• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2008 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 
9 #include "SkMathPriv.h"
10 #include "SkPoint.h"
11 
rotateCW(SkIPoint * dst) const12 void SkIPoint::rotateCW(SkIPoint* dst) const {
13     SkASSERT(dst);
14 
15     // use a tmp in case this == dst
16     int32_t tmp = fX;
17     dst->fX = -fY;
18     dst->fY = tmp;
19 }
20 
rotateCCW(SkIPoint * dst) const21 void SkIPoint::rotateCCW(SkIPoint* dst) const {
22     SkASSERT(dst);
23 
24     // use a tmp in case this == dst
25     int32_t tmp = fX;
26     dst->fX = fY;
27     dst->fY = -tmp;
28 }
29 
30 ///////////////////////////////////////////////////////////////////////////////
31 
setIRectFan(int l,int t,int r,int b,size_t stride)32 void SkPoint::setIRectFan(int l, int t, int r, int b, size_t stride) {
33     SkASSERT(stride >= sizeof(SkPoint));
34 
35     ((SkPoint*)((intptr_t)this + 0 * stride))->set(SkIntToScalar(l),
36                                                    SkIntToScalar(t));
37     ((SkPoint*)((intptr_t)this + 1 * stride))->set(SkIntToScalar(l),
38                                                    SkIntToScalar(b));
39     ((SkPoint*)((intptr_t)this + 2 * stride))->set(SkIntToScalar(r),
40                                                    SkIntToScalar(b));
41     ((SkPoint*)((intptr_t)this + 3 * stride))->set(SkIntToScalar(r),
42                                                    SkIntToScalar(t));
43 }
44 
rotateCW(SkPoint * dst) const45 void SkPoint::rotateCW(SkPoint* dst) const {
46     SkASSERT(dst);
47 
48     // use a tmp in case this == dst
49     SkScalar tmp = fX;
50     dst->fX = -fY;
51     dst->fY = tmp;
52 }
53 
rotateCCW(SkPoint * dst) const54 void SkPoint::rotateCCW(SkPoint* dst) const {
55     SkASSERT(dst);
56 
57     // use a tmp in case this == dst
58     SkScalar tmp = fX;
59     dst->fX = fY;
60     dst->fY = -tmp;
61 }
62 
scale(SkScalar scale,SkPoint * dst) const63 void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
64     SkASSERT(dst);
65     dst->set(fX * scale, fY * scale);
66 }
67 
normalize()68 bool SkPoint::normalize() {
69     return this->setLength(fX, fY, SK_Scalar1);
70 }
71 
setNormalize(SkScalar x,SkScalar y)72 bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
73     return this->setLength(x, y, SK_Scalar1);
74 }
75 
setLength(SkScalar length)76 bool SkPoint::setLength(SkScalar length) {
77     return this->setLength(fX, fY, length);
78 }
79 
80 // Returns the square of the Euclidian distance to (dx,dy).
getLengthSquared(float dx,float dy)81 static inline float getLengthSquared(float dx, float dy) {
82     return dx * dx + dy * dy;
83 }
84 
85 // Calculates the square of the Euclidian distance to (dx,dy) and stores it in
86 // *lengthSquared.  Returns true if the distance is judged to be "nearly zero".
87 //
88 // This logic is encapsulated in a helper method to make it explicit that we
89 // always perform this check in the same manner, to avoid inconsistencies
90 // (see http://code.google.com/p/skia/issues/detail?id=560 ).
is_length_nearly_zero(float dx,float dy,float * lengthSquared)91 static inline bool is_length_nearly_zero(float dx, float dy,
92                                          float *lengthSquared) {
93     *lengthSquared = getLengthSquared(dx, dy);
94     return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
95 }
96 
Normalize(SkPoint * pt)97 SkScalar SkPoint::Normalize(SkPoint* pt) {
98     float x = pt->fX;
99     float y = pt->fY;
100     float mag2;
101     if (is_length_nearly_zero(x, y, &mag2)) {
102         pt->set(0, 0);
103         return 0;
104     }
105 
106     float mag, scale;
107     if (SkScalarIsFinite(mag2)) {
108         mag = sk_float_sqrt(mag2);
109         scale = 1 / mag;
110     } else {
111         // our mag2 step overflowed to infinity, so use doubles instead.
112         // much slower, but needed when x or y are very large, other wise we
113         // divide by inf. and return (0,0) vector.
114         double xx = x;
115         double yy = y;
116         double magmag = sqrt(xx * xx + yy * yy);
117         mag = (float)magmag;
118         // we perform the divide with the double magmag, to stay exactly the
119         // same as setLength. It would be faster to perform the divide with
120         // mag, but it is possible that mag has overflowed to inf. but still
121         // have a non-zero value for scale (thanks to denormalized numbers).
122         scale = (float)(1 / magmag);
123     }
124     pt->set(x * scale, y * scale);
125     return mag;
126 }
127 
Length(SkScalar dx,SkScalar dy)128 SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
129     float mag2 = dx * dx + dy * dy;
130     if (SkScalarIsFinite(mag2)) {
131         return sk_float_sqrt(mag2);
132     } else {
133         double xx = dx;
134         double yy = dy;
135         return (float)sqrt(xx * xx + yy * yy);
136     }
137 }
138 
139 /*
140  *  We have to worry about 2 tricky conditions:
141  *  1. underflow of mag2 (compared against nearlyzero^2)
142  *  2. overflow of mag2 (compared w/ isfinite)
143  *
144  *  If we underflow, we return false. If we overflow, we compute again using
145  *  doubles, which is much slower (3x in a desktop test) but will not overflow.
146  */
setLength(float x,float y,float length)147 bool SkPoint::setLength(float x, float y, float length) {
148     float mag2;
149     if (is_length_nearly_zero(x, y, &mag2)) {
150         this->set(0, 0);
151         return false;
152     }
153 
154     float scale;
155     if (SkScalarIsFinite(mag2)) {
156         scale = length / sk_float_sqrt(mag2);
157     } else {
158         // our mag2 step overflowed to infinity, so use doubles instead.
159         // much slower, but needed when x or y are very large, other wise we
160         // divide by inf. and return (0,0) vector.
161         double xx = x;
162         double yy = y;
163     #ifdef SK_CPU_FLUSH_TO_ZERO
164         // The iOS ARM processor discards small denormalized numbers to go faster.
165         // Casting this to a float would cause the scale to go to zero. Keeping it
166         // as a double for the multiply keeps the scale non-zero.
167         double dscale = length / sqrt(xx * xx + yy * yy);
168         fX = x * dscale;
169         fY = y * dscale;
170         return true;
171     #else
172         scale = (float)(length / sqrt(xx * xx + yy * yy));
173     #endif
174     }
175     fX = x * scale;
176     fY = y * scale;
177     return true;
178 }
179 
setLengthFast(float length)180 bool SkPoint::setLengthFast(float length) {
181     return this->setLengthFast(fX, fY, length);
182 }
183 
setLengthFast(float x,float y,float length)184 bool SkPoint::setLengthFast(float x, float y, float length) {
185     float mag2;
186     if (is_length_nearly_zero(x, y, &mag2)) {
187         this->set(0, 0);
188         return false;
189     }
190 
191     float scale;
192     if (SkScalarIsFinite(mag2)) {
193         scale = length * sk_float_rsqrt(mag2);  // <--- this is the difference
194     } else {
195         // our mag2 step overflowed to infinity, so use doubles instead.
196         // much slower, but needed when x or y are very large, other wise we
197         // divide by inf. and return (0,0) vector.
198         double xx = x;
199         double yy = y;
200         scale = (float)(length / sqrt(xx * xx + yy * yy));
201     }
202     fX = x * scale;
203     fY = y * scale;
204     return true;
205 }
206 
207 
208 ///////////////////////////////////////////////////////////////////////////////
209 
distanceToLineBetweenSqd(const SkPoint & a,const SkPoint & b,Side * side) const210 SkScalar SkPoint::distanceToLineBetweenSqd(const SkPoint& a,
211                                            const SkPoint& b,
212                                            Side* side) const {
213 
214     SkVector u = b - a;
215     SkVector v = *this - a;
216 
217     SkScalar uLengthSqd = u.lengthSqd();
218     SkScalar det = u.cross(v);
219     if (side) {
220         SkASSERT(-1 == SkPoint::kLeft_Side &&
221                   0 == SkPoint::kOn_Side &&
222                   1 == kRight_Side);
223         *side = (Side) SkScalarSignAsInt(det);
224     }
225     SkScalar temp = det / uLengthSqd;
226     temp *= det;
227     return temp;
228 }
229 
distanceToLineSegmentBetweenSqd(const SkPoint & a,const SkPoint & b) const230 SkScalar SkPoint::distanceToLineSegmentBetweenSqd(const SkPoint& a,
231                                                   const SkPoint& b) const {
232     // See comments to distanceToLineBetweenSqd. If the projection of c onto
233     // u is between a and b then this returns the same result as that
234     // function. Otherwise, it returns the distance to the closer of a and
235     // b. Let the projection of v onto u be v'.  There are three cases:
236     //    1. v' points opposite to u. c is not between a and b and is closer
237     //       to a than b.
238     //    2. v' points along u and has magnitude less than y. c is between
239     //       a and b and the distance to the segment is the same as distance
240     //       to the line ab.
241     //    3. v' points along u and has greater magnitude than u. c is not
242     //       not between a and b and is closer to b than a.
243     // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
244     // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
245     // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
246     // avoid a sqrt to compute |u|.
247 
248     SkVector u = b - a;
249     SkVector v = *this - a;
250 
251     SkScalar uLengthSqd = u.lengthSqd();
252     SkScalar uDotV = SkPoint::DotProduct(u, v);
253 
254     if (uDotV <= 0) {
255         return v.lengthSqd();
256     } else if (uDotV > uLengthSqd) {
257         return b.distanceToSqd(*this);
258     } else {
259         SkScalar det = u.cross(v);
260         SkScalar temp = det / uLengthSqd;
261         temp *= det;
262         return temp;
263     }
264 }
265