• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //=== llvm/Analysis/DominatorInternals.h - Dominator Calculation -*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #ifndef LLVM_ANALYSIS_DOMINATOR_INTERNALS_H
11 #define LLVM_ANALYSIS_DOMINATOR_INTERNALS_H
12 
13 #include "llvm/Analysis/Dominators.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 
16 //===----------------------------------------------------------------------===//
17 //
18 // DominatorTree construction - This pass constructs immediate dominator
19 // information for a flow-graph based on the algorithm described in this
20 // document:
21 //
22 //   A Fast Algorithm for Finding Dominators in a Flowgraph
23 //   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
24 //
25 // This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
26 // out that the theoretically slower O(n*log(n)) implementation is actually
27 // faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 namespace llvm {
32 
33 template<class GraphT>
DFSPass(DominatorTreeBase<typename GraphT::NodeType> & DT,typename GraphT::NodeType * V,unsigned N)34 unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
35                  typename GraphT::NodeType* V, unsigned N) {
36   // This is more understandable as a recursive algorithm, but we can't use the
37   // recursive algorithm due to stack depth issues.  Keep it here for
38   // documentation purposes.
39 #if 0
40   InfoRec &VInfo = DT.Info[DT.Roots[i]];
41   VInfo.DFSNum = VInfo.Semi = ++N;
42   VInfo.Label = V;
43 
44   Vertex.push_back(V);        // Vertex[n] = V;
45 
46   for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
47     InfoRec &SuccVInfo = DT.Info[*SI];
48     if (SuccVInfo.Semi == 0) {
49       SuccVInfo.Parent = V;
50       N = DTDFSPass(DT, *SI, N);
51     }
52   }
53 #else
54   bool IsChildOfArtificialExit = (N != 0);
55 
56   SmallVector<std::pair<typename GraphT::NodeType*,
57                         typename GraphT::ChildIteratorType>, 32> Worklist;
58   Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
59   while (!Worklist.empty()) {
60     typename GraphT::NodeType* BB = Worklist.back().first;
61     typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;
62 
63     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
64                                                                     DT.Info[BB];
65 
66     // First time we visited this BB?
67     if (NextSucc == GraphT::child_begin(BB)) {
68       BBInfo.DFSNum = BBInfo.Semi = ++N;
69       BBInfo.Label = BB;
70 
71       DT.Vertex.push_back(BB);       // Vertex[n] = V;
72 
73       if (IsChildOfArtificialExit)
74         BBInfo.Parent = 1;
75 
76       IsChildOfArtificialExit = false;
77     }
78 
79     // store the DFS number of the current BB - the reference to BBInfo might
80     // get invalidated when processing the successors.
81     unsigned BBDFSNum = BBInfo.DFSNum;
82 
83     // If we are done with this block, remove it from the worklist.
84     if (NextSucc == GraphT::child_end(BB)) {
85       Worklist.pop_back();
86       continue;
87     }
88 
89     // Increment the successor number for the next time we get to it.
90     ++Worklist.back().second;
91 
92     // Visit the successor next, if it isn't already visited.
93     typename GraphT::NodeType* Succ = *NextSucc;
94 
95     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
96                                                                   DT.Info[Succ];
97     if (SuccVInfo.Semi == 0) {
98       SuccVInfo.Parent = BBDFSNum;
99       Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
100     }
101   }
102 #endif
103     return N;
104 }
105 
106 template<class GraphT>
107 typename GraphT::NodeType*
Eval(DominatorTreeBase<typename GraphT::NodeType> & DT,typename GraphT::NodeType * VIn,unsigned LastLinked)108 Eval(DominatorTreeBase<typename GraphT::NodeType>& DT,
109      typename GraphT::NodeType *VIn, unsigned LastLinked) {
110   typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo =
111                                                                   DT.Info[VIn];
112   if (VInInfo.DFSNum < LastLinked)
113     return VIn;
114 
115   SmallVector<typename GraphT::NodeType*, 32> Work;
116   SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
117 
118   if (VInInfo.Parent >= LastLinked)
119     Work.push_back(VIn);
120 
121   while (!Work.empty()) {
122     typename GraphT::NodeType* V = Work.back();
123     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
124                                                                      DT.Info[V];
125     typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent];
126 
127     // Process Ancestor first
128     if (Visited.insert(VAncestor) && VInfo.Parent >= LastLinked) {
129       Work.push_back(VAncestor);
130       continue;
131     }
132     Work.pop_back();
133 
134     // Update VInfo based on Ancestor info
135     if (VInfo.Parent < LastLinked)
136       continue;
137 
138     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
139                                                              DT.Info[VAncestor];
140     typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
141     typename GraphT::NodeType* VLabel = VInfo.Label;
142     if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
143       VInfo.Label = VAncestorLabel;
144     VInfo.Parent = VAInfo.Parent;
145   }
146 
147   return VInInfo.Label;
148 }
149 
150 template<class FuncT, class NodeT>
Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType> & DT,FuncT & F)151 void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
152                FuncT& F) {
153   typedef GraphTraits<NodeT> GraphT;
154 
155   unsigned N = 0;
156   bool MultipleRoots = (DT.Roots.size() > 1);
157   if (MultipleRoots) {
158     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
159         DT.Info[NULL];
160     BBInfo.DFSNum = BBInfo.Semi = ++N;
161     BBInfo.Label = NULL;
162 
163     DT.Vertex.push_back(NULL);       // Vertex[n] = V;
164   }
165 
166   // Step #1: Number blocks in depth-first order and initialize variables used
167   // in later stages of the algorithm.
168   for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
169        i != e; ++i)
170     N = DFSPass<GraphT>(DT, DT.Roots[i], N);
171 
172   // it might be that some blocks did not get a DFS number (e.g., blocks of
173   // infinite loops). In these cases an artificial exit node is required.
174   MultipleRoots |= (DT.isPostDominator() && N != F.size());
175 
176   // When naively implemented, the Lengauer-Tarjan algorithm requires a separate
177   // bucket for each vertex. However, this is unnecessary, because each vertex
178   // is only placed into a single bucket (that of its semidominator), and each
179   // vertex's bucket is processed before it is added to any bucket itself.
180   //
181   // Instead of using a bucket per vertex, we use a single array Buckets that
182   // has two purposes. Before the vertex V with preorder number i is processed,
183   // Buckets[i] stores the index of the first element in V's bucket. After V's
184   // bucket is processed, Buckets[i] stores the index of the next element in the
185   // bucket containing V, if any.
186   SmallVector<unsigned, 32> Buckets;
187   Buckets.resize(N + 1);
188   for (unsigned i = 1; i <= N; ++i)
189     Buckets[i] = i;
190 
191   for (unsigned i = N; i >= 2; --i) {
192     typename GraphT::NodeType* W = DT.Vertex[i];
193     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
194                                                                      DT.Info[W];
195 
196     // Step #2: Implicitly define the immediate dominator of vertices
197     for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
198       typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
199       typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1);
200       DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
201     }
202 
203     // Step #3: Calculate the semidominators of all vertices
204 
205     // initialize the semi dominator to point to the parent node
206     WInfo.Semi = WInfo.Parent;
207     typedef GraphTraits<Inverse<NodeT> > InvTraits;
208     for (typename InvTraits::ChildIteratorType CI =
209          InvTraits::child_begin(W),
210          E = InvTraits::child_end(W); CI != E; ++CI) {
211       typename InvTraits::NodeType *N = *CI;
212       if (DT.Info.count(N)) {  // Only if this predecessor is reachable!
213         unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi;
214         if (SemiU < WInfo.Semi)
215           WInfo.Semi = SemiU;
216       }
217     }
218 
219     // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
220     // necessarily parent(V). In this case, set idom(V) here and avoid placing
221     // V into a bucket.
222     if (WInfo.Semi == WInfo.Parent) {
223       DT.IDoms[W] = DT.Vertex[WInfo.Parent];
224     } else {
225       Buckets[i] = Buckets[WInfo.Semi];
226       Buckets[WInfo.Semi] = i;
227     }
228   }
229 
230   if (N >= 1) {
231     typename GraphT::NodeType* Root = DT.Vertex[1];
232     for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
233       typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
234       DT.IDoms[V] = Root;
235     }
236   }
237 
238   // Step #4: Explicitly define the immediate dominator of each vertex
239   for (unsigned i = 2; i <= N; ++i) {
240     typename GraphT::NodeType* W = DT.Vertex[i];
241     typename GraphT::NodeType*& WIDom = DT.IDoms[W];
242     if (WIDom != DT.Vertex[DT.Info[W].Semi])
243       WIDom = DT.IDoms[WIDom];
244   }
245 
246   if (DT.Roots.empty()) return;
247 
248   // Add a node for the root.  This node might be the actual root, if there is
249   // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
250   // which postdominates all real exits if there are multiple exit blocks, or
251   // an infinite loop.
252   typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : 0;
253 
254   DT.DomTreeNodes[Root] = DT.RootNode =
255                         new DomTreeNodeBase<typename GraphT::NodeType>(Root, 0);
256 
257   // Loop over all of the reachable blocks in the function...
258   for (unsigned i = 2; i <= N; ++i) {
259     typename GraphT::NodeType* W = DT.Vertex[i];
260 
261     DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[W];
262     if (BBNode) continue;  // Haven't calculated this node yet?
263 
264     typename GraphT::NodeType* ImmDom = DT.getIDom(W);
265 
266     assert(ImmDom || DT.DomTreeNodes[NULL]);
267 
268     // Get or calculate the node for the immediate dominator
269     DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
270                                                      DT.getNodeForBlock(ImmDom);
271 
272     // Add a new tree node for this BasicBlock, and link it as a child of
273     // IDomNode
274     DomTreeNodeBase<typename GraphT::NodeType> *C =
275                     new DomTreeNodeBase<typename GraphT::NodeType>(W, IDomNode);
276     DT.DomTreeNodes[W] = IDomNode->addChild(C);
277   }
278 
279   // Free temporary memory used to construct idom's
280   DT.IDoms.clear();
281   DT.Info.clear();
282   std::vector<typename GraphT::NodeType*>().swap(DT.Vertex);
283 
284   DT.updateDFSNumbers();
285 }
286 
287 }
288 
289 #endif
290