• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2017 ARM Ltd.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkDistanceFieldGen.h"
9 #include "GrDistanceFieldGenFromVector.h"
10 
11 #include "GrConfig.h"
12 #include "GrPathUtils.h"
13 #include "SkAutoMalloc.h"
14 #include "SkGeometry.h"
15 #include "SkMatrix.h"
16 #include "SkPathOps.h"
17 #include "SkPoint.h"
18 
19 /**
20  * If a scanline (a row of texel) cross from the kRight_SegSide
21  * of a segment to the kLeft_SegSide, the winding score should
22  * add 1.
23  * And winding score should subtract 1 if the scanline cross
24  * from kLeft_SegSide to kRight_SegSide.
25  * Always return kNA_SegSide if the scanline does not cross over
26  * the segment. Winding score should be zero in this case.
27  * You can get the winding number for each texel of the scanline
28  * by adding the winding score from left to right.
29  * Assuming we always start from outside, so the winding number
30  * should always start from zero.
31  *      ________         ________
32  *     |        |       |        |
33  * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment
34  *     |+1      |-1     |-1      |+1     <= Winding score
35  *   0 |   1    ^   0   ^  -1    |0      <= Winding number
36  *     |________|       |________|
37  *
38  * .......NA................NA..........
39  *         0                 0
40  */
41 enum SegSide {
42     kLeft_SegSide  = -1,
43     kOn_SegSide    =  0,
44     kRight_SegSide =  1,
45     kNA_SegSide    =  2,
46 };
47 
48 struct DFData {
49     float fDistSq;            // distance squared to nearest (so far) edge
50     int   fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment
51 };
52 
53 ///////////////////////////////////////////////////////////////////////////////
54 
55 /*
56  * Type definition for double precision DPoint and DAffineMatrix
57  */
58 
59 // Point with double precision
60 struct DPoint {
61     double fX, fY;
62 
MakeDPoint63     static DPoint Make(double x, double y) {
64         DPoint pt;
65         pt.set(x, y);
66         return pt;
67     }
68 
xDPoint69     double x() const { return fX; }
yDPoint70     double y() const { return fY; }
71 
setDPoint72     void set(double x, double y) { fX = x; fY = y; }
73 
74     /** Returns the euclidian distance from (0,0) to (x,y)
75     */
LengthDPoint76     static double Length(double x, double y) {
77         return sqrt(x * x + y * y);
78     }
79 
80     /** Returns the euclidian distance between a and b
81     */
DistanceDPoint82     static double Distance(const DPoint& a, const DPoint& b) {
83         return Length(a.fX - b.fX, a.fY - b.fY);
84     }
85 
distanceToSqdDPoint86     double distanceToSqd(const DPoint& pt) const {
87         double dx = fX - pt.fX;
88         double dy = fY - pt.fY;
89         return dx * dx + dy * dy;
90     }
91 };
92 
93 // Matrix with double precision for affine transformation.
94 // We don't store row 3 because its always (0, 0, 1).
95 class DAffineMatrix {
96 public:
operator [](int index) const97     double operator[](int index) const {
98         SkASSERT((unsigned)index < 6);
99         return fMat[index];
100     }
101 
operator [](int index)102     double& operator[](int index) {
103         SkASSERT((unsigned)index < 6);
104         return fMat[index];
105     }
106 
setAffine(double m11,double m12,double m13,double m21,double m22,double m23)107     void setAffine(double m11, double m12, double m13,
108                    double m21, double m22, double m23) {
109         fMat[0] = m11;
110         fMat[1] = m12;
111         fMat[2] = m13;
112         fMat[3] = m21;
113         fMat[4] = m22;
114         fMat[5] = m23;
115     }
116 
117     /** Set the matrix to identity
118     */
reset()119     void reset() {
120         fMat[0] = fMat[4] = 1.0;
121         fMat[1] = fMat[3] =
122         fMat[2] = fMat[5] = 0.0;
123     }
124 
125     // alias for reset()
setIdentity()126     void setIdentity() { this->reset(); }
127 
mapPoint(const SkPoint & src) const128     DPoint mapPoint(const SkPoint& src) const {
129         DPoint pt = DPoint::Make(src.x(), src.y());
130         return this->mapPoint(pt);
131     }
132 
mapPoint(const DPoint & src) const133     DPoint mapPoint(const DPoint& src) const {
134         return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2],
135                             fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]);
136     }
137 private:
138     double fMat[6];
139 };
140 
141 ///////////////////////////////////////////////////////////////////////////////
142 
143 static const double kClose = (SK_Scalar1 / 16.0);
144 static const double kCloseSqd = kClose * kClose;
145 static const double kNearlyZero = (SK_Scalar1 / (1 << 18));
146 static const double kTangentTolerance = (SK_Scalar1 / (1 << 11));
147 static const float  kConicTolerance = 0.25f;
148 
between_closed_open(double a,double b,double c,double tolerance=0.0,bool xformToleranceToX=false)149 static inline bool between_closed_open(double a, double b, double c,
150                                        double tolerance = 0.0,
151                                        bool xformToleranceToX = false) {
152     SkASSERT(tolerance >= 0.0);
153     double tolB = tolerance;
154     double tolC = tolerance;
155 
156     if (xformToleranceToX) {
157         // Canonical space is y = x^2 and the derivative of x^2 is 2x.
158         // So the slope of the tangent line at point (x, x^2) is 2x.
159         //
160         //                          /|
161         //  sqrt(2x * 2x + 1 * 1)  / | 2x
162         //                        /__|
163         //                         1
164         tolB = tolerance / sqrt(4.0 * b * b + 1.0);
165         tolC = tolerance / sqrt(4.0 * c * c + 1.0);
166     }
167     return b < c ? (a >= b - tolB && a < c - tolC) :
168                    (a >= c - tolC && a < b - tolB);
169 }
170 
between_closed(double a,double b,double c,double tolerance=0.0,bool xformToleranceToX=false)171 static inline bool between_closed(double a, double b, double c,
172                                   double tolerance = 0.0,
173                                   bool xformToleranceToX = false) {
174     SkASSERT(tolerance >= 0.0);
175     double tolB = tolerance;
176     double tolC = tolerance;
177 
178     if (xformToleranceToX) {
179         tolB = tolerance / sqrt(4.0 * b * b + 1.0);
180         tolC = tolerance / sqrt(4.0 * c * c + 1.0);
181     }
182     return b < c ? (a >= b - tolB && a <= c + tolC) :
183                    (a >= c - tolC && a <= b + tolB);
184 }
185 
nearly_zero(double x,double tolerance=kNearlyZero)186 static inline bool nearly_zero(double x, double tolerance = kNearlyZero) {
187     SkASSERT(tolerance >= 0.0);
188     return fabs(x) <= tolerance;
189 }
190 
nearly_equal(double x,double y,double tolerance=kNearlyZero,bool xformToleranceToX=false)191 static inline bool nearly_equal(double x, double y,
192                                 double tolerance = kNearlyZero,
193                                 bool xformToleranceToX = false) {
194     SkASSERT(tolerance >= 0.0);
195     if (xformToleranceToX) {
196         tolerance = tolerance / sqrt(4.0 * y * y + 1.0);
197     }
198     return fabs(x - y) <= tolerance;
199 }
200 
sign_of(const double & val)201 static inline double sign_of(const double &val) {
202     return (val < 0.0) ? -1.0 : 1.0;
203 }
204 
is_colinear(const SkPoint pts[3])205 static bool is_colinear(const SkPoint pts[3]) {
206     return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) -
207                        (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x()), kCloseSqd);
208 }
209 
210 class PathSegment {
211 public:
212     enum {
213         // These enum values are assumed in member functions below.
214         kLine = 0,
215         kQuad = 1,
216     } fType;
217 
218     // line uses 2 pts, quad uses 3 pts
219     SkPoint fPts[3];
220 
221     DPoint  fP0T, fP2T;
222     DAffineMatrix fXformMatrix;
223     double fScalingFactor;
224     double fScalingFactorSqd;
225     double fNearlyZeroScaled;
226     double fTangentTolScaledSqd;
227     SkRect  fBoundingBox;
228 
229     void init();
230 
countPoints()231     int countPoints() {
232         GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
233         return fType + 2;
234     }
235 
endPt() const236     const SkPoint& endPt() const {
237         GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
238         return fPts[fType + 1];
239     }
240 };
241 
242 typedef SkTArray<PathSegment, true> PathSegmentArray;
243 
init()244 void PathSegment::init() {
245     const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y());
246     const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y());
247     const double p0x = p0.x();
248     const double p0y = p0.y();
249     const double p2x = p2.x();
250     const double p2y = p2.y();
251 
252     fBoundingBox.set(fPts[0], this->endPt());
253 
254     if (fType == PathSegment::kLine) {
255         fScalingFactorSqd = fScalingFactor = 1.0;
256         double hypotenuse = DPoint::Distance(p0, p2);
257 
258         const double cosTheta = (p2x - p0x) / hypotenuse;
259         const double sinTheta = (p2y - p0y) / hypotenuse;
260 
261         fXformMatrix.setAffine(
262             cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y),
263             -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y)
264         );
265     } else {
266         SkASSERT(fType == PathSegment::kQuad);
267 
268         // Calculate bounding box
269         const SkPoint _P1mP0 = fPts[1] - fPts[0];
270         SkPoint t = _P1mP0 - fPts[2] + fPts[1];
271         t.fX = _P1mP0.x() / t.x();
272         t.fY = _P1mP0.y() / t.y();
273         t.fX = SkScalarClampMax(t.x(), 1.0);
274         t.fY = SkScalarClampMax(t.y(), 1.0);
275         t.fX = _P1mP0.x() * t.x();
276         t.fY = _P1mP0.y() * t.y();
277         const SkPoint m = fPts[0] + t;
278         fBoundingBox.growToInclude(&m, 1);
279 
280         const double p1x = fPts[1].x();
281         const double p1y = fPts[1].y();
282 
283         const double p0xSqd = p0x * p0x;
284         const double p0ySqd = p0y * p0y;
285         const double p2xSqd = p2x * p2x;
286         const double p2ySqd = p2y * p2y;
287         const double p1xSqd = p1x * p1x;
288         const double p1ySqd = p1y * p1y;
289 
290         const double p01xProd = p0x * p1x;
291         const double p02xProd = p0x * p2x;
292         const double b12xProd = p1x * p2x;
293         const double p01yProd = p0y * p1y;
294         const double p02yProd = p0y * p2y;
295         const double b12yProd = p1y * p2y;
296 
297         const double sqrtA = p0y - (2.0 * p1y) + p2y;
298         const double a = sqrtA * sqrtA;
299         const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x);
300         const double sqrtB = p0x - (2.0 * p1x) + p2x;
301         const double b = sqrtB * sqrtB;
302         const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd)
303                 - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd)
304                 + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd)
305                 + (p2xSqd * p0ySqd);
306         const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd)
307                 + (2.0 * p0x * b12yProd) - (p0x * p2ySqd)
308                 + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd)
309                 + (2.0 * p1x * b12yProd) - (p2x * p0ySqd)
310                 + (2.0 * p2x * p01yProd) + (p2x * p02yProd)
311                 - (2.0 * p2x * p1ySqd);
312         const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y)
313                 - (2.0 * p01xProd * p2y) - (p02xProd * p0y)
314                 + (4.0 * p02xProd * p1y) - (p02xProd * p2y)
315                 + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y)
316                 - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y)
317                 + (p2xSqd * p0y));
318 
319         const double cosTheta = sqrt(a / (a + b));
320         const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b));
321 
322         const double gDef = cosTheta * g - sinTheta * f;
323         const double fDef = sinTheta * g + cosTheta * f;
324 
325 
326         const double x0 = gDef / (a + b);
327         const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b)));
328 
329 
330         const double lambda = -1.0 * ((a + b) / (2.0 * fDef));
331         fScalingFactor = fabs(1.0 / lambda);
332         fScalingFactorSqd = fScalingFactor * fScalingFactor;
333 
334         const double lambda_cosTheta = lambda * cosTheta;
335         const double lambda_sinTheta = lambda * sinTheta;
336 
337         fXformMatrix.setAffine(
338             lambda_cosTheta, -lambda_sinTheta, lambda * x0,
339             lambda_sinTheta, lambda_cosTheta, lambda * y0
340         );
341     }
342 
343     fNearlyZeroScaled = kNearlyZero / fScalingFactor;
344     fTangentTolScaledSqd = kTangentTolerance * kTangentTolerance / fScalingFactorSqd;
345 
346     fP0T = fXformMatrix.mapPoint(p0);
347     fP2T = fXformMatrix.mapPoint(p2);
348 }
349 
init_distances(DFData * data,int size)350 static void init_distances(DFData* data, int size) {
351     DFData* currData = data;
352 
353     for (int i = 0; i < size; ++i) {
354         // init distance to "far away"
355         currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude;
356         currData->fDeltaWindingScore = 0;
357         ++currData;
358     }
359 }
360 
add_line_to_segment(const SkPoint pts[2],PathSegmentArray * segments)361 static inline void add_line_to_segment(const SkPoint pts[2],
362                                        PathSegmentArray* segments) {
363     segments->push_back();
364     segments->back().fType = PathSegment::kLine;
365     segments->back().fPts[0] = pts[0];
366     segments->back().fPts[1] = pts[1];
367 
368     segments->back().init();
369 }
370 
add_quad_segment(const SkPoint pts[3],PathSegmentArray * segments)371 static inline void add_quad_segment(const SkPoint pts[3],
372                                     PathSegmentArray* segments) {
373     if (pts[0].distanceToSqd(pts[1]) < kCloseSqd ||
374         pts[1].distanceToSqd(pts[2]) < kCloseSqd ||
375         is_colinear(pts)) {
376         if (pts[0] != pts[2]) {
377             SkPoint line_pts[2];
378             line_pts[0] = pts[0];
379             line_pts[1] = pts[2];
380             add_line_to_segment(line_pts, segments);
381         }
382     } else {
383         segments->push_back();
384         segments->back().fType = PathSegment::kQuad;
385         segments->back().fPts[0] = pts[0];
386         segments->back().fPts[1] = pts[1];
387         segments->back().fPts[2] = pts[2];
388 
389         segments->back().init();
390     }
391 }
392 
add_cubic_segments(const SkPoint pts[4],PathSegmentArray * segments)393 static inline void add_cubic_segments(const SkPoint pts[4],
394                                       PathSegmentArray* segments) {
395     SkSTArray<15, SkPoint, true> quads;
396     GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, &quads);
397     int count = quads.count();
398     for (int q = 0; q < count; q += 3) {
399         add_quad_segment(&quads[q], segments);
400     }
401 }
402 
calculate_nearest_point_for_quad(const PathSegment & segment,const DPoint & xFormPt)403 static float calculate_nearest_point_for_quad(
404                 const PathSegment& segment,
405                 const DPoint &xFormPt) {
406     static const float kThird = 0.33333333333f;
407     static const float kTwentySeventh = 0.037037037f;
408 
409     const float a = 0.5f - (float)xFormPt.y();
410     const float b = -0.5f * (float)xFormPt.x();
411 
412     const float a3 = a * a * a;
413     const float b2 = b * b;
414 
415     const float c = (b2 * 0.25f) + (a3 * kTwentySeventh);
416 
417     if (c >= 0.f) {
418         const float sqrtC = sqrt(c);
419         const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC);
420         return result;
421     } else {
422         const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f);
423         const float phi = (float)acos(cosPhi);
424         float result;
425         if (xFormPt.x() > 0.f) {
426             result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
427             if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
428                 result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
429             }
430         } else {
431             result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
432             if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
433                 result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
434             }
435         }
436         return result;
437     }
438 }
439 
440 // This structure contains some intermediate values shared by the same row.
441 // It is used to calculate segment side of a quadratic bezier.
442 struct RowData {
443     // The intersection type of a scanline and y = x * x parabola in canonical space.
444     enum IntersectionType {
445         kNoIntersection,
446         kVerticalLine,
447         kTangentLine,
448         kTwoPointsIntersect
449     } fIntersectionType;
450 
451     // The direction of the quadratic segment/scanline in the canonical space.
452     //  1: The quadratic segment/scanline going from negative x-axis to positive x-axis.
453     //  0: The scanline is a vertical line in the canonical space.
454     // -1: The quadratic segment/scanline going from positive x-axis to negative x-axis.
455     int fQuadXDirection;
456     int fScanlineXDirection;
457 
458     // The y-value(equal to x*x) of intersection point for the kVerticalLine intersection type.
459     double fYAtIntersection;
460 
461     // The x-value for two intersection points.
462     double fXAtIntersection1;
463     double fXAtIntersection2;
464 };
465 
precomputation_for_row(RowData * rowData,const PathSegment & segment,const SkPoint & pointLeft,const SkPoint & pointRight)466 void precomputation_for_row(
467             RowData *rowData,
468             const PathSegment& segment,
469             const SkPoint& pointLeft,
470             const SkPoint& pointRight
471             ) {
472     if (segment.fType != PathSegment::kQuad) {
473         return;
474     }
475 
476     const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft);
477     const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);;
478 
479     rowData->fQuadXDirection = (int)sign_of(segment.fP2T.x() - segment.fP0T.x());
480     rowData->fScanlineXDirection = (int)sign_of(xFormPtRight.x() - xFormPtLeft.x());
481 
482     const double x1 = xFormPtLeft.x();
483     const double y1 = xFormPtLeft.y();
484     const double x2 = xFormPtRight.x();
485     const double y2 = xFormPtRight.y();
486 
487     if (nearly_equal(x1, x2, segment.fNearlyZeroScaled, true)) {
488         rowData->fIntersectionType = RowData::kVerticalLine;
489         rowData->fYAtIntersection = x1 * x1;
490         rowData->fScanlineXDirection = 0;
491         return;
492     }
493 
494     // Line y = mx + b
495     const double m = (y2 - y1) / (x2 - x1);
496     const double b = -m * x1 + y1;
497 
498     const double m2 = m * m;
499     const double c = m2 + 4.0 * b;
500 
501     const double tol = 4.0 * segment.fTangentTolScaledSqd / (m2 + 1.0);
502 
503     // Check if the scanline is the tangent line of the curve,
504     // and the curve start or end at the same y-coordinate of the scanline
505     if ((rowData->fScanlineXDirection == 1 &&
506          (segment.fPts[0].y() == pointLeft.y() ||
507          segment.fPts[2].y() == pointLeft.y())) &&
508          nearly_zero(c, tol)) {
509         rowData->fIntersectionType = RowData::kTangentLine;
510         rowData->fXAtIntersection1 = m / 2.0;
511         rowData->fXAtIntersection2 = m / 2.0;
512     } else if (c <= 0.0) {
513         rowData->fIntersectionType = RowData::kNoIntersection;
514         return;
515     } else {
516         rowData->fIntersectionType = RowData::kTwoPointsIntersect;
517         const double d = sqrt(c);
518         rowData->fXAtIntersection1 = (m + d) / 2.0;
519         rowData->fXAtIntersection2 = (m - d) / 2.0;
520     }
521 }
522 
calculate_side_of_quad(const PathSegment & segment,const SkPoint & point,const DPoint & xFormPt,const RowData & rowData)523 SegSide calculate_side_of_quad(
524             const PathSegment& segment,
525             const SkPoint& point,
526             const DPoint& xFormPt,
527             const RowData& rowData) {
528     SegSide side = kNA_SegSide;
529 
530     if (RowData::kVerticalLine == rowData.fIntersectionType) {
531         side = (SegSide)(int)(sign_of(xFormPt.y() - rowData.fYAtIntersection) * rowData.fQuadXDirection);
532     }
533     else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType) {
534         const double p1 = rowData.fXAtIntersection1;
535         const double p2 = rowData.fXAtIntersection2;
536 
537         int signP1 = (int)sign_of(p1 - xFormPt.x());
538         bool includeP1 = true;
539         bool includeP2 = true;
540 
541         if (rowData.fScanlineXDirection == 1) {
542             if ((rowData.fQuadXDirection == -1 && segment.fPts[0].y() <= point.y() &&
543                  nearly_equal(segment.fP0T.x(), p1, segment.fNearlyZeroScaled, true)) ||
544                  (rowData.fQuadXDirection == 1 && segment.fPts[2].y() <= point.y() &&
545                  nearly_equal(segment.fP2T.x(), p1, segment.fNearlyZeroScaled, true))) {
546                 includeP1 = false;
547             }
548             if ((rowData.fQuadXDirection == -1 && segment.fPts[2].y() <= point.y() &&
549                  nearly_equal(segment.fP2T.x(), p2, segment.fNearlyZeroScaled, true)) ||
550                  (rowData.fQuadXDirection == 1 && segment.fPts[0].y() <= point.y() &&
551                  nearly_equal(segment.fP0T.x(), p2, segment.fNearlyZeroScaled, true))) {
552                 includeP2 = false;
553             }
554         }
555 
556         if (includeP1 && between_closed(p1, segment.fP0T.x(), segment.fP2T.x(),
557                                         segment.fNearlyZeroScaled, true)) {
558             side = (SegSide)(signP1 * rowData.fQuadXDirection);
559         }
560         if (includeP2 && between_closed(p2, segment.fP0T.x(), segment.fP2T.x(),
561                                         segment.fNearlyZeroScaled, true)) {
562             int signP2 = (int)sign_of(p2 - xFormPt.x());
563             if (side == kNA_SegSide || signP2 == 1) {
564                 side = (SegSide)(-signP2 * rowData.fQuadXDirection);
565             }
566         }
567     } else if (RowData::kTangentLine == rowData.fIntersectionType) {
568         // The scanline is the tangent line of current quadratic segment.
569 
570         const double p = rowData.fXAtIntersection1;
571         int signP = (int)sign_of(p - xFormPt.x());
572         if (rowData.fScanlineXDirection == 1) {
573             // The path start or end at the tangent point.
574             if (segment.fPts[0].y() == point.y()) {
575                 side = (SegSide)(signP);
576             } else if (segment.fPts[2].y() == point.y()) {
577                 side = (SegSide)(-signP);
578             }
579         }
580     }
581 
582     return side;
583 }
584 
distance_to_segment(const SkPoint & point,const PathSegment & segment,const RowData & rowData,SegSide * side)585 static float distance_to_segment(const SkPoint& point,
586                                  const PathSegment& segment,
587                                  const RowData& rowData,
588                                  SegSide* side) {
589     SkASSERT(side);
590 
591     const DPoint xformPt = segment.fXformMatrix.mapPoint(point);
592 
593     if (segment.fType == PathSegment::kLine) {
594         float result = SK_DistanceFieldPad * SK_DistanceFieldPad;
595 
596         if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) {
597             result = (float)(xformPt.y() * xformPt.y());
598         } else if (xformPt.x() < segment.fP0T.x()) {
599             result = (float)(xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y());
600         } else {
601             result = (float)((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - segment.fP2T.x())
602                      + xformPt.y() * xformPt.y());
603         }
604 
605         if (between_closed_open(point.y(), segment.fBoundingBox.top(),
606                                 segment.fBoundingBox.bottom())) {
607             *side = (SegSide)(int)sign_of(xformPt.y());
608         } else {
609             *side = kNA_SegSide;
610         }
611         return result;
612     } else {
613         SkASSERT(segment.fType == PathSegment::kQuad);
614 
615         const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt);
616 
617         float dist;
618 
619         if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) {
620             DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint);
621             dist = (float)xformPt.distanceToSqd(x);
622         } else {
623             const float distToB0T = (float)xformPt.distanceToSqd(segment.fP0T);
624             const float distToB2T = (float)xformPt.distanceToSqd(segment.fP2T);
625 
626             if (distToB0T < distToB2T) {
627                 dist = distToB0T;
628             } else {
629                 dist = distToB2T;
630             }
631         }
632 
633         if (between_closed_open(point.y(), segment.fBoundingBox.top(),
634                                 segment.fBoundingBox.bottom())) {
635             *side = calculate_side_of_quad(segment, point, xformPt, rowData);
636         } else {
637             *side = kNA_SegSide;
638         }
639 
640         return (float)(dist * segment.fScalingFactorSqd);
641     }
642 }
643 
calculate_distance_field_data(PathSegmentArray * segments,DFData * dataPtr,int width,int height)644 static void calculate_distance_field_data(PathSegmentArray* segments,
645                                           DFData* dataPtr,
646                                           int width, int height) {
647     int count = segments->count();
648     for (int a = 0; a < count; ++a) {
649         PathSegment& segment = (*segments)[a];
650         const SkRect& segBB = segment.fBoundingBox.makeOutset(
651                                 SK_DistanceFieldPad, SK_DistanceFieldPad);
652         int startColumn = (int)segBB.left();
653         int endColumn = SkScalarCeilToInt(segBB.right());
654 
655         int startRow = (int)segBB.top();
656         int endRow = SkScalarCeilToInt(segBB.bottom());
657 
658         SkASSERT((startColumn >= 0) && "StartColumn < 0!");
659         SkASSERT((endColumn <= width) && "endColumn > width!");
660         SkASSERT((startRow >= 0) && "StartRow < 0!");
661         SkASSERT((endRow <= height) && "EndRow > height!");
662 
663         // Clip inside the distance field to avoid overflow
664         startColumn = SkTMax(startColumn, 0);
665         endColumn   = SkTMin(endColumn,   width);
666         startRow    = SkTMax(startRow,    0);
667         endRow      = SkTMin(endRow,      height);
668 
669         for (int row = startRow; row < endRow; ++row) {
670             SegSide prevSide = kNA_SegSide;
671             const float pY = row + 0.5f;
672             RowData rowData;
673 
674             const SkPoint pointLeft = SkPoint::Make((SkScalar)startColumn, pY);
675             const SkPoint pointRight = SkPoint::Make((SkScalar)endColumn, pY);
676 
677             if (between_closed_open(pY, segment.fBoundingBox.top(),
678                                     segment.fBoundingBox.bottom())) {
679                 precomputation_for_row(&rowData, segment, pointLeft, pointRight);
680             }
681 
682             for (int col = startColumn; col < endColumn; ++col) {
683                 int idx = (row * width) + col;
684 
685                 const float pX = col + 0.5f;
686                 const SkPoint point = SkPoint::Make(pX, pY);
687 
688                 const float distSq = dataPtr[idx].fDistSq;
689                 int dilation = distSq < 1.5 * 1.5 ? 1 :
690                                distSq < 2.5 * 2.5 ? 2 :
691                                distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad;
692                 if (dilation > SK_DistanceFieldPad) {
693                     dilation = SK_DistanceFieldPad;
694                 }
695 
696                 // Optimisation for not calculating some points.
697                 if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.roundOut()
698                     .makeOutset(dilation, dilation).contains(col, row)) {
699                     continue;
700                 }
701 
702                 SegSide side = kNA_SegSide;
703                 int     deltaWindingScore = 0;
704                 float   currDistSq = distance_to_segment(point, segment, rowData, &side);
705                 if (prevSide == kLeft_SegSide && side == kRight_SegSide) {
706                     deltaWindingScore = -1;
707                 } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) {
708                     deltaWindingScore = 1;
709                 }
710 
711                 prevSide = side;
712 
713                 if (currDistSq < distSq) {
714                     dataPtr[idx].fDistSq = currDistSq;
715                 }
716 
717                 dataPtr[idx].fDeltaWindingScore += deltaWindingScore;
718             }
719         }
720     }
721 }
722 
723 template <int distanceMagnitude>
pack_distance_field_val(float dist)724 static unsigned char pack_distance_field_val(float dist) {
725     // The distance field is constructed as unsigned char values, so that the zero value is at 128,
726     // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255].
727     // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow.
728     dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f);
729 
730     // Scale into the positive range for unsigned distance.
731     dist += distanceMagnitude;
732 
733     // Scale into unsigned char range.
734     // Round to place negative and positive values as equally as possible around 128
735     // (which represents zero).
736     return (unsigned char)SkScalarRoundToInt(dist / (2 * distanceMagnitude) * 256.0f);
737 }
738 
GrGenerateDistanceFieldFromPath(unsigned char * distanceField,const SkPath & path,const SkMatrix & drawMatrix,int width,int height,size_t rowBytes)739 bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField,
740                                      const SkPath& path, const SkMatrix& drawMatrix,
741                                      int width, int height, size_t rowBytes) {
742     SkASSERT(distanceField);
743 
744     SkDEBUGCODE(SkPath xformPath;);
745     SkDEBUGCODE(path.transform(drawMatrix, &xformPath));
746     SkDEBUGCODE(SkIRect pathBounds = xformPath.getBounds().roundOut());
747     SkDEBUGCODE(SkIRect expectPathBounds = SkIRect::MakeWH(width - 2 * SK_DistanceFieldPad,
748                                                            height - 2 * SK_DistanceFieldPad));
749     SkASSERT(expectPathBounds.isEmpty() ||
750              expectPathBounds.contains(pathBounds.x(), pathBounds.y()));
751     SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() ||
752              expectPathBounds.contains(pathBounds));
753 
754     SkPath simplifiedPath;
755     SkPath workingPath;
756     if (Simplify(path, &simplifiedPath)) {
757         workingPath = simplifiedPath;
758     } else {
759         workingPath = path;
760     }
761 
762     if (!IsDistanceFieldSupportedFillType(workingPath.getFillType())) {
763         return false;
764     }
765 
766     workingPath.transform(drawMatrix);
767 
768     SkDEBUGCODE(pathBounds = workingPath.getBounds().roundOut());
769     SkASSERT(expectPathBounds.isEmpty() ||
770              expectPathBounds.contains(pathBounds.x(), pathBounds.y()));
771     SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() ||
772              expectPathBounds.contains(pathBounds));
773 
774     // translate path to offset (SK_DistanceFieldPad, SK_DistanceFieldPad)
775     SkMatrix dfMatrix;
776     dfMatrix.setTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad);
777     workingPath.transform(dfMatrix);
778 
779     // create temp data
780     size_t dataSize = width * height * sizeof(DFData);
781     SkAutoSMalloc<1024> dfStorage(dataSize);
782     DFData* dataPtr = (DFData*) dfStorage.get();
783 
784     // create initial distance data
785     init_distances(dataPtr, width * height);
786 
787     SkPath::Iter iter(workingPath, true);
788     SkSTArray<15, PathSegment, true> segments;
789 
790     for (;;) {
791         SkPoint pts[4];
792         SkPath::Verb verb = iter.next(pts);
793         switch (verb) {
794             case SkPath::kMove_Verb:
795                 break;
796             case SkPath::kLine_Verb: {
797                 add_line_to_segment(pts, &segments);
798                 break;
799             }
800             case SkPath::kQuad_Verb:
801                 add_quad_segment(pts, &segments);
802                 break;
803             case SkPath::kConic_Verb: {
804                 SkScalar weight = iter.conicWeight();
805                 SkAutoConicToQuads converter;
806                 const SkPoint* quadPts = converter.computeQuads(pts, weight, kConicTolerance);
807                 for (int i = 0; i < converter.countQuads(); ++i) {
808                     add_quad_segment(quadPts + 2*i, &segments);
809                 }
810                 break;
811             }
812             case SkPath::kCubic_Verb: {
813                 add_cubic_segments(pts, &segments);
814                 break;
815             };
816             default:
817                 break;
818         }
819         if (verb == SkPath::kDone_Verb) {
820             break;
821         }
822     }
823 
824     calculate_distance_field_data(&segments, dataPtr, width, height);
825 
826     for (int row = 0; row < height; ++row) {
827         int windingNumber = 0; // Winding number start from zero for each scanline
828         for (int col = 0; col < width; ++col) {
829             int idx = (row * width) + col;
830             windingNumber += dataPtr[idx].fDeltaWindingScore;
831 
832             enum DFSign {
833                 kInside = -1,
834                 kOutside = 1
835             } dfSign;
836 
837             if (workingPath.getFillType() == SkPath::kWinding_FillType) {
838                 dfSign = windingNumber ? kInside : kOutside;
839             } else if (workingPath.getFillType() == SkPath::kInverseWinding_FillType) {
840                 dfSign = windingNumber ? kOutside : kInside;
841             } else if (workingPath.getFillType() == SkPath::kEvenOdd_FillType) {
842                 dfSign = (windingNumber % 2) ? kInside : kOutside;
843             } else {
844                 SkASSERT(workingPath.getFillType() == SkPath::kInverseEvenOdd_FillType);
845                 dfSign = (windingNumber % 2) ? kOutside : kInside;
846             }
847 
848             // The winding number at the end of a scanline should be zero.
849             SkASSERT(((col != width - 1) || (windingNumber == 0)) &&
850                     "Winding number should be zero at the end of a scan line.");
851             // Fallback to use SkPath::contains to determine the sign of pixel in release build.
852             if (col == width - 1 && windingNumber != 0) {
853                 for (int col = 0; col < width; ++col) {
854                     int idx = (row * width) + col;
855                     dfSign = workingPath.contains(col + 0.5, row + 0.5) ? kInside : kOutside;
856                     const float miniDist = sqrt(dataPtr[idx].fDistSq);
857                     const float dist = dfSign * miniDist;
858 
859                     unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist);
860 
861                     distanceField[(row * rowBytes) + col] = pixelVal;
862                 }
863                 continue;
864             }
865 
866             const float miniDist = sqrt(dataPtr[idx].fDistSq);
867             const float dist = dfSign * miniDist;
868 
869             unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist);
870 
871             distanceField[(row * rowBytes) + col] = pixelVal;
872         }
873     }
874     return true;
875 }
876