1 /*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 #include "SkOpSpan.h"
8 #include "SkPathOpsPoint.h"
9 #include "SkPathWriter.h"
10 #include "SkTSort.h"
11
12 // wrap path to keep track of whether the contour is initialized and non-empty
SkPathWriter(SkPath & path)13 SkPathWriter::SkPathWriter(SkPath& path)
14 : fPathPtr(&path)
15 {
16 init();
17 }
18
close()19 void SkPathWriter::close() {
20 if (fCurrent.isEmpty()) {
21 return;
22 }
23 SkASSERT(this->isClosed());
24 #if DEBUG_PATH_CONSTRUCTION
25 SkDebugf("path.close();\n");
26 #endif
27 fCurrent.close();
28 fPathPtr->addPath(fCurrent);
29 fCurrent.reset();
30 init();
31 }
32
conicTo(const SkPoint & pt1,const SkOpPtT * pt2,SkScalar weight)33 void SkPathWriter::conicTo(const SkPoint& pt1, const SkOpPtT* pt2, SkScalar weight) {
34 this->update(pt2);
35 #if DEBUG_PATH_CONSTRUCTION
36 SkDebugf("path.conicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g);\n",
37 pt1.fX, pt1.fY, pt2->fPt.fX, pt2->fPt.fY, weight);
38 #endif
39 fCurrent.conicTo(pt1, pt2->fPt, weight);
40 }
41
cubicTo(const SkPoint & pt1,const SkPoint & pt2,const SkOpPtT * pt3)42 void SkPathWriter::cubicTo(const SkPoint& pt1, const SkPoint& pt2, const SkOpPtT* pt3) {
43 this->update(pt3);
44 #if DEBUG_PATH_CONSTRUCTION
45 SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n",
46 pt1.fX, pt1.fY, pt2.fX, pt2.fY, pt3->fPt.fX, pt3->fPt.fY);
47 #endif
48 fCurrent.cubicTo(pt1, pt2, pt3->fPt);
49 }
50
deferredLine(const SkOpPtT * pt)51 bool SkPathWriter::deferredLine(const SkOpPtT* pt) {
52 SkASSERT(fFirstPtT);
53 SkASSERT(fDefer[0]);
54 if (fDefer[0] == pt) {
55 // FIXME: why we're adding a degenerate line? Caller should have preflighted this.
56 return true;
57 }
58 if (pt->contains(fDefer[0])) {
59 // FIXME: why we're adding a degenerate line?
60 return true;
61 }
62 if (this->matchedLast(pt)) {
63 return false;
64 }
65 if (fDefer[1] && this->changedSlopes(pt)) {
66 this->lineTo();
67 fDefer[0] = fDefer[1];
68 }
69 fDefer[1] = pt;
70 return true;
71 }
72
deferredMove(const SkOpPtT * pt)73 void SkPathWriter::deferredMove(const SkOpPtT* pt) {
74 if (!fDefer[1]) {
75 fFirstPtT = fDefer[0] = pt;
76 return;
77 }
78 SkASSERT(fDefer[0]);
79 if (!this->matchedLast(pt)) {
80 this->finishContour();
81 fFirstPtT = fDefer[0] = pt;
82 }
83 }
84
finishContour()85 void SkPathWriter::finishContour() {
86 if (!this->matchedLast(fDefer[0])) {
87 if (!fDefer[1]) {
88 return;
89 }
90 this->lineTo();
91 }
92 if (fCurrent.isEmpty()) {
93 return;
94 }
95 if (this->isClosed()) {
96 this->close();
97 } else {
98 SkASSERT(fDefer[1]);
99 fEndPtTs.push(fFirstPtT);
100 fEndPtTs.push(fDefer[1]);
101 fPartials.push_back(fCurrent);
102 this->init();
103 }
104 }
105
init()106 void SkPathWriter::init() {
107 fCurrent.reset();
108 fFirstPtT = fDefer[0] = fDefer[1] = nullptr;
109 }
110
isClosed() const111 bool SkPathWriter::isClosed() const {
112 return this->matchedLast(fFirstPtT);
113 }
114
lineTo()115 void SkPathWriter::lineTo() {
116 if (fCurrent.isEmpty()) {
117 this->moveTo();
118 }
119 #if DEBUG_PATH_CONSTRUCTION
120 SkDebugf("path.lineTo(%1.9g,%1.9g);\n", fDefer[1]->fPt.fX, fDefer[1]->fPt.fY);
121 #endif
122 fCurrent.lineTo(fDefer[1]->fPt);
123 }
124
matchedLast(const SkOpPtT * test) const125 bool SkPathWriter::matchedLast(const SkOpPtT* test) const {
126 if (test == fDefer[1]) {
127 return true;
128 }
129 if (!test) {
130 return false;
131 }
132 if (!fDefer[1]) {
133 return false;
134 }
135 return test->contains(fDefer[1]);
136 }
137
moveTo()138 void SkPathWriter::moveTo() {
139 #if DEBUG_PATH_CONSTRUCTION
140 SkDebugf("path.moveTo(%1.9g,%1.9g);\n", fFirstPtT->fPt.fX, fFirstPtT->fPt.fY);
141 #endif
142 fCurrent.moveTo(fFirstPtT->fPt);
143 }
144
quadTo(const SkPoint & pt1,const SkOpPtT * pt2)145 void SkPathWriter::quadTo(const SkPoint& pt1, const SkOpPtT* pt2) {
146 this->update(pt2);
147 #if DEBUG_PATH_CONSTRUCTION
148 SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n",
149 pt1.fX, pt1.fY, pt2->fPt.fX, pt2->fPt.fY);
150 #endif
151 fCurrent.quadTo(pt1, pt2->fPt);
152 }
153
update(const SkOpPtT * pt)154 void SkPathWriter::update(const SkOpPtT* pt) {
155 if (!fDefer[1]) {
156 this->moveTo();
157 } else if (!this->matchedLast(fDefer[0])) {
158 this->lineTo();
159 }
160 fDefer[0] = fDefer[1] = pt; // set both to know that there is not a pending deferred line
161 }
162
someAssemblyRequired()163 bool SkPathWriter::someAssemblyRequired() {
164 this->finishContour();
165 return fEndPtTs.count() > 0;
166 }
167
changedSlopes(const SkOpPtT * ptT) const168 bool SkPathWriter::changedSlopes(const SkOpPtT* ptT) const {
169 if (matchedLast(fDefer[0])) {
170 return false;
171 }
172 SkVector deferDxdy = fDefer[1]->fPt - fDefer[0]->fPt;
173 SkVector lineDxdy = ptT->fPt - fDefer[1]->fPt;
174 return deferDxdy.fX * lineDxdy.fY != deferDxdy.fY * lineDxdy.fX;
175 }
176
177 class DistanceLessThan {
178 public:
DistanceLessThan(double * distances)179 DistanceLessThan(double* distances) : fDistances(distances) { }
180 double* fDistances;
operator ()(const int one,const int two)181 bool operator()(const int one, const int two) {
182 return fDistances[one] < fDistances[two];
183 }
184 };
185
186 /*
187 check start and end of each contour
188 if not the same, record them
189 match them up
190 connect closest
191 reassemble contour pieces into new path
192 */
assemble()193 void SkPathWriter::assemble() {
194 #if DEBUG_SHOW_TEST_NAME
195 SkDebugf("</div>\n");
196 #endif
197 if (!this->someAssemblyRequired()) {
198 return;
199 }
200 #if DEBUG_PATH_CONSTRUCTION
201 SkDebugf("%s\n", __FUNCTION__);
202 #endif
203 SkOpPtT const* const* runs = fEndPtTs.begin(); // starts, ends of partial contours
204 int endCount = fEndPtTs.count(); // all starts and ends
205 SkASSERT(endCount > 0);
206 SkASSERT(endCount == fPartials.count() * 2);
207 #if DEBUG_ASSEMBLE
208 for (int index = 0; index < endCount; index += 2) {
209 const SkOpPtT* eStart = runs[index];
210 const SkOpPtT* eEnd = runs[index + 1];
211 SkASSERT(eStart != eEnd);
212 SkASSERT(!eStart->contains(eEnd));
213 SkDebugf("%s contour start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n", __FUNCTION__,
214 eStart->fPt.fX, eStart->fPt.fY, eEnd->fPt.fX, eEnd->fPt.fY);
215 }
216 #endif
217 SkTDArray<int> sLink, eLink;
218 int linkCount = endCount / 2; // number of partial contours
219 sLink.append(linkCount);
220 eLink.append(linkCount);
221 int rIndex, iIndex;
222 for (rIndex = 0; rIndex < linkCount; ++rIndex) {
223 sLink[rIndex] = eLink[rIndex] = SK_MaxS32;
224 }
225 const int entries = endCount * (endCount - 1) / 2; // folded triangle
226 SkSTArray<8, double, true> distances(entries);
227 SkSTArray<8, int, true> sortedDist(entries);
228 SkSTArray<8, int, true> distLookup(entries);
229 int rRow = 0;
230 int dIndex = 0;
231 for (rIndex = 0; rIndex < endCount - 1; ++rIndex) {
232 const SkOpPtT* oPtT = runs[rIndex];
233 for (iIndex = rIndex + 1; iIndex < endCount; ++iIndex) {
234 const SkOpPtT* iPtT = runs[iIndex];
235 double dx = iPtT->fPt.fX - oPtT->fPt.fX;
236 double dy = iPtT->fPt.fY - oPtT->fPt.fY;
237 double dist = dx * dx + dy * dy;
238 distLookup.push_back(rRow + iIndex);
239 distances.push_back(dist); // oStart distance from iStart
240 sortedDist.push_back(dIndex++);
241 }
242 rRow += endCount;
243 }
244 SkASSERT(dIndex == entries);
245 SkTQSort<int>(sortedDist.begin(), sortedDist.end() - 1, DistanceLessThan(distances.begin()));
246 int remaining = linkCount; // number of start/end pairs
247 for (rIndex = 0; rIndex < entries; ++rIndex) {
248 int pair = sortedDist[rIndex];
249 pair = distLookup[pair];
250 int row = pair / endCount;
251 int col = pair - row * endCount;
252 int ndxOne = row >> 1;
253 bool endOne = row & 1;
254 int* linkOne = endOne ? eLink.begin() : sLink.begin();
255 if (linkOne[ndxOne] != SK_MaxS32) {
256 continue;
257 }
258 int ndxTwo = col >> 1;
259 bool endTwo = col & 1;
260 int* linkTwo = endTwo ? eLink.begin() : sLink.begin();
261 if (linkTwo[ndxTwo] != SK_MaxS32) {
262 continue;
263 }
264 SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]);
265 bool flip = endOne == endTwo;
266 linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo;
267 linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne;
268 if (!--remaining) {
269 break;
270 }
271 }
272 SkASSERT(!remaining);
273 #if DEBUG_ASSEMBLE
274 for (rIndex = 0; rIndex < linkCount; ++rIndex) {
275 int s = sLink[rIndex];
276 int e = eLink[rIndex];
277 SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e',
278 s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e);
279 }
280 #endif
281 rIndex = 0;
282 do {
283 bool forward = true;
284 bool first = true;
285 int sIndex = sLink[rIndex];
286 SkASSERT(sIndex != SK_MaxS32);
287 sLink[rIndex] = SK_MaxS32;
288 int eIndex;
289 if (sIndex < 0) {
290 eIndex = sLink[~sIndex];
291 sLink[~sIndex] = SK_MaxS32;
292 } else {
293 eIndex = eLink[sIndex];
294 eLink[sIndex] = SK_MaxS32;
295 }
296 SkASSERT(eIndex != SK_MaxS32);
297 #if DEBUG_ASSEMBLE
298 SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e',
299 sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e',
300 eIndex < 0 ? ~eIndex : eIndex);
301 #endif
302 do {
303 const SkPath& contour = fPartials[rIndex];
304 if (forward) {
305 fPathPtr->addPath(contour,
306 first ? SkPath::kAppend_AddPathMode : SkPath::kExtend_AddPathMode);
307 } else {
308 SkASSERT(!first);
309 fPathPtr->reversePathTo(contour);
310 }
311 if (first) {
312 first = false;
313 }
314 #if DEBUG_ASSEMBLE
315 SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex,
316 eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex,
317 sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex));
318 #endif
319 if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) {
320 fPathPtr->close();
321 break;
322 }
323 if (forward) {
324 eIndex = eLink[rIndex];
325 SkASSERT(eIndex != SK_MaxS32);
326 eLink[rIndex] = SK_MaxS32;
327 if (eIndex >= 0) {
328 SkASSERT(sLink[eIndex] == rIndex);
329 sLink[eIndex] = SK_MaxS32;
330 } else {
331 SkASSERT(eLink[~eIndex] == ~rIndex);
332 eLink[~eIndex] = SK_MaxS32;
333 }
334 } else {
335 eIndex = sLink[rIndex];
336 SkASSERT(eIndex != SK_MaxS32);
337 sLink[rIndex] = SK_MaxS32;
338 if (eIndex >= 0) {
339 SkASSERT(eLink[eIndex] == rIndex);
340 eLink[eIndex] = SK_MaxS32;
341 } else {
342 SkASSERT(sLink[~eIndex] == ~rIndex);
343 sLink[~eIndex] = SK_MaxS32;
344 }
345 }
346 rIndex = eIndex;
347 if (rIndex < 0) {
348 forward ^= 1;
349 rIndex = ~rIndex;
350 }
351 } while (true);
352 for (rIndex = 0; rIndex < linkCount; ++rIndex) {
353 if (sLink[rIndex] != SK_MaxS32) {
354 break;
355 }
356 }
357 } while (rIndex < linkCount);
358 #if DEBUG_ASSEMBLE
359 for (rIndex = 0; rIndex < linkCount; ++rIndex) {
360 SkASSERT(sLink[rIndex] == SK_MaxS32);
361 SkASSERT(eLink[rIndex] == SK_MaxS32);
362 }
363 #endif
364 return;
365 }
366