1 /*
2 * Copyright 2008 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8
9 #include "SkMathPriv.h"
10 #include "SkPoint.h"
11
rotateCW(SkIPoint * dst) const12 void SkIPoint::rotateCW(SkIPoint* dst) const {
13 SkASSERT(dst);
14
15 // use a tmp in case this == dst
16 int32_t tmp = fX;
17 dst->fX = -fY;
18 dst->fY = tmp;
19 }
20
rotateCCW(SkIPoint * dst) const21 void SkIPoint::rotateCCW(SkIPoint* dst) const {
22 SkASSERT(dst);
23
24 // use a tmp in case this == dst
25 int32_t tmp = fX;
26 dst->fX = fY;
27 dst->fY = -tmp;
28 }
29
30 ///////////////////////////////////////////////////////////////////////////////
31
setIRectFan(int l,int t,int r,int b,size_t stride)32 void SkPoint::setIRectFan(int l, int t, int r, int b, size_t stride) {
33 SkASSERT(stride >= sizeof(SkPoint));
34
35 ((SkPoint*)((intptr_t)this + 0 * stride))->set(SkIntToScalar(l),
36 SkIntToScalar(t));
37 ((SkPoint*)((intptr_t)this + 1 * stride))->set(SkIntToScalar(l),
38 SkIntToScalar(b));
39 ((SkPoint*)((intptr_t)this + 2 * stride))->set(SkIntToScalar(r),
40 SkIntToScalar(b));
41 ((SkPoint*)((intptr_t)this + 3 * stride))->set(SkIntToScalar(r),
42 SkIntToScalar(t));
43 }
44
rotateCW(SkPoint * dst) const45 void SkPoint::rotateCW(SkPoint* dst) const {
46 SkASSERT(dst);
47
48 // use a tmp in case this == dst
49 SkScalar tmp = fX;
50 dst->fX = -fY;
51 dst->fY = tmp;
52 }
53
rotateCCW(SkPoint * dst) const54 void SkPoint::rotateCCW(SkPoint* dst) const {
55 SkASSERT(dst);
56
57 // use a tmp in case this == dst
58 SkScalar tmp = fX;
59 dst->fX = fY;
60 dst->fY = -tmp;
61 }
62
scale(SkScalar scale,SkPoint * dst) const63 void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
64 SkASSERT(dst);
65 dst->set(fX * scale, fY * scale);
66 }
67
normalize()68 bool SkPoint::normalize() {
69 return this->setLength(fX, fY, SK_Scalar1);
70 }
71
setNormalize(SkScalar x,SkScalar y)72 bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
73 return this->setLength(x, y, SK_Scalar1);
74 }
75
setLength(SkScalar length)76 bool SkPoint::setLength(SkScalar length) {
77 return this->setLength(fX, fY, length);
78 }
79
80 // Returns the square of the Euclidian distance to (dx,dy).
getLengthSquared(float dx,float dy)81 static inline float getLengthSquared(float dx, float dy) {
82 return dx * dx + dy * dy;
83 }
84
85 // Calculates the square of the Euclidian distance to (dx,dy) and stores it in
86 // *lengthSquared. Returns true if the distance is judged to be "nearly zero".
87 //
88 // This logic is encapsulated in a helper method to make it explicit that we
89 // always perform this check in the same manner, to avoid inconsistencies
90 // (see http://code.google.com/p/skia/issues/detail?id=560 ).
is_length_nearly_zero(float dx,float dy,float * lengthSquared)91 static inline bool is_length_nearly_zero(float dx, float dy,
92 float *lengthSquared) {
93 *lengthSquared = getLengthSquared(dx, dy);
94 return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
95 }
96
Normalize(SkPoint * pt)97 SkScalar SkPoint::Normalize(SkPoint* pt) {
98 float x = pt->fX;
99 float y = pt->fY;
100 float mag2;
101 if (is_length_nearly_zero(x, y, &mag2)) {
102 pt->set(0, 0);
103 return 0;
104 }
105
106 float mag, scale;
107 if (SkScalarIsFinite(mag2)) {
108 mag = sk_float_sqrt(mag2);
109 scale = 1 / mag;
110 } else {
111 // our mag2 step overflowed to infinity, so use doubles instead.
112 // much slower, but needed when x or y are very large, other wise we
113 // divide by inf. and return (0,0) vector.
114 double xx = x;
115 double yy = y;
116 double magmag = sqrt(xx * xx + yy * yy);
117 mag = (float)magmag;
118 // we perform the divide with the double magmag, to stay exactly the
119 // same as setLength. It would be faster to perform the divide with
120 // mag, but it is possible that mag has overflowed to inf. but still
121 // have a non-zero value for scale (thanks to denormalized numbers).
122 scale = (float)(1 / magmag);
123 }
124 pt->set(x * scale, y * scale);
125 return mag;
126 }
127
Length(SkScalar dx,SkScalar dy)128 SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
129 float mag2 = dx * dx + dy * dy;
130 if (SkScalarIsFinite(mag2)) {
131 return sk_float_sqrt(mag2);
132 } else {
133 double xx = dx;
134 double yy = dy;
135 return (float)sqrt(xx * xx + yy * yy);
136 }
137 }
138
139 /*
140 * We have to worry about 2 tricky conditions:
141 * 1. underflow of mag2 (compared against nearlyzero^2)
142 * 2. overflow of mag2 (compared w/ isfinite)
143 *
144 * If we underflow, we return false. If we overflow, we compute again using
145 * doubles, which is much slower (3x in a desktop test) but will not overflow.
146 */
setLength(float x,float y,float length)147 bool SkPoint::setLength(float x, float y, float length) {
148 float mag2;
149 if (is_length_nearly_zero(x, y, &mag2)) {
150 this->set(0, 0);
151 return false;
152 }
153
154 float scale;
155 if (SkScalarIsFinite(mag2)) {
156 scale = length / sk_float_sqrt(mag2);
157 } else {
158 // our mag2 step overflowed to infinity, so use doubles instead.
159 // much slower, but needed when x or y are very large, other wise we
160 // divide by inf. and return (0,0) vector.
161 double xx = x;
162 double yy = y;
163 #ifdef SK_CPU_FLUSH_TO_ZERO
164 // The iOS ARM processor discards small denormalized numbers to go faster.
165 // Casting this to a float would cause the scale to go to zero. Keeping it
166 // as a double for the multiply keeps the scale non-zero.
167 double dscale = length / sqrt(xx * xx + yy * yy);
168 fX = x * dscale;
169 fY = y * dscale;
170 return true;
171 #else
172 scale = (float)(length / sqrt(xx * xx + yy * yy));
173 #endif
174 }
175 fX = x * scale;
176 fY = y * scale;
177 return true;
178 }
179
setLengthFast(float length)180 bool SkPoint::setLengthFast(float length) {
181 return this->setLengthFast(fX, fY, length);
182 }
183
setLengthFast(float x,float y,float length)184 bool SkPoint::setLengthFast(float x, float y, float length) {
185 float mag2;
186 if (is_length_nearly_zero(x, y, &mag2)) {
187 this->set(0, 0);
188 return false;
189 }
190
191 float scale;
192 if (SkScalarIsFinite(mag2)) {
193 scale = length * sk_float_rsqrt(mag2); // <--- this is the difference
194 } else {
195 // our mag2 step overflowed to infinity, so use doubles instead.
196 // much slower, but needed when x or y are very large, other wise we
197 // divide by inf. and return (0,0) vector.
198 double xx = x;
199 double yy = y;
200 scale = (float)(length / sqrt(xx * xx + yy * yy));
201 }
202 fX = x * scale;
203 fY = y * scale;
204 return true;
205 }
206
207
208 ///////////////////////////////////////////////////////////////////////////////
209
distanceToLineBetweenSqd(const SkPoint & a,const SkPoint & b,Side * side) const210 SkScalar SkPoint::distanceToLineBetweenSqd(const SkPoint& a,
211 const SkPoint& b,
212 Side* side) const {
213
214 SkVector u = b - a;
215 SkVector v = *this - a;
216
217 SkScalar uLengthSqd = u.lengthSqd();
218 SkScalar det = u.cross(v);
219 if (side) {
220 SkASSERT(-1 == SkPoint::kLeft_Side &&
221 0 == SkPoint::kOn_Side &&
222 1 == kRight_Side);
223 *side = (Side) SkScalarSignAsInt(det);
224 }
225 SkScalar temp = det / uLengthSqd;
226 temp *= det;
227 return temp;
228 }
229
distanceToLineSegmentBetweenSqd(const SkPoint & a,const SkPoint & b) const230 SkScalar SkPoint::distanceToLineSegmentBetweenSqd(const SkPoint& a,
231 const SkPoint& b) const {
232 // See comments to distanceToLineBetweenSqd. If the projection of c onto
233 // u is between a and b then this returns the same result as that
234 // function. Otherwise, it returns the distance to the closer of a and
235 // b. Let the projection of v onto u be v'. There are three cases:
236 // 1. v' points opposite to u. c is not between a and b and is closer
237 // to a than b.
238 // 2. v' points along u and has magnitude less than y. c is between
239 // a and b and the distance to the segment is the same as distance
240 // to the line ab.
241 // 3. v' points along u and has greater magnitude than u. c is not
242 // not between a and b and is closer to b than a.
243 // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
244 // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
245 // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
246 // avoid a sqrt to compute |u|.
247
248 SkVector u = b - a;
249 SkVector v = *this - a;
250
251 SkScalar uLengthSqd = u.lengthSqd();
252 SkScalar uDotV = SkPoint::DotProduct(u, v);
253
254 if (uDotV <= 0) {
255 return v.lengthSqd();
256 } else if (uDotV > uLengthSqd) {
257 return b.distanceToSqd(*this);
258 } else {
259 SkScalar det = u.cross(v);
260 SkScalar temp = det / uLengthSqd;
261 temp *= det;
262 return temp;
263 }
264 }
265