFINED
9 #define SkRandom_DEFINED
10 
11 #include "../private/SkFixed.h"
12 #include "SkScalar.h"
13 
14 /** \class SkRandom
15 
16  Utility class that implements pseudo random 32bit numbers using Marsaglia's
17  multiply-with-carry "mother of all" algorithm. Unlike rand(), this class holds
18  its own state, so that multiple instances can be used with no side-effects.
19 
20  Has a large period and all bits are well-randomized.
21  */
22 class SkRandom {
23 public:
SkRandom()24     SkRandom() { init(0); }
SkRandom(uint32_t seed)25     SkRandom(uint32_t seed) { init(seed); }
SkRandom(const SkRandom & rand)26     SkRandom(const SkRandom& rand) : fK(rand.fK), fJ(rand.fJ) {}
27 
28     SkRandom& operator=(const SkRandom& rand) {
29         fK = rand.fK;
30         fJ = rand.fJ;
31 
32         return *this;
33     }
34 
35     /** Return the next pseudo random number as an unsigned 32bit value.
36      */
nextU()37     uint32_t nextU() {
38         fK = kKMul*(fK & 0xffff) + (fK >> 16);
39         fJ = kJMul*(fJ & 0xffff) + (fJ >> 16);
40         return (((fK << 16) | (fK >> 16)) + fJ);
41     }
42 
43     /** Return the next pseudo random number as a signed 32bit value.
44      */
nextS()45     int32_t nextS() { return (int32_t)this->nextU(); }
46 
47     /** Return the next pseudo random number as an unsigned 16bit value.
48      */
nextU16()49     U16CPU nextU16() { return this->nextU() >> 16; }
50 
51     /** Return the next pseudo random number as a signed 16bit value.
52      */
nextS16()53     S16CPU nextS16() { return this->nextS() >> 16; }
54 
55     /**
56      *  Returns value [0...1) as an IEEE float
57      */
nextF()58     float nextF() {
59         unsigned int floatint = 0x3f800000 | (this->nextU() >> 9);
60         float f = SkBits2Float(floatint) - 1.0f;
61         return f;
62     }
63 
64     /**
65      *  Returns value [min...max) as a float
66      */
nextRangeF(float min,float max)67     float nextRangeF(float min, float max) {
68         return min + this->nextF() * (max - min);
69     }
70 
71     /** Return the next pseudo random number, as an unsigned value of
72      at most bitCount bits.
73      @param bitCount The maximum number of bits to be returned
74      */
nextBits(unsigned bitCount)75     uint32_t nextBits(unsigned bitCount) {
76         SkASSERT(bitCount > 0 && bitCount <= 32);
77         return this->nextU() >> (32 - bitCount);
78     }
79 
80     /** Return the next pseudo random unsigned number, mapped to lie within
81      [min, max] inclusive.
82      */
nextRangeU(uint32_t min,uint32_t max)83     uint32_t nextRangeU(uint32_t min, uint32_t max) {
84         SkASSERT(min <= max);
85         uint32_t range = max - min + 1;
86         if (0 == range) {
87             return this->nextU();
88         } else {
89             return min + this->nextU() % range;
90         }
91     }
92 
93     /** Return the next pseudo random unsigned number, mapped to lie within
94      [0, count).
95      */
nextULessThan(uint32_t count)96     uint32_t nextULessThan(uint32_t count) {
97         SkASSERT(count > 0);
98         return this->nextRangeU(0, count - 1);
99     }
100 
101     /** Return the next pseudo random number expressed as a SkScalar
102      in the range [0..SK_Scalar1).
103      */
nextUScalar1()104     SkScalar nextUScalar1() { return SkFixedToScalar(this->nextUFixed1()); }
105 
106     /** Return the next pseudo random number expressed as a SkScalar
107      in the range [min..max).
108      */
nextRangeScalar(SkScalar min,SkScalar max)109     SkScalar nextRangeScalar(SkScalar min, SkScalar max) {
110         return this->nextUScalar1() * (max - min) + min;
111     }
112 
113     /** Return the next pseudo random number expressed as a SkScalar
114      in the range [-SK_Scalar1..SK_Scalar1).
115      */
nextSScalar1()116     SkScalar nextSScalar1() { return SkFixedToScalar(this->nextSFixed1()); }
117 
118     /** Return the next pseudo random number as a bool.
119      */
nextBool()120     bool nextBool() { return this->nextU() >= 0x80000000; }
121 
122     /** A biased version of nextBool().
123      */
nextBiasedBool(SkScalar fractionTrue)124     bool nextBiasedBool(SkScalar fractionTrue) {
125         SkASSERT(fractionTrue >= 0 && fractionTrue <= SK_Scalar1);
126         return this->nextUScalar1() <= fractionTrue;
127     }
128 
129     /**
130      *  Return the next pseudo random number as a signed 64bit value.
131      */
next64()132     int64_t next64() {
133         int64_t hi = this->nextS();
134         return (hi << 32) | this->nextU();
135     }
136 
137     /** Reset the random object.
138      */
setSeed(uint32_t seed)139     void setSeed(uint32_t seed) { init(seed); }
140 
141 private:
142     // Initialize state variables with LCG.
143     // We must ensure that both J and K are non-zero, otherwise the
144     // multiply-with-carry step will forevermore return zero.
init(uint32_t seed)145     void init(uint32_t seed) {
146         fK = NextLCG(seed);
147         if (0 == fK) {
148             fK = NextLCG(fK);
149         }
150         fJ = NextLCG(fK);
151         if (0 == fJ) {
152             fJ = NextLCG(fJ);
153         }
154         SkASSERT(0 != fK && 0 != fJ);
155     }
NextLCG(uint32_t seed)156     static uint32_t NextLCG(uint32_t seed) { return kMul*seed + kAdd; }
157 
158     /** Return the next pseudo random number expressed as an unsigned SkFixed
159      in the range [0..SK_Fixed1).
160      */
nextUFixed1()161     SkFixed nextUFixed1() { return this->nextU() >> 16; }
162 
163     /** Return the next pseudo random number expressed as a signed SkFixed
164      in the range [-SK_Fixed1..SK_Fixed1).
165      */
nextSFixed1()166     SkFixed nextSFixed1() { return this->nextS() >> 15; }
167 
168     //  See "Numerical Recipes in C", 1992 page 284 for these constants
169     //  For the LCG that sets the initial state from a seed
170     enum {
171         kMul = 1664525,
172         kAdd = 1013904223
173     };
174     // Constants for the multiply-with-carry steps
175     enum {
176         kKMul = 30345,
177         kJMul = 18000,
178     };
179 
180     uint32_t fK;
181     uint32_t fJ;
182 };
183 
184 #endif
185