1 //===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the ARM target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "arm-isel"
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMTargetMachine.h"
18 #include "MCTargetDesc/ARMAddressingModes.h"
19 #include "llvm/CallingConv.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/LLVMContext.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGISel.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37
38 using namespace llvm;
39
40 static cl::opt<bool>
41 DisableShifterOp("disable-shifter-op", cl::Hidden,
42 cl::desc("Disable isel of shifter-op"),
43 cl::init(false));
44
45 static cl::opt<bool>
46 CheckVMLxHazard("check-vmlx-hazard", cl::Hidden,
47 cl::desc("Check fp vmla / vmls hazard at isel time"),
48 cl::init(true));
49
50 static cl::opt<bool>
51 DisableARMIntABS("disable-arm-int-abs", cl::Hidden,
52 cl::desc("Enable / disable ARM integer abs transform"),
53 cl::init(false));
54
55 //===--------------------------------------------------------------------===//
56 /// ARMDAGToDAGISel - ARM specific code to select ARM machine
57 /// instructions for SelectionDAG operations.
58 ///
59 namespace {
60
61 enum AddrMode2Type {
62 AM2_BASE, // Simple AM2 (+-imm12)
63 AM2_SHOP // Shifter-op AM2
64 };
65
66 class ARMDAGToDAGISel : public SelectionDAGISel {
67 ARMBaseTargetMachine &TM;
68 const ARMBaseInstrInfo *TII;
69
70 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
71 /// make the right decision when generating code for different targets.
72 const ARMSubtarget *Subtarget;
73
74 public:
ARMDAGToDAGISel(ARMBaseTargetMachine & tm,CodeGenOpt::Level OptLevel)75 explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm,
76 CodeGenOpt::Level OptLevel)
77 : SelectionDAGISel(tm, OptLevel), TM(tm),
78 TII(static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo())),
79 Subtarget(&TM.getSubtarget<ARMSubtarget>()) {
80 }
81
getPassName() const82 virtual const char *getPassName() const {
83 return "ARM Instruction Selection";
84 }
85
86 /// getI32Imm - Return a target constant of type i32 with the specified
87 /// value.
getI32Imm(unsigned Imm)88 inline SDValue getI32Imm(unsigned Imm) {
89 return CurDAG->getTargetConstant(Imm, MVT::i32);
90 }
91
92 SDNode *Select(SDNode *N);
93
94
95 bool hasNoVMLxHazardUse(SDNode *N) const;
96 bool isShifterOpProfitable(const SDValue &Shift,
97 ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
98 bool SelectRegShifterOperand(SDValue N, SDValue &A,
99 SDValue &B, SDValue &C,
100 bool CheckProfitability = true);
101 bool SelectImmShifterOperand(SDValue N, SDValue &A,
102 SDValue &B, bool CheckProfitability = true);
SelectShiftRegShifterOperand(SDValue N,SDValue & A,SDValue & B,SDValue & C)103 bool SelectShiftRegShifterOperand(SDValue N, SDValue &A,
104 SDValue &B, SDValue &C) {
105 // Don't apply the profitability check
106 return SelectRegShifterOperand(N, A, B, C, false);
107 }
SelectShiftImmShifterOperand(SDValue N,SDValue & A,SDValue & B)108 bool SelectShiftImmShifterOperand(SDValue N, SDValue &A,
109 SDValue &B) {
110 // Don't apply the profitability check
111 return SelectImmShifterOperand(N, A, B, false);
112 }
113
114 bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
115 bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
116
117 AddrMode2Type SelectAddrMode2Worker(SDValue N, SDValue &Base,
118 SDValue &Offset, SDValue &Opc);
SelectAddrMode2Base(SDValue N,SDValue & Base,SDValue & Offset,SDValue & Opc)119 bool SelectAddrMode2Base(SDValue N, SDValue &Base, SDValue &Offset,
120 SDValue &Opc) {
121 return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_BASE;
122 }
123
SelectAddrMode2ShOp(SDValue N,SDValue & Base,SDValue & Offset,SDValue & Opc)124 bool SelectAddrMode2ShOp(SDValue N, SDValue &Base, SDValue &Offset,
125 SDValue &Opc) {
126 return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_SHOP;
127 }
128
SelectAddrMode2(SDValue N,SDValue & Base,SDValue & Offset,SDValue & Opc)129 bool SelectAddrMode2(SDValue N, SDValue &Base, SDValue &Offset,
130 SDValue &Opc) {
131 SelectAddrMode2Worker(N, Base, Offset, Opc);
132 // return SelectAddrMode2ShOp(N, Base, Offset, Opc);
133 // This always matches one way or another.
134 return true;
135 }
136
137 bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
138 SDValue &Offset, SDValue &Opc);
139 bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
140 SDValue &Offset, SDValue &Opc);
141 bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
142 SDValue &Offset, SDValue &Opc);
143 bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
144 bool SelectAddrMode3(SDValue N, SDValue &Base,
145 SDValue &Offset, SDValue &Opc);
146 bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
147 SDValue &Offset, SDValue &Opc);
148 bool SelectAddrMode5(SDValue N, SDValue &Base,
149 SDValue &Offset);
150 bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
151 bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
152
153 bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
154
155 // Thumb Addressing Modes:
156 bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
157 bool SelectThumbAddrModeRI(SDValue N, SDValue &Base, SDValue &Offset,
158 unsigned Scale);
159 bool SelectThumbAddrModeRI5S1(SDValue N, SDValue &Base, SDValue &Offset);
160 bool SelectThumbAddrModeRI5S2(SDValue N, SDValue &Base, SDValue &Offset);
161 bool SelectThumbAddrModeRI5S4(SDValue N, SDValue &Base, SDValue &Offset);
162 bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
163 SDValue &OffImm);
164 bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
165 SDValue &OffImm);
166 bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
167 SDValue &OffImm);
168 bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
169 SDValue &OffImm);
170 bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
171
172 // Thumb 2 Addressing Modes:
173 bool SelectT2ShifterOperandReg(SDValue N,
174 SDValue &BaseReg, SDValue &Opc);
175 bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
176 bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
177 SDValue &OffImm);
178 bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
179 SDValue &OffImm);
180 bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
181 SDValue &OffReg, SDValue &ShImm);
182
is_so_imm(unsigned Imm) const183 inline bool is_so_imm(unsigned Imm) const {
184 return ARM_AM::getSOImmVal(Imm) != -1;
185 }
186
is_so_imm_not(unsigned Imm) const187 inline bool is_so_imm_not(unsigned Imm) const {
188 return ARM_AM::getSOImmVal(~Imm) != -1;
189 }
190
is_t2_so_imm(unsigned Imm) const191 inline bool is_t2_so_imm(unsigned Imm) const {
192 return ARM_AM::getT2SOImmVal(Imm) != -1;
193 }
194
is_t2_so_imm_not(unsigned Imm) const195 inline bool is_t2_so_imm_not(unsigned Imm) const {
196 return ARM_AM::getT2SOImmVal(~Imm) != -1;
197 }
198
199 // Include the pieces autogenerated from the target description.
200 #include "ARMGenDAGISel.inc"
201
202 private:
203 /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
204 /// ARM.
205 SDNode *SelectARMIndexedLoad(SDNode *N);
206 SDNode *SelectT2IndexedLoad(SDNode *N);
207
208 /// SelectVLD - Select NEON load intrinsics. NumVecs should be
209 /// 1, 2, 3 or 4. The opcode arrays specify the instructions used for
210 /// loads of D registers and even subregs and odd subregs of Q registers.
211 /// For NumVecs <= 2, QOpcodes1 is not used.
212 SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
213 unsigned *DOpcodes,
214 unsigned *QOpcodes0, unsigned *QOpcodes1);
215
216 /// SelectVST - Select NEON store intrinsics. NumVecs should
217 /// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for
218 /// stores of D registers and even subregs and odd subregs of Q registers.
219 /// For NumVecs <= 2, QOpcodes1 is not used.
220 SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
221 unsigned *DOpcodes,
222 unsigned *QOpcodes0, unsigned *QOpcodes1);
223
224 /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should
225 /// be 2, 3 or 4. The opcode arrays specify the instructions used for
226 /// load/store of D registers and Q registers.
227 SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad,
228 bool isUpdating, unsigned NumVecs,
229 unsigned *DOpcodes, unsigned *QOpcodes);
230
231 /// SelectVLDDup - Select NEON load-duplicate intrinsics. NumVecs
232 /// should be 2, 3 or 4. The opcode array specifies the instructions used
233 /// for loading D registers. (Q registers are not supported.)
234 SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
235 unsigned *Opcodes);
236
237 /// SelectVTBL - Select NEON VTBL and VTBX intrinsics. NumVecs should be 2,
238 /// 3 or 4. These are custom-selected so that a REG_SEQUENCE can be
239 /// generated to force the table registers to be consecutive.
240 SDNode *SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc);
241
242 /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
243 SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
244
245 /// SelectCMOVOp - Select CMOV instructions for ARM.
246 SDNode *SelectCMOVOp(SDNode *N);
247 SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
248 ARMCC::CondCodes CCVal, SDValue CCR,
249 SDValue InFlag);
250 SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
251 ARMCC::CondCodes CCVal, SDValue CCR,
252 SDValue InFlag);
253 SDNode *SelectT2CMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
254 ARMCC::CondCodes CCVal, SDValue CCR,
255 SDValue InFlag);
256 SDNode *SelectARMCMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
257 ARMCC::CondCodes CCVal, SDValue CCR,
258 SDValue InFlag);
259
260 // Select special operations if node forms integer ABS pattern
261 SDNode *SelectABSOp(SDNode *N);
262
263 SDNode *SelectConcatVector(SDNode *N);
264
265 SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
266
267 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
268 /// inline asm expressions.
269 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
270 char ConstraintCode,
271 std::vector<SDValue> &OutOps);
272
273 // Form pairs of consecutive S, D, or Q registers.
274 SDNode *PairSRegs(EVT VT, SDValue V0, SDValue V1);
275 SDNode *PairDRegs(EVT VT, SDValue V0, SDValue V1);
276 SDNode *PairQRegs(EVT VT, SDValue V0, SDValue V1);
277
278 // Form sequences of 4 consecutive S, D, or Q registers.
279 SDNode *QuadSRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
280 SDNode *QuadDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
281 SDNode *QuadQRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
282
283 // Get the alignment operand for a NEON VLD or VST instruction.
284 SDValue GetVLDSTAlign(SDValue Align, unsigned NumVecs, bool is64BitVector);
285 };
286 }
287
288 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
289 /// operand. If so Imm will receive the 32-bit value.
isInt32Immediate(SDNode * N,unsigned & Imm)290 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
291 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
292 Imm = cast<ConstantSDNode>(N)->getZExtValue();
293 return true;
294 }
295 return false;
296 }
297
298 // isInt32Immediate - This method tests to see if a constant operand.
299 // If so Imm will receive the 32 bit value.
isInt32Immediate(SDValue N,unsigned & Imm)300 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
301 return isInt32Immediate(N.getNode(), Imm);
302 }
303
304 // isOpcWithIntImmediate - This method tests to see if the node is a specific
305 // opcode and that it has a immediate integer right operand.
306 // If so Imm will receive the 32 bit value.
isOpcWithIntImmediate(SDNode * N,unsigned Opc,unsigned & Imm)307 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
308 return N->getOpcode() == Opc &&
309 isInt32Immediate(N->getOperand(1).getNode(), Imm);
310 }
311
312 /// \brief Check whether a particular node is a constant value representable as
313 /// (N * Scale) where (N in [\arg RangeMin, \arg RangeMax).
314 ///
315 /// \param ScaledConstant [out] - On success, the pre-scaled constant value.
isScaledConstantInRange(SDValue Node,int Scale,int RangeMin,int RangeMax,int & ScaledConstant)316 static bool isScaledConstantInRange(SDValue Node, int Scale,
317 int RangeMin, int RangeMax,
318 int &ScaledConstant) {
319 assert(Scale > 0 && "Invalid scale!");
320
321 // Check that this is a constant.
322 const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
323 if (!C)
324 return false;
325
326 ScaledConstant = (int) C->getZExtValue();
327 if ((ScaledConstant % Scale) != 0)
328 return false;
329
330 ScaledConstant /= Scale;
331 return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
332 }
333
334 /// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
335 /// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
336 /// least on current ARM implementations) which should be avoidded.
hasNoVMLxHazardUse(SDNode * N) const337 bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
338 if (OptLevel == CodeGenOpt::None)
339 return true;
340
341 if (!CheckVMLxHazard)
342 return true;
343
344 if (!Subtarget->isCortexA8() && !Subtarget->isCortexA9())
345 return true;
346
347 if (!N->hasOneUse())
348 return false;
349
350 SDNode *Use = *N->use_begin();
351 if (Use->getOpcode() == ISD::CopyToReg)
352 return true;
353 if (Use->isMachineOpcode()) {
354 const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
355 if (MCID.mayStore())
356 return true;
357 unsigned Opcode = MCID.getOpcode();
358 if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
359 return true;
360 // vmlx feeding into another vmlx. We actually want to unfold
361 // the use later in the MLxExpansion pass. e.g.
362 // vmla
363 // vmla (stall 8 cycles)
364 //
365 // vmul (5 cycles)
366 // vadd (5 cycles)
367 // vmla
368 // This adds up to about 18 - 19 cycles.
369 //
370 // vmla
371 // vmul (stall 4 cycles)
372 // vadd adds up to about 14 cycles.
373 return TII->isFpMLxInstruction(Opcode);
374 }
375
376 return false;
377 }
378
isShifterOpProfitable(const SDValue & Shift,ARM_AM::ShiftOpc ShOpcVal,unsigned ShAmt)379 bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
380 ARM_AM::ShiftOpc ShOpcVal,
381 unsigned ShAmt) {
382 if (!Subtarget->isCortexA9())
383 return true;
384 if (Shift.hasOneUse())
385 return true;
386 // R << 2 is free.
387 return ShOpcVal == ARM_AM::lsl && ShAmt == 2;
388 }
389
SelectImmShifterOperand(SDValue N,SDValue & BaseReg,SDValue & Opc,bool CheckProfitability)390 bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
391 SDValue &BaseReg,
392 SDValue &Opc,
393 bool CheckProfitability) {
394 if (DisableShifterOp)
395 return false;
396
397 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
398
399 // Don't match base register only case. That is matched to a separate
400 // lower complexity pattern with explicit register operand.
401 if (ShOpcVal == ARM_AM::no_shift) return false;
402
403 BaseReg = N.getOperand(0);
404 unsigned ShImmVal = 0;
405 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
406 if (!RHS) return false;
407 ShImmVal = RHS->getZExtValue() & 31;
408 Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
409 MVT::i32);
410 return true;
411 }
412
SelectRegShifterOperand(SDValue N,SDValue & BaseReg,SDValue & ShReg,SDValue & Opc,bool CheckProfitability)413 bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
414 SDValue &BaseReg,
415 SDValue &ShReg,
416 SDValue &Opc,
417 bool CheckProfitability) {
418 if (DisableShifterOp)
419 return false;
420
421 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
422
423 // Don't match base register only case. That is matched to a separate
424 // lower complexity pattern with explicit register operand.
425 if (ShOpcVal == ARM_AM::no_shift) return false;
426
427 BaseReg = N.getOperand(0);
428 unsigned ShImmVal = 0;
429 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
430 if (RHS) return false;
431
432 ShReg = N.getOperand(1);
433 if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
434 return false;
435 Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
436 MVT::i32);
437 return true;
438 }
439
440
SelectAddrModeImm12(SDValue N,SDValue & Base,SDValue & OffImm)441 bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
442 SDValue &Base,
443 SDValue &OffImm) {
444 // Match simple R + imm12 operands.
445
446 // Base only.
447 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
448 !CurDAG->isBaseWithConstantOffset(N)) {
449 if (N.getOpcode() == ISD::FrameIndex) {
450 // Match frame index.
451 int FI = cast<FrameIndexSDNode>(N)->getIndex();
452 Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
453 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
454 return true;
455 }
456
457 if (N.getOpcode() == ARMISD::Wrapper &&
458 !(Subtarget->useMovt() &&
459 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
460 Base = N.getOperand(0);
461 } else
462 Base = N;
463 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
464 return true;
465 }
466
467 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
468 int RHSC = (int)RHS->getZExtValue();
469 if (N.getOpcode() == ISD::SUB)
470 RHSC = -RHSC;
471
472 if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
473 Base = N.getOperand(0);
474 if (Base.getOpcode() == ISD::FrameIndex) {
475 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
476 Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
477 }
478 OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
479 return true;
480 }
481 }
482
483 // Base only.
484 Base = N;
485 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
486 return true;
487 }
488
489
490
SelectLdStSOReg(SDValue N,SDValue & Base,SDValue & Offset,SDValue & Opc)491 bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
492 SDValue &Opc) {
493 if (N.getOpcode() == ISD::MUL &&
494 (!Subtarget->isCortexA9() || N.hasOneUse())) {
495 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
496 // X * [3,5,9] -> X + X * [2,4,8] etc.
497 int RHSC = (int)RHS->getZExtValue();
498 if (RHSC & 1) {
499 RHSC = RHSC & ~1;
500 ARM_AM::AddrOpc AddSub = ARM_AM::add;
501 if (RHSC < 0) {
502 AddSub = ARM_AM::sub;
503 RHSC = - RHSC;
504 }
505 if (isPowerOf2_32(RHSC)) {
506 unsigned ShAmt = Log2_32(RHSC);
507 Base = Offset = N.getOperand(0);
508 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
509 ARM_AM::lsl),
510 MVT::i32);
511 return true;
512 }
513 }
514 }
515 }
516
517 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
518 // ISD::OR that is equivalent to an ISD::ADD.
519 !CurDAG->isBaseWithConstantOffset(N))
520 return false;
521
522 // Leave simple R +/- imm12 operands for LDRi12
523 if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
524 int RHSC;
525 if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
526 -0x1000+1, 0x1000, RHSC)) // 12 bits.
527 return false;
528 }
529
530 // Otherwise this is R +/- [possibly shifted] R.
531 ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
532 ARM_AM::ShiftOpc ShOpcVal =
533 ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
534 unsigned ShAmt = 0;
535
536 Base = N.getOperand(0);
537 Offset = N.getOperand(1);
538
539 if (ShOpcVal != ARM_AM::no_shift) {
540 // Check to see if the RHS of the shift is a constant, if not, we can't fold
541 // it.
542 if (ConstantSDNode *Sh =
543 dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
544 ShAmt = Sh->getZExtValue();
545 if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
546 Offset = N.getOperand(1).getOperand(0);
547 else {
548 ShAmt = 0;
549 ShOpcVal = ARM_AM::no_shift;
550 }
551 } else {
552 ShOpcVal = ARM_AM::no_shift;
553 }
554 }
555
556 // Try matching (R shl C) + (R).
557 if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
558 !(Subtarget->isCortexA9() || N.getOperand(0).hasOneUse())) {
559 ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
560 if (ShOpcVal != ARM_AM::no_shift) {
561 // Check to see if the RHS of the shift is a constant, if not, we can't
562 // fold it.
563 if (ConstantSDNode *Sh =
564 dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
565 ShAmt = Sh->getZExtValue();
566 if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
567 Offset = N.getOperand(0).getOperand(0);
568 Base = N.getOperand(1);
569 } else {
570 ShAmt = 0;
571 ShOpcVal = ARM_AM::no_shift;
572 }
573 } else {
574 ShOpcVal = ARM_AM::no_shift;
575 }
576 }
577 }
578
579 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
580 MVT::i32);
581 return true;
582 }
583
584
585
586
587 //-----
588
SelectAddrMode2Worker(SDValue N,SDValue & Base,SDValue & Offset,SDValue & Opc)589 AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N,
590 SDValue &Base,
591 SDValue &Offset,
592 SDValue &Opc) {
593 if (N.getOpcode() == ISD::MUL &&
594 (!Subtarget->isCortexA9() || N.hasOneUse())) {
595 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
596 // X * [3,5,9] -> X + X * [2,4,8] etc.
597 int RHSC = (int)RHS->getZExtValue();
598 if (RHSC & 1) {
599 RHSC = RHSC & ~1;
600 ARM_AM::AddrOpc AddSub = ARM_AM::add;
601 if (RHSC < 0) {
602 AddSub = ARM_AM::sub;
603 RHSC = - RHSC;
604 }
605 if (isPowerOf2_32(RHSC)) {
606 unsigned ShAmt = Log2_32(RHSC);
607 Base = Offset = N.getOperand(0);
608 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
609 ARM_AM::lsl),
610 MVT::i32);
611 return AM2_SHOP;
612 }
613 }
614 }
615 }
616
617 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
618 // ISD::OR that is equivalent to an ADD.
619 !CurDAG->isBaseWithConstantOffset(N)) {
620 Base = N;
621 if (N.getOpcode() == ISD::FrameIndex) {
622 int FI = cast<FrameIndexSDNode>(N)->getIndex();
623 Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
624 } else if (N.getOpcode() == ARMISD::Wrapper &&
625 !(Subtarget->useMovt() &&
626 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
627 Base = N.getOperand(0);
628 }
629 Offset = CurDAG->getRegister(0, MVT::i32);
630 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
631 ARM_AM::no_shift),
632 MVT::i32);
633 return AM2_BASE;
634 }
635
636 // Match simple R +/- imm12 operands.
637 if (N.getOpcode() != ISD::SUB) {
638 int RHSC;
639 if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
640 -0x1000+1, 0x1000, RHSC)) { // 12 bits.
641 Base = N.getOperand(0);
642 if (Base.getOpcode() == ISD::FrameIndex) {
643 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
644 Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
645 }
646 Offset = CurDAG->getRegister(0, MVT::i32);
647
648 ARM_AM::AddrOpc AddSub = ARM_AM::add;
649 if (RHSC < 0) {
650 AddSub = ARM_AM::sub;
651 RHSC = - RHSC;
652 }
653 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
654 ARM_AM::no_shift),
655 MVT::i32);
656 return AM2_BASE;
657 }
658 }
659
660 if (Subtarget->isCortexA9() && !N.hasOneUse()) {
661 // Compute R +/- (R << N) and reuse it.
662 Base = N;
663 Offset = CurDAG->getRegister(0, MVT::i32);
664 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
665 ARM_AM::no_shift),
666 MVT::i32);
667 return AM2_BASE;
668 }
669
670 // Otherwise this is R +/- [possibly shifted] R.
671 ARM_AM::AddrOpc AddSub = N.getOpcode() != ISD::SUB ? ARM_AM::add:ARM_AM::sub;
672 ARM_AM::ShiftOpc ShOpcVal =
673 ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
674 unsigned ShAmt = 0;
675
676 Base = N.getOperand(0);
677 Offset = N.getOperand(1);
678
679 if (ShOpcVal != ARM_AM::no_shift) {
680 // Check to see if the RHS of the shift is a constant, if not, we can't fold
681 // it.
682 if (ConstantSDNode *Sh =
683 dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
684 ShAmt = Sh->getZExtValue();
685 if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
686 Offset = N.getOperand(1).getOperand(0);
687 else {
688 ShAmt = 0;
689 ShOpcVal = ARM_AM::no_shift;
690 }
691 } else {
692 ShOpcVal = ARM_AM::no_shift;
693 }
694 }
695
696 // Try matching (R shl C) + (R).
697 if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
698 !(Subtarget->isCortexA9() || N.getOperand(0).hasOneUse())) {
699 ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
700 if (ShOpcVal != ARM_AM::no_shift) {
701 // Check to see if the RHS of the shift is a constant, if not, we can't
702 // fold it.
703 if (ConstantSDNode *Sh =
704 dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
705 ShAmt = Sh->getZExtValue();
706 if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
707 Offset = N.getOperand(0).getOperand(0);
708 Base = N.getOperand(1);
709 } else {
710 ShAmt = 0;
711 ShOpcVal = ARM_AM::no_shift;
712 }
713 } else {
714 ShOpcVal = ARM_AM::no_shift;
715 }
716 }
717 }
718
719 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
720 MVT::i32);
721 return AM2_SHOP;
722 }
723
SelectAddrMode2OffsetReg(SDNode * Op,SDValue N,SDValue & Offset,SDValue & Opc)724 bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
725 SDValue &Offset, SDValue &Opc) {
726 unsigned Opcode = Op->getOpcode();
727 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
728 ? cast<LoadSDNode>(Op)->getAddressingMode()
729 : cast<StoreSDNode>(Op)->getAddressingMode();
730 ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
731 ? ARM_AM::add : ARM_AM::sub;
732 int Val;
733 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
734 return false;
735
736 Offset = N;
737 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
738 unsigned ShAmt = 0;
739 if (ShOpcVal != ARM_AM::no_shift) {
740 // Check to see if the RHS of the shift is a constant, if not, we can't fold
741 // it.
742 if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
743 ShAmt = Sh->getZExtValue();
744 if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
745 Offset = N.getOperand(0);
746 else {
747 ShAmt = 0;
748 ShOpcVal = ARM_AM::no_shift;
749 }
750 } else {
751 ShOpcVal = ARM_AM::no_shift;
752 }
753 }
754
755 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
756 MVT::i32);
757 return true;
758 }
759
SelectAddrMode2OffsetImmPre(SDNode * Op,SDValue N,SDValue & Offset,SDValue & Opc)760 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
761 SDValue &Offset, SDValue &Opc) {
762 unsigned Opcode = Op->getOpcode();
763 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
764 ? cast<LoadSDNode>(Op)->getAddressingMode()
765 : cast<StoreSDNode>(Op)->getAddressingMode();
766 ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
767 ? ARM_AM::add : ARM_AM::sub;
768 int Val;
769 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
770 if (AddSub == ARM_AM::sub) Val *= -1;
771 Offset = CurDAG->getRegister(0, MVT::i32);
772 Opc = CurDAG->getTargetConstant(Val, MVT::i32);
773 return true;
774 }
775
776 return false;
777 }
778
779
SelectAddrMode2OffsetImm(SDNode * Op,SDValue N,SDValue & Offset,SDValue & Opc)780 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
781 SDValue &Offset, SDValue &Opc) {
782 unsigned Opcode = Op->getOpcode();
783 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
784 ? cast<LoadSDNode>(Op)->getAddressingMode()
785 : cast<StoreSDNode>(Op)->getAddressingMode();
786 ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
787 ? ARM_AM::add : ARM_AM::sub;
788 int Val;
789 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
790 Offset = CurDAG->getRegister(0, MVT::i32);
791 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
792 ARM_AM::no_shift),
793 MVT::i32);
794 return true;
795 }
796
797 return false;
798 }
799
SelectAddrOffsetNone(SDValue N,SDValue & Base)800 bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
801 Base = N;
802 return true;
803 }
804
SelectAddrMode3(SDValue N,SDValue & Base,SDValue & Offset,SDValue & Opc)805 bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
806 SDValue &Base, SDValue &Offset,
807 SDValue &Opc) {
808 if (N.getOpcode() == ISD::SUB) {
809 // X - C is canonicalize to X + -C, no need to handle it here.
810 Base = N.getOperand(0);
811 Offset = N.getOperand(1);
812 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
813 return true;
814 }
815
816 if (!CurDAG->isBaseWithConstantOffset(N)) {
817 Base = N;
818 if (N.getOpcode() == ISD::FrameIndex) {
819 int FI = cast<FrameIndexSDNode>(N)->getIndex();
820 Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
821 }
822 Offset = CurDAG->getRegister(0, MVT::i32);
823 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
824 return true;
825 }
826
827 // If the RHS is +/- imm8, fold into addr mode.
828 int RHSC;
829 if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
830 -256 + 1, 256, RHSC)) { // 8 bits.
831 Base = N.getOperand(0);
832 if (Base.getOpcode() == ISD::FrameIndex) {
833 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
834 Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
835 }
836 Offset = CurDAG->getRegister(0, MVT::i32);
837
838 ARM_AM::AddrOpc AddSub = ARM_AM::add;
839 if (RHSC < 0) {
840 AddSub = ARM_AM::sub;
841 RHSC = -RHSC;
842 }
843 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
844 return true;
845 }
846
847 Base = N.getOperand(0);
848 Offset = N.getOperand(1);
849 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
850 return true;
851 }
852
SelectAddrMode3Offset(SDNode * Op,SDValue N,SDValue & Offset,SDValue & Opc)853 bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
854 SDValue &Offset, SDValue &Opc) {
855 unsigned Opcode = Op->getOpcode();
856 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
857 ? cast<LoadSDNode>(Op)->getAddressingMode()
858 : cast<StoreSDNode>(Op)->getAddressingMode();
859 ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
860 ? ARM_AM::add : ARM_AM::sub;
861 int Val;
862 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
863 Offset = CurDAG->getRegister(0, MVT::i32);
864 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
865 return true;
866 }
867
868 Offset = N;
869 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
870 return true;
871 }
872
SelectAddrMode5(SDValue N,SDValue & Base,SDValue & Offset)873 bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
874 SDValue &Base, SDValue &Offset) {
875 if (!CurDAG->isBaseWithConstantOffset(N)) {
876 Base = N;
877 if (N.getOpcode() == ISD::FrameIndex) {
878 int FI = cast<FrameIndexSDNode>(N)->getIndex();
879 Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
880 } else if (N.getOpcode() == ARMISD::Wrapper &&
881 !(Subtarget->useMovt() &&
882 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
883 Base = N.getOperand(0);
884 }
885 Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
886 MVT::i32);
887 return true;
888 }
889
890 // If the RHS is +/- imm8, fold into addr mode.
891 int RHSC;
892 if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4,
893 -256 + 1, 256, RHSC)) {
894 Base = N.getOperand(0);
895 if (Base.getOpcode() == ISD::FrameIndex) {
896 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
897 Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
898 }
899
900 ARM_AM::AddrOpc AddSub = ARM_AM::add;
901 if (RHSC < 0) {
902 AddSub = ARM_AM::sub;
903 RHSC = -RHSC;
904 }
905 Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
906 MVT::i32);
907 return true;
908 }
909
910 Base = N;
911 Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
912 MVT::i32);
913 return true;
914 }
915
SelectAddrMode6(SDNode * Parent,SDValue N,SDValue & Addr,SDValue & Align)916 bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
917 SDValue &Align) {
918 Addr = N;
919
920 unsigned Alignment = 0;
921 if (LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(Parent)) {
922 // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
923 // The maximum alignment is equal to the memory size being referenced.
924 unsigned LSNAlign = LSN->getAlignment();
925 unsigned MemSize = LSN->getMemoryVT().getSizeInBits() / 8;
926 if (LSNAlign > MemSize && MemSize > 1)
927 Alignment = MemSize;
928 } else {
929 // All other uses of addrmode6 are for intrinsics. For now just record
930 // the raw alignment value; it will be refined later based on the legal
931 // alignment operands for the intrinsic.
932 Alignment = cast<MemIntrinsicSDNode>(Parent)->getAlignment();
933 }
934
935 Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
936 return true;
937 }
938
SelectAddrMode6Offset(SDNode * Op,SDValue N,SDValue & Offset)939 bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
940 SDValue &Offset) {
941 LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
942 ISD::MemIndexedMode AM = LdSt->getAddressingMode();
943 if (AM != ISD::POST_INC)
944 return false;
945 Offset = N;
946 if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
947 if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
948 Offset = CurDAG->getRegister(0, MVT::i32);
949 }
950 return true;
951 }
952
SelectAddrModePC(SDValue N,SDValue & Offset,SDValue & Label)953 bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
954 SDValue &Offset, SDValue &Label) {
955 if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
956 Offset = N.getOperand(0);
957 SDValue N1 = N.getOperand(1);
958 Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
959 MVT::i32);
960 return true;
961 }
962
963 return false;
964 }
965
966
967 //===----------------------------------------------------------------------===//
968 // Thumb Addressing Modes
969 //===----------------------------------------------------------------------===//
970
SelectThumbAddrModeRR(SDValue N,SDValue & Base,SDValue & Offset)971 bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N,
972 SDValue &Base, SDValue &Offset){
973 if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
974 ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
975 if (!NC || !NC->isNullValue())
976 return false;
977
978 Base = Offset = N;
979 return true;
980 }
981
982 Base = N.getOperand(0);
983 Offset = N.getOperand(1);
984 return true;
985 }
986
987 bool
SelectThumbAddrModeRI(SDValue N,SDValue & Base,SDValue & Offset,unsigned Scale)988 ARMDAGToDAGISel::SelectThumbAddrModeRI(SDValue N, SDValue &Base,
989 SDValue &Offset, unsigned Scale) {
990 if (Scale == 4) {
991 SDValue TmpBase, TmpOffImm;
992 if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
993 return false; // We want to select tLDRspi / tSTRspi instead.
994
995 if (N.getOpcode() == ARMISD::Wrapper &&
996 N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
997 return false; // We want to select tLDRpci instead.
998 }
999
1000 if (!CurDAG->isBaseWithConstantOffset(N))
1001 return false;
1002
1003 // Thumb does not have [sp, r] address mode.
1004 RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
1005 RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
1006 if ((LHSR && LHSR->getReg() == ARM::SP) ||
1007 (RHSR && RHSR->getReg() == ARM::SP))
1008 return false;
1009
1010 // FIXME: Why do we explicitly check for a match here and then return false?
1011 // Presumably to allow something else to match, but shouldn't this be
1012 // documented?
1013 int RHSC;
1014 if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC))
1015 return false;
1016
1017 Base = N.getOperand(0);
1018 Offset = N.getOperand(1);
1019 return true;
1020 }
1021
1022 bool
SelectThumbAddrModeRI5S1(SDValue N,SDValue & Base,SDValue & Offset)1023 ARMDAGToDAGISel::SelectThumbAddrModeRI5S1(SDValue N,
1024 SDValue &Base,
1025 SDValue &Offset) {
1026 return SelectThumbAddrModeRI(N, Base, Offset, 1);
1027 }
1028
1029 bool
SelectThumbAddrModeRI5S2(SDValue N,SDValue & Base,SDValue & Offset)1030 ARMDAGToDAGISel::SelectThumbAddrModeRI5S2(SDValue N,
1031 SDValue &Base,
1032 SDValue &Offset) {
1033 return SelectThumbAddrModeRI(N, Base, Offset, 2);
1034 }
1035
1036 bool
SelectThumbAddrModeRI5S4(SDValue N,SDValue & Base,SDValue & Offset)1037 ARMDAGToDAGISel::SelectThumbAddrModeRI5S4(SDValue N,
1038 SDValue &Base,
1039 SDValue &Offset) {
1040 return SelectThumbAddrModeRI(N, Base, Offset, 4);
1041 }
1042
1043 bool
SelectThumbAddrModeImm5S(SDValue N,unsigned Scale,SDValue & Base,SDValue & OffImm)1044 ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
1045 SDValue &Base, SDValue &OffImm) {
1046 if (Scale == 4) {
1047 SDValue TmpBase, TmpOffImm;
1048 if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
1049 return false; // We want to select tLDRspi / tSTRspi instead.
1050
1051 if (N.getOpcode() == ARMISD::Wrapper &&
1052 N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
1053 return false; // We want to select tLDRpci instead.
1054 }
1055
1056 if (!CurDAG->isBaseWithConstantOffset(N)) {
1057 if (N.getOpcode() == ARMISD::Wrapper &&
1058 !(Subtarget->useMovt() &&
1059 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
1060 Base = N.getOperand(0);
1061 } else {
1062 Base = N;
1063 }
1064
1065 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1066 return true;
1067 }
1068
1069 RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
1070 RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
1071 if ((LHSR && LHSR->getReg() == ARM::SP) ||
1072 (RHSR && RHSR->getReg() == ARM::SP)) {
1073 ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(N.getOperand(0));
1074 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
1075 unsigned LHSC = LHS ? LHS->getZExtValue() : 0;
1076 unsigned RHSC = RHS ? RHS->getZExtValue() : 0;
1077
1078 // Thumb does not have [sp, #imm5] address mode for non-zero imm5.
1079 if (LHSC != 0 || RHSC != 0) return false;
1080
1081 Base = N;
1082 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1083 return true;
1084 }
1085
1086 // If the RHS is + imm5 * scale, fold into addr mode.
1087 int RHSC;
1088 if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
1089 Base = N.getOperand(0);
1090 OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1091 return true;
1092 }
1093
1094 Base = N.getOperand(0);
1095 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1096 return true;
1097 }
1098
1099 bool
SelectThumbAddrModeImm5S4(SDValue N,SDValue & Base,SDValue & OffImm)1100 ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
1101 SDValue &OffImm) {
1102 return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
1103 }
1104
1105 bool
SelectThumbAddrModeImm5S2(SDValue N,SDValue & Base,SDValue & OffImm)1106 ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
1107 SDValue &OffImm) {
1108 return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
1109 }
1110
1111 bool
SelectThumbAddrModeImm5S1(SDValue N,SDValue & Base,SDValue & OffImm)1112 ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
1113 SDValue &OffImm) {
1114 return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
1115 }
1116
SelectThumbAddrModeSP(SDValue N,SDValue & Base,SDValue & OffImm)1117 bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
1118 SDValue &Base, SDValue &OffImm) {
1119 if (N.getOpcode() == ISD::FrameIndex) {
1120 int FI = cast<FrameIndexSDNode>(N)->getIndex();
1121 Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1122 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1123 return true;
1124 }
1125
1126 if (!CurDAG->isBaseWithConstantOffset(N))
1127 return false;
1128
1129 RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
1130 if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
1131 (LHSR && LHSR->getReg() == ARM::SP)) {
1132 // If the RHS is + imm8 * scale, fold into addr mode.
1133 int RHSC;
1134 if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
1135 Base = N.getOperand(0);
1136 if (Base.getOpcode() == ISD::FrameIndex) {
1137 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1138 Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1139 }
1140 OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1141 return true;
1142 }
1143 }
1144
1145 return false;
1146 }
1147
1148
1149 //===----------------------------------------------------------------------===//
1150 // Thumb 2 Addressing Modes
1151 //===----------------------------------------------------------------------===//
1152
1153
SelectT2ShifterOperandReg(SDValue N,SDValue & BaseReg,SDValue & Opc)1154 bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue N, SDValue &BaseReg,
1155 SDValue &Opc) {
1156 if (DisableShifterOp)
1157 return false;
1158
1159 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
1160
1161 // Don't match base register only case. That is matched to a separate
1162 // lower complexity pattern with explicit register operand.
1163 if (ShOpcVal == ARM_AM::no_shift) return false;
1164
1165 BaseReg = N.getOperand(0);
1166 unsigned ShImmVal = 0;
1167 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1168 ShImmVal = RHS->getZExtValue() & 31;
1169 Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
1170 return true;
1171 }
1172
1173 return false;
1174 }
1175
SelectT2AddrModeImm12(SDValue N,SDValue & Base,SDValue & OffImm)1176 bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
1177 SDValue &Base, SDValue &OffImm) {
1178 // Match simple R + imm12 operands.
1179
1180 // Base only.
1181 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1182 !CurDAG->isBaseWithConstantOffset(N)) {
1183 if (N.getOpcode() == ISD::FrameIndex) {
1184 // Match frame index.
1185 int FI = cast<FrameIndexSDNode>(N)->getIndex();
1186 Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1187 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1188 return true;
1189 }
1190
1191 if (N.getOpcode() == ARMISD::Wrapper &&
1192 !(Subtarget->useMovt() &&
1193 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
1194 Base = N.getOperand(0);
1195 if (Base.getOpcode() == ISD::TargetConstantPool)
1196 return false; // We want to select t2LDRpci instead.
1197 } else
1198 Base = N;
1199 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1200 return true;
1201 }
1202
1203 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1204 if (SelectT2AddrModeImm8(N, Base, OffImm))
1205 // Let t2LDRi8 handle (R - imm8).
1206 return false;
1207
1208 int RHSC = (int)RHS->getZExtValue();
1209 if (N.getOpcode() == ISD::SUB)
1210 RHSC = -RHSC;
1211
1212 if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
1213 Base = N.getOperand(0);
1214 if (Base.getOpcode() == ISD::FrameIndex) {
1215 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1216 Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1217 }
1218 OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1219 return true;
1220 }
1221 }
1222
1223 // Base only.
1224 Base = N;
1225 OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1226 return true;
1227 }
1228
SelectT2AddrModeImm8(SDValue N,SDValue & Base,SDValue & OffImm)1229 bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
1230 SDValue &Base, SDValue &OffImm) {
1231 // Match simple R - imm8 operands.
1232 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1233 !CurDAG->isBaseWithConstantOffset(N))
1234 return false;
1235
1236 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1237 int RHSC = (int)RHS->getSExtValue();
1238 if (N.getOpcode() == ISD::SUB)
1239 RHSC = -RHSC;
1240
1241 if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
1242 Base = N.getOperand(0);
1243 if (Base.getOpcode() == ISD::FrameIndex) {
1244 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1245 Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1246 }
1247 OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1248 return true;
1249 }
1250 }
1251
1252 return false;
1253 }
1254
SelectT2AddrModeImm8Offset(SDNode * Op,SDValue N,SDValue & OffImm)1255 bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
1256 SDValue &OffImm){
1257 unsigned Opcode = Op->getOpcode();
1258 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
1259 ? cast<LoadSDNode>(Op)->getAddressingMode()
1260 : cast<StoreSDNode>(Op)->getAddressingMode();
1261 int RHSC;
1262 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
1263 OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
1264 ? CurDAG->getTargetConstant(RHSC, MVT::i32)
1265 : CurDAG->getTargetConstant(-RHSC, MVT::i32);
1266 return true;
1267 }
1268
1269 return false;
1270 }
1271
SelectT2AddrModeSoReg(SDValue N,SDValue & Base,SDValue & OffReg,SDValue & ShImm)1272 bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
1273 SDValue &Base,
1274 SDValue &OffReg, SDValue &ShImm) {
1275 // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
1276 if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
1277 return false;
1278
1279 // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
1280 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1281 int RHSC = (int)RHS->getZExtValue();
1282 if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
1283 return false;
1284 else if (RHSC < 0 && RHSC >= -255) // 8 bits
1285 return false;
1286 }
1287
1288 // Look for (R + R) or (R + (R << [1,2,3])).
1289 unsigned ShAmt = 0;
1290 Base = N.getOperand(0);
1291 OffReg = N.getOperand(1);
1292
1293 // Swap if it is ((R << c) + R).
1294 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
1295 if (ShOpcVal != ARM_AM::lsl) {
1296 ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
1297 if (ShOpcVal == ARM_AM::lsl)
1298 std::swap(Base, OffReg);
1299 }
1300
1301 if (ShOpcVal == ARM_AM::lsl) {
1302 // Check to see if the RHS of the shift is a constant, if not, we can't fold
1303 // it.
1304 if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
1305 ShAmt = Sh->getZExtValue();
1306 if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
1307 OffReg = OffReg.getOperand(0);
1308 else {
1309 ShAmt = 0;
1310 ShOpcVal = ARM_AM::no_shift;
1311 }
1312 } else {
1313 ShOpcVal = ARM_AM::no_shift;
1314 }
1315 }
1316
1317 ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
1318
1319 return true;
1320 }
1321
1322 //===--------------------------------------------------------------------===//
1323
1324 /// getAL - Returns a ARMCC::AL immediate node.
getAL(SelectionDAG * CurDAG)1325 static inline SDValue getAL(SelectionDAG *CurDAG) {
1326 return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
1327 }
1328
SelectARMIndexedLoad(SDNode * N)1329 SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
1330 LoadSDNode *LD = cast<LoadSDNode>(N);
1331 ISD::MemIndexedMode AM = LD->getAddressingMode();
1332 if (AM == ISD::UNINDEXED)
1333 return NULL;
1334
1335 EVT LoadedVT = LD->getMemoryVT();
1336 SDValue Offset, AMOpc;
1337 bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1338 unsigned Opcode = 0;
1339 bool Match = false;
1340 if (LoadedVT == MVT::i32 && isPre &&
1341 SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1342 Opcode = ARM::LDR_PRE_IMM;
1343 Match = true;
1344 } else if (LoadedVT == MVT::i32 && !isPre &&
1345 SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1346 Opcode = ARM::LDR_POST_IMM;
1347 Match = true;
1348 } else if (LoadedVT == MVT::i32 &&
1349 SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1350 Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
1351 Match = true;
1352
1353 } else if (LoadedVT == MVT::i16 &&
1354 SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1355 Match = true;
1356 Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
1357 ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
1358 : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
1359 } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
1360 if (LD->getExtensionType() == ISD::SEXTLOAD) {
1361 if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1362 Match = true;
1363 Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
1364 }
1365 } else {
1366 if (isPre &&
1367 SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1368 Match = true;
1369 Opcode = ARM::LDRB_PRE_IMM;
1370 } else if (!isPre &&
1371 SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1372 Match = true;
1373 Opcode = ARM::LDRB_POST_IMM;
1374 } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1375 Match = true;
1376 Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
1377 }
1378 }
1379 }
1380
1381 if (Match) {
1382 if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
1383 SDValue Chain = LD->getChain();
1384 SDValue Base = LD->getBasePtr();
1385 SDValue Ops[]= { Base, AMOpc, getAL(CurDAG),
1386 CurDAG->getRegister(0, MVT::i32), Chain };
1387 return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32,
1388 MVT::i32, MVT::Other, Ops, 5);
1389 } else {
1390 SDValue Chain = LD->getChain();
1391 SDValue Base = LD->getBasePtr();
1392 SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
1393 CurDAG->getRegister(0, MVT::i32), Chain };
1394 return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32,
1395 MVT::i32, MVT::Other, Ops, 6);
1396 }
1397 }
1398
1399 return NULL;
1400 }
1401
SelectT2IndexedLoad(SDNode * N)1402 SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
1403 LoadSDNode *LD = cast<LoadSDNode>(N);
1404 ISD::MemIndexedMode AM = LD->getAddressingMode();
1405 if (AM == ISD::UNINDEXED)
1406 return NULL;
1407
1408 EVT LoadedVT = LD->getMemoryVT();
1409 bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
1410 SDValue Offset;
1411 bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1412 unsigned Opcode = 0;
1413 bool Match = false;
1414 if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
1415 switch (LoadedVT.getSimpleVT().SimpleTy) {
1416 case MVT::i32:
1417 Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
1418 break;
1419 case MVT::i16:
1420 if (isSExtLd)
1421 Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
1422 else
1423 Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
1424 break;
1425 case MVT::i8:
1426 case MVT::i1:
1427 if (isSExtLd)
1428 Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
1429 else
1430 Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
1431 break;
1432 default:
1433 return NULL;
1434 }
1435 Match = true;
1436 }
1437
1438 if (Match) {
1439 SDValue Chain = LD->getChain();
1440 SDValue Base = LD->getBasePtr();
1441 SDValue Ops[]= { Base, Offset, getAL(CurDAG),
1442 CurDAG->getRegister(0, MVT::i32), Chain };
1443 return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
1444 MVT::Other, Ops, 5);
1445 }
1446
1447 return NULL;
1448 }
1449
1450 /// PairSRegs - Form a D register from a pair of S registers.
1451 ///
PairSRegs(EVT VT,SDValue V0,SDValue V1)1452 SDNode *ARMDAGToDAGISel::PairSRegs(EVT VT, SDValue V0, SDValue V1) {
1453 DebugLoc dl = V0.getNode()->getDebugLoc();
1454 SDValue RegClass =
1455 CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, MVT::i32);
1456 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
1457 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
1458 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1459 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5);
1460 }
1461
1462 /// PairDRegs - Form a quad register from a pair of D registers.
1463 ///
PairDRegs(EVT VT,SDValue V0,SDValue V1)1464 SDNode *ARMDAGToDAGISel::PairDRegs(EVT VT, SDValue V0, SDValue V1) {
1465 DebugLoc dl = V0.getNode()->getDebugLoc();
1466 SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, MVT::i32);
1467 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1468 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1469 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1470 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5);
1471 }
1472
1473 /// PairQRegs - Form 4 consecutive D registers from a pair of Q registers.
1474 ///
PairQRegs(EVT VT,SDValue V0,SDValue V1)1475 SDNode *ARMDAGToDAGISel::PairQRegs(EVT VT, SDValue V0, SDValue V1) {
1476 DebugLoc dl = V0.getNode()->getDebugLoc();
1477 SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
1478 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
1479 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
1480 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1481 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5);
1482 }
1483
1484 /// QuadSRegs - Form 4 consecutive S registers.
1485 ///
QuadSRegs(EVT VT,SDValue V0,SDValue V1,SDValue V2,SDValue V3)1486 SDNode *ARMDAGToDAGISel::QuadSRegs(EVT VT, SDValue V0, SDValue V1,
1487 SDValue V2, SDValue V3) {
1488 DebugLoc dl = V0.getNode()->getDebugLoc();
1489 SDValue RegClass =
1490 CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, MVT::i32);
1491 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
1492 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
1493 SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, MVT::i32);
1494 SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, MVT::i32);
1495 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1496 V2, SubReg2, V3, SubReg3 };
1497 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9);
1498 }
1499
1500 /// QuadDRegs - Form 4 consecutive D registers.
1501 ///
QuadDRegs(EVT VT,SDValue V0,SDValue V1,SDValue V2,SDValue V3)1502 SDNode *ARMDAGToDAGISel::QuadDRegs(EVT VT, SDValue V0, SDValue V1,
1503 SDValue V2, SDValue V3) {
1504 DebugLoc dl = V0.getNode()->getDebugLoc();
1505 SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
1506 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1507 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1508 SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
1509 SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
1510 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1511 V2, SubReg2, V3, SubReg3 };
1512 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9);
1513 }
1514
1515 /// QuadQRegs - Form 4 consecutive Q registers.
1516 ///
QuadQRegs(EVT VT,SDValue V0,SDValue V1,SDValue V2,SDValue V3)1517 SDNode *ARMDAGToDAGISel::QuadQRegs(EVT VT, SDValue V0, SDValue V1,
1518 SDValue V2, SDValue V3) {
1519 DebugLoc dl = V0.getNode()->getDebugLoc();
1520 SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, MVT::i32);
1521 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
1522 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
1523 SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32);
1524 SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32);
1525 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1526 V2, SubReg2, V3, SubReg3 };
1527 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9);
1528 }
1529
1530 /// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
1531 /// of a NEON VLD or VST instruction. The supported values depend on the
1532 /// number of registers being loaded.
GetVLDSTAlign(SDValue Align,unsigned NumVecs,bool is64BitVector)1533 SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, unsigned NumVecs,
1534 bool is64BitVector) {
1535 unsigned NumRegs = NumVecs;
1536 if (!is64BitVector && NumVecs < 3)
1537 NumRegs *= 2;
1538
1539 unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
1540 if (Alignment >= 32 && NumRegs == 4)
1541 Alignment = 32;
1542 else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
1543 Alignment = 16;
1544 else if (Alignment >= 8)
1545 Alignment = 8;
1546 else
1547 Alignment = 0;
1548
1549 return CurDAG->getTargetConstant(Alignment, MVT::i32);
1550 }
1551
SelectVLD(SDNode * N,bool isUpdating,unsigned NumVecs,unsigned * DOpcodes,unsigned * QOpcodes0,unsigned * QOpcodes1)1552 SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
1553 unsigned *DOpcodes, unsigned *QOpcodes0,
1554 unsigned *QOpcodes1) {
1555 assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
1556 DebugLoc dl = N->getDebugLoc();
1557
1558 SDValue MemAddr, Align;
1559 unsigned AddrOpIdx = isUpdating ? 1 : 2;
1560 if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1561 return NULL;
1562
1563 SDValue Chain = N->getOperand(0);
1564 EVT VT = N->getValueType(0);
1565 bool is64BitVector = VT.is64BitVector();
1566 Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
1567
1568 unsigned OpcodeIndex;
1569 switch (VT.getSimpleVT().SimpleTy) {
1570 default: llvm_unreachable("unhandled vld type");
1571 // Double-register operations:
1572 case MVT::v8i8: OpcodeIndex = 0; break;
1573 case MVT::v4i16: OpcodeIndex = 1; break;
1574 case MVT::v2f32:
1575 case MVT::v2i32: OpcodeIndex = 2; break;
1576 case MVT::v1i64: OpcodeIndex = 3; break;
1577 // Quad-register operations:
1578 case MVT::v16i8: OpcodeIndex = 0; break;
1579 case MVT::v8i16: OpcodeIndex = 1; break;
1580 case MVT::v4f32:
1581 case MVT::v4i32: OpcodeIndex = 2; break;
1582 case MVT::v2i64: OpcodeIndex = 3;
1583 assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
1584 break;
1585 }
1586
1587 EVT ResTy;
1588 if (NumVecs == 1)
1589 ResTy = VT;
1590 else {
1591 unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
1592 if (!is64BitVector)
1593 ResTyElts *= 2;
1594 ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
1595 }
1596 std::vector<EVT> ResTys;
1597 ResTys.push_back(ResTy);
1598 if (isUpdating)
1599 ResTys.push_back(MVT::i32);
1600 ResTys.push_back(MVT::Other);
1601
1602 SDValue Pred = getAL(CurDAG);
1603 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1604 SDNode *VLd;
1605 SmallVector<SDValue, 7> Ops;
1606
1607 // Double registers and VLD1/VLD2 quad registers are directly supported.
1608 if (is64BitVector || NumVecs <= 2) {
1609 unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
1610 QOpcodes0[OpcodeIndex]);
1611 Ops.push_back(MemAddr);
1612 Ops.push_back(Align);
1613 if (isUpdating) {
1614 SDValue Inc = N->getOperand(AddrOpIdx + 1);
1615 Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
1616 }
1617 Ops.push_back(Pred);
1618 Ops.push_back(Reg0);
1619 Ops.push_back(Chain);
1620 VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size());
1621
1622 } else {
1623 // Otherwise, quad registers are loaded with two separate instructions,
1624 // where one loads the even registers and the other loads the odd registers.
1625 EVT AddrTy = MemAddr.getValueType();
1626
1627 // Load the even subregs. This is always an updating load, so that it
1628 // provides the address to the second load for the odd subregs.
1629 SDValue ImplDef =
1630 SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
1631 const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
1632 SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
1633 ResTy, AddrTy, MVT::Other, OpsA, 7);
1634 Chain = SDValue(VLdA, 2);
1635
1636 // Load the odd subregs.
1637 Ops.push_back(SDValue(VLdA, 1));
1638 Ops.push_back(Align);
1639 if (isUpdating) {
1640 SDValue Inc = N->getOperand(AddrOpIdx + 1);
1641 assert(isa<ConstantSDNode>(Inc.getNode()) &&
1642 "only constant post-increment update allowed for VLD3/4");
1643 (void)Inc;
1644 Ops.push_back(Reg0);
1645 }
1646 Ops.push_back(SDValue(VLdA, 0));
1647 Ops.push_back(Pred);
1648 Ops.push_back(Reg0);
1649 Ops.push_back(Chain);
1650 VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
1651 Ops.data(), Ops.size());
1652 }
1653
1654 // Transfer memoperands.
1655 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1656 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1657 cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
1658
1659 if (NumVecs == 1)
1660 return VLd;
1661
1662 // Extract out the subregisters.
1663 SDValue SuperReg = SDValue(VLd, 0);
1664 assert(ARM::dsub_7 == ARM::dsub_0+7 &&
1665 ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
1666 unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
1667 for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1668 ReplaceUses(SDValue(N, Vec),
1669 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
1670 ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
1671 if (isUpdating)
1672 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
1673 return NULL;
1674 }
1675
SelectVST(SDNode * N,bool isUpdating,unsigned NumVecs,unsigned * DOpcodes,unsigned * QOpcodes0,unsigned * QOpcodes1)1676 SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
1677 unsigned *DOpcodes, unsigned *QOpcodes0,
1678 unsigned *QOpcodes1) {
1679 assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
1680 DebugLoc dl = N->getDebugLoc();
1681
1682 SDValue MemAddr, Align;
1683 unsigned AddrOpIdx = isUpdating ? 1 : 2;
1684 unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
1685 if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1686 return NULL;
1687
1688 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1689 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1690
1691 SDValue Chain = N->getOperand(0);
1692 EVT VT = N->getOperand(Vec0Idx).getValueType();
1693 bool is64BitVector = VT.is64BitVector();
1694 Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
1695
1696 unsigned OpcodeIndex;
1697 switch (VT.getSimpleVT().SimpleTy) {
1698 default: llvm_unreachable("unhandled vst type");
1699 // Double-register operations:
1700 case MVT::v8i8: OpcodeIndex = 0; break;
1701 case MVT::v4i16: OpcodeIndex = 1; break;
1702 case MVT::v2f32:
1703 case MVT::v2i32: OpcodeIndex = 2; break;
1704 case MVT::v1i64: OpcodeIndex = 3; break;
1705 // Quad-register operations:
1706 case MVT::v16i8: OpcodeIndex = 0; break;
1707 case MVT::v8i16: OpcodeIndex = 1; break;
1708 case MVT::v4f32:
1709 case MVT::v4i32: OpcodeIndex = 2; break;
1710 case MVT::v2i64: OpcodeIndex = 3;
1711 assert(NumVecs == 1 && "v2i64 type only supported for VST1");
1712 break;
1713 }
1714
1715 std::vector<EVT> ResTys;
1716 if (isUpdating)
1717 ResTys.push_back(MVT::i32);
1718 ResTys.push_back(MVT::Other);
1719
1720 SDValue Pred = getAL(CurDAG);
1721 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1722 SmallVector<SDValue, 7> Ops;
1723
1724 // Double registers and VST1/VST2 quad registers are directly supported.
1725 if (is64BitVector || NumVecs <= 2) {
1726 SDValue SrcReg;
1727 if (NumVecs == 1) {
1728 SrcReg = N->getOperand(Vec0Idx);
1729 } else if (is64BitVector) {
1730 // Form a REG_SEQUENCE to force register allocation.
1731 SDValue V0 = N->getOperand(Vec0Idx + 0);
1732 SDValue V1 = N->getOperand(Vec0Idx + 1);
1733 if (NumVecs == 2)
1734 SrcReg = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
1735 else {
1736 SDValue V2 = N->getOperand(Vec0Idx + 2);
1737 // If it's a vst3, form a quad D-register and leave the last part as
1738 // an undef.
1739 SDValue V3 = (NumVecs == 3)
1740 ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1741 : N->getOperand(Vec0Idx + 3);
1742 SrcReg = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1743 }
1744 } else {
1745 // Form a QQ register.
1746 SDValue Q0 = N->getOperand(Vec0Idx);
1747 SDValue Q1 = N->getOperand(Vec0Idx + 1);
1748 SrcReg = SDValue(PairQRegs(MVT::v4i64, Q0, Q1), 0);
1749 }
1750
1751 unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
1752 QOpcodes0[OpcodeIndex]);
1753 Ops.push_back(MemAddr);
1754 Ops.push_back(Align);
1755 if (isUpdating) {
1756 SDValue Inc = N->getOperand(AddrOpIdx + 1);
1757 Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
1758 }
1759 Ops.push_back(SrcReg);
1760 Ops.push_back(Pred);
1761 Ops.push_back(Reg0);
1762 Ops.push_back(Chain);
1763 SDNode *VSt =
1764 CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size());
1765
1766 // Transfer memoperands.
1767 cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
1768
1769 return VSt;
1770 }
1771
1772 // Otherwise, quad registers are stored with two separate instructions,
1773 // where one stores the even registers and the other stores the odd registers.
1774
1775 // Form the QQQQ REG_SEQUENCE.
1776 SDValue V0 = N->getOperand(Vec0Idx + 0);
1777 SDValue V1 = N->getOperand(Vec0Idx + 1);
1778 SDValue V2 = N->getOperand(Vec0Idx + 2);
1779 SDValue V3 = (NumVecs == 3)
1780 ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
1781 : N->getOperand(Vec0Idx + 3);
1782 SDValue RegSeq = SDValue(QuadQRegs(MVT::v8i64, V0, V1, V2, V3), 0);
1783
1784 // Store the even D registers. This is always an updating store, so that it
1785 // provides the address to the second store for the odd subregs.
1786 const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
1787 SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
1788 MemAddr.getValueType(),
1789 MVT::Other, OpsA, 7);
1790 cast<MachineSDNode>(VStA)->setMemRefs(MemOp, MemOp + 1);
1791 Chain = SDValue(VStA, 1);
1792
1793 // Store the odd D registers.
1794 Ops.push_back(SDValue(VStA, 0));
1795 Ops.push_back(Align);
1796 if (isUpdating) {
1797 SDValue Inc = N->getOperand(AddrOpIdx + 1);
1798 assert(isa<ConstantSDNode>(Inc.getNode()) &&
1799 "only constant post-increment update allowed for VST3/4");
1800 (void)Inc;
1801 Ops.push_back(Reg0);
1802 }
1803 Ops.push_back(RegSeq);
1804 Ops.push_back(Pred);
1805 Ops.push_back(Reg0);
1806 Ops.push_back(Chain);
1807 SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
1808 Ops.data(), Ops.size());
1809 cast<MachineSDNode>(VStB)->setMemRefs(MemOp, MemOp + 1);
1810 return VStB;
1811 }
1812
SelectVLDSTLane(SDNode * N,bool IsLoad,bool isUpdating,unsigned NumVecs,unsigned * DOpcodes,unsigned * QOpcodes)1813 SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
1814 bool isUpdating, unsigned NumVecs,
1815 unsigned *DOpcodes,
1816 unsigned *QOpcodes) {
1817 assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
1818 DebugLoc dl = N->getDebugLoc();
1819
1820 SDValue MemAddr, Align;
1821 unsigned AddrOpIdx = isUpdating ? 1 : 2;
1822 unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
1823 if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1824 return NULL;
1825
1826 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1827 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1828
1829 SDValue Chain = N->getOperand(0);
1830 unsigned Lane =
1831 cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
1832 EVT VT = N->getOperand(Vec0Idx).getValueType();
1833 bool is64BitVector = VT.is64BitVector();
1834
1835 unsigned Alignment = 0;
1836 if (NumVecs != 3) {
1837 Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
1838 unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
1839 if (Alignment > NumBytes)
1840 Alignment = NumBytes;
1841 if (Alignment < 8 && Alignment < NumBytes)
1842 Alignment = 0;
1843 // Alignment must be a power of two; make sure of that.
1844 Alignment = (Alignment & -Alignment);
1845 if (Alignment == 1)
1846 Alignment = 0;
1847 }
1848 Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
1849
1850 unsigned OpcodeIndex;
1851 switch (VT.getSimpleVT().SimpleTy) {
1852 default: llvm_unreachable("unhandled vld/vst lane type");
1853 // Double-register operations:
1854 case MVT::v8i8: OpcodeIndex = 0; break;
1855 case MVT::v4i16: OpcodeIndex = 1; break;
1856 case MVT::v2f32:
1857 case MVT::v2i32: OpcodeIndex = 2; break;
1858 // Quad-register operations:
1859 case MVT::v8i16: OpcodeIndex = 0; break;
1860 case MVT::v4f32:
1861 case MVT::v4i32: OpcodeIndex = 1; break;
1862 }
1863
1864 std::vector<EVT> ResTys;
1865 if (IsLoad) {
1866 unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
1867 if (!is64BitVector)
1868 ResTyElts *= 2;
1869 ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
1870 MVT::i64, ResTyElts));
1871 }
1872 if (isUpdating)
1873 ResTys.push_back(MVT::i32);
1874 ResTys.push_back(MVT::Other);
1875
1876 SDValue Pred = getAL(CurDAG);
1877 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1878
1879 SmallVector<SDValue, 8> Ops;
1880 Ops.push_back(MemAddr);
1881 Ops.push_back(Align);
1882 if (isUpdating) {
1883 SDValue Inc = N->getOperand(AddrOpIdx + 1);
1884 Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
1885 }
1886
1887 SDValue SuperReg;
1888 SDValue V0 = N->getOperand(Vec0Idx + 0);
1889 SDValue V1 = N->getOperand(Vec0Idx + 1);
1890 if (NumVecs == 2) {
1891 if (is64BitVector)
1892 SuperReg = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
1893 else
1894 SuperReg = SDValue(PairQRegs(MVT::v4i64, V0, V1), 0);
1895 } else {
1896 SDValue V2 = N->getOperand(Vec0Idx + 2);
1897 SDValue V3 = (NumVecs == 3)
1898 ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
1899 : N->getOperand(Vec0Idx + 3);
1900 if (is64BitVector)
1901 SuperReg = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1902 else
1903 SuperReg = SDValue(QuadQRegs(MVT::v8i64, V0, V1, V2, V3), 0);
1904 }
1905 Ops.push_back(SuperReg);
1906 Ops.push_back(getI32Imm(Lane));
1907 Ops.push_back(Pred);
1908 Ops.push_back(Reg0);
1909 Ops.push_back(Chain);
1910
1911 unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
1912 QOpcodes[OpcodeIndex]);
1913 SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys,
1914 Ops.data(), Ops.size());
1915 cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
1916 if (!IsLoad)
1917 return VLdLn;
1918
1919 // Extract the subregisters.
1920 SuperReg = SDValue(VLdLn, 0);
1921 assert(ARM::dsub_7 == ARM::dsub_0+7 &&
1922 ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
1923 unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
1924 for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1925 ReplaceUses(SDValue(N, Vec),
1926 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
1927 ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
1928 if (isUpdating)
1929 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
1930 return NULL;
1931 }
1932
SelectVLDDup(SDNode * N,bool isUpdating,unsigned NumVecs,unsigned * Opcodes)1933 SDNode *ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating,
1934 unsigned NumVecs, unsigned *Opcodes) {
1935 assert(NumVecs >=2 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
1936 DebugLoc dl = N->getDebugLoc();
1937
1938 SDValue MemAddr, Align;
1939 if (!SelectAddrMode6(N, N->getOperand(1), MemAddr, Align))
1940 return NULL;
1941
1942 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1943 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1944
1945 SDValue Chain = N->getOperand(0);
1946 EVT VT = N->getValueType(0);
1947
1948 unsigned Alignment = 0;
1949 if (NumVecs != 3) {
1950 Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
1951 unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
1952 if (Alignment > NumBytes)
1953 Alignment = NumBytes;
1954 if (Alignment < 8 && Alignment < NumBytes)
1955 Alignment = 0;
1956 // Alignment must be a power of two; make sure of that.
1957 Alignment = (Alignment & -Alignment);
1958 if (Alignment == 1)
1959 Alignment = 0;
1960 }
1961 Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
1962
1963 unsigned OpcodeIndex;
1964 switch (VT.getSimpleVT().SimpleTy) {
1965 default: llvm_unreachable("unhandled vld-dup type");
1966 case MVT::v8i8: OpcodeIndex = 0; break;
1967 case MVT::v4i16: OpcodeIndex = 1; break;
1968 case MVT::v2f32:
1969 case MVT::v2i32: OpcodeIndex = 2; break;
1970 }
1971
1972 SDValue Pred = getAL(CurDAG);
1973 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1974 SDValue SuperReg;
1975 unsigned Opc = Opcodes[OpcodeIndex];
1976 SmallVector<SDValue, 6> Ops;
1977 Ops.push_back(MemAddr);
1978 Ops.push_back(Align);
1979 if (isUpdating) {
1980 SDValue Inc = N->getOperand(2);
1981 Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
1982 }
1983 Ops.push_back(Pred);
1984 Ops.push_back(Reg0);
1985 Ops.push_back(Chain);
1986
1987 unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
1988 std::vector<EVT> ResTys;
1989 ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,ResTyElts));
1990 if (isUpdating)
1991 ResTys.push_back(MVT::i32);
1992 ResTys.push_back(MVT::Other);
1993 SDNode *VLdDup =
1994 CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size());
1995 cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
1996 SuperReg = SDValue(VLdDup, 0);
1997
1998 // Extract the subregisters.
1999 assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
2000 unsigned SubIdx = ARM::dsub_0;
2001 for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
2002 ReplaceUses(SDValue(N, Vec),
2003 CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
2004 ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
2005 if (isUpdating)
2006 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
2007 return NULL;
2008 }
2009
SelectVTBL(SDNode * N,bool IsExt,unsigned NumVecs,unsigned Opc)2010 SDNode *ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs,
2011 unsigned Opc) {
2012 assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range");
2013 DebugLoc dl = N->getDebugLoc();
2014 EVT VT = N->getValueType(0);
2015 unsigned FirstTblReg = IsExt ? 2 : 1;
2016
2017 // Form a REG_SEQUENCE to force register allocation.
2018 SDValue RegSeq;
2019 SDValue V0 = N->getOperand(FirstTblReg + 0);
2020 SDValue V1 = N->getOperand(FirstTblReg + 1);
2021 if (NumVecs == 2)
2022 RegSeq = SDValue(PairDRegs(MVT::v16i8, V0, V1), 0);
2023 else {
2024 SDValue V2 = N->getOperand(FirstTblReg + 2);
2025 // If it's a vtbl3, form a quad D-register and leave the last part as
2026 // an undef.
2027 SDValue V3 = (NumVecs == 3)
2028 ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2029 : N->getOperand(FirstTblReg + 3);
2030 RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
2031 }
2032
2033 SmallVector<SDValue, 6> Ops;
2034 if (IsExt)
2035 Ops.push_back(N->getOperand(1));
2036 Ops.push_back(RegSeq);
2037 Ops.push_back(N->getOperand(FirstTblReg + NumVecs));
2038 Ops.push_back(getAL(CurDAG)); // predicate
2039 Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register
2040 return CurDAG->getMachineNode(Opc, dl, VT, Ops.data(), Ops.size());
2041 }
2042
SelectV6T2BitfieldExtractOp(SDNode * N,bool isSigned)2043 SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
2044 bool isSigned) {
2045 if (!Subtarget->hasV6T2Ops())
2046 return NULL;
2047
2048 unsigned Opc = isSigned ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
2049 : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
2050
2051
2052 // For unsigned extracts, check for a shift right and mask
2053 unsigned And_imm = 0;
2054 if (N->getOpcode() == ISD::AND) {
2055 if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
2056
2057 // The immediate is a mask of the low bits iff imm & (imm+1) == 0
2058 if (And_imm & (And_imm + 1))
2059 return NULL;
2060
2061 unsigned Srl_imm = 0;
2062 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
2063 Srl_imm)) {
2064 assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
2065
2066 // Note: The width operand is encoded as width-1.
2067 unsigned Width = CountTrailingOnes_32(And_imm) - 1;
2068 unsigned LSB = Srl_imm;
2069 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2070 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2071 CurDAG->getTargetConstant(LSB, MVT::i32),
2072 CurDAG->getTargetConstant(Width, MVT::i32),
2073 getAL(CurDAG), Reg0 };
2074 return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
2075 }
2076 }
2077 return NULL;
2078 }
2079
2080 // Otherwise, we're looking for a shift of a shift
2081 unsigned Shl_imm = 0;
2082 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
2083 assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
2084 unsigned Srl_imm = 0;
2085 if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
2086 assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
2087 // Note: The width operand is encoded as width-1.
2088 unsigned Width = 32 - Srl_imm - 1;
2089 int LSB = Srl_imm - Shl_imm;
2090 if (LSB < 0)
2091 return NULL;
2092 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2093 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2094 CurDAG->getTargetConstant(LSB, MVT::i32),
2095 CurDAG->getTargetConstant(Width, MVT::i32),
2096 getAL(CurDAG), Reg0 };
2097 return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
2098 }
2099 }
2100 return NULL;
2101 }
2102
2103 SDNode *ARMDAGToDAGISel::
SelectT2CMOVShiftOp(SDNode * N,SDValue FalseVal,SDValue TrueVal,ARMCC::CondCodes CCVal,SDValue CCR,SDValue InFlag)2104 SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
2105 ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
2106 SDValue CPTmp0;
2107 SDValue CPTmp1;
2108 if (SelectT2ShifterOperandReg(TrueVal, CPTmp0, CPTmp1)) {
2109 unsigned SOVal = cast<ConstantSDNode>(CPTmp1)->getZExtValue();
2110 unsigned SOShOp = ARM_AM::getSORegShOp(SOVal);
2111 unsigned Opc = 0;
2112 switch (SOShOp) {
2113 case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break;
2114 case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break;
2115 case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break;
2116 case ARM_AM::ror: Opc = ARM::t2MOVCCror; break;
2117 default:
2118 llvm_unreachable("Unknown so_reg opcode!");
2119 break;
2120 }
2121 SDValue SOShImm =
2122 CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32);
2123 SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
2124 SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag };
2125 return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6);
2126 }
2127 return 0;
2128 }
2129
2130 SDNode *ARMDAGToDAGISel::
SelectARMCMOVShiftOp(SDNode * N,SDValue FalseVal,SDValue TrueVal,ARMCC::CondCodes CCVal,SDValue CCR,SDValue InFlag)2131 SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
2132 ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
2133 SDValue CPTmp0;
2134 SDValue CPTmp1;
2135 SDValue CPTmp2;
2136 if (SelectImmShifterOperand(TrueVal, CPTmp0, CPTmp2)) {
2137 SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
2138 SDValue Ops[] = { FalseVal, CPTmp0, CPTmp2, CC, CCR, InFlag };
2139 return CurDAG->SelectNodeTo(N, ARM::MOVCCsi, MVT::i32, Ops, 6);
2140 }
2141
2142 if (SelectRegShifterOperand(TrueVal, CPTmp0, CPTmp1, CPTmp2)) {
2143 SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
2144 SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag };
2145 return CurDAG->SelectNodeTo(N, ARM::MOVCCsr, MVT::i32, Ops, 7);
2146 }
2147 return 0;
2148 }
2149
2150 SDNode *ARMDAGToDAGISel::
SelectT2CMOVImmOp(SDNode * N,SDValue FalseVal,SDValue TrueVal,ARMCC::CondCodes CCVal,SDValue CCR,SDValue InFlag)2151 SelectT2CMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
2152 ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
2153 ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
2154 if (!T)
2155 return 0;
2156
2157 unsigned Opc = 0;
2158 unsigned TrueImm = T->getZExtValue();
2159 if (is_t2_so_imm(TrueImm)) {
2160 Opc = ARM::t2MOVCCi;
2161 } else if (TrueImm <= 0xffff) {
2162 Opc = ARM::t2MOVCCi16;
2163 } else if (is_t2_so_imm_not(TrueImm)) {
2164 TrueImm = ~TrueImm;
2165 Opc = ARM::t2MVNCCi;
2166 } else if (TrueVal.getNode()->hasOneUse() && Subtarget->hasV6T2Ops()) {
2167 // Large immediate.
2168 Opc = ARM::t2MOVCCi32imm;
2169 }
2170
2171 if (Opc) {
2172 SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32);
2173 SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
2174 SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
2175 return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
2176 }
2177
2178 return 0;
2179 }
2180
2181 SDNode *ARMDAGToDAGISel::
SelectARMCMOVImmOp(SDNode * N,SDValue FalseVal,SDValue TrueVal,ARMCC::CondCodes CCVal,SDValue CCR,SDValue InFlag)2182 SelectARMCMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
2183 ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
2184 ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
2185 if (!T)
2186 return 0;
2187
2188 unsigned Opc = 0;
2189 unsigned TrueImm = T->getZExtValue();
2190 bool isSoImm = is_so_imm(TrueImm);
2191 if (isSoImm) {
2192 Opc = ARM::MOVCCi;
2193 } else if (Subtarget->hasV6T2Ops() && TrueImm <= 0xffff) {
2194 Opc = ARM::MOVCCi16;
2195 } else if (is_so_imm_not(TrueImm)) {
2196 TrueImm = ~TrueImm;
2197 Opc = ARM::MVNCCi;
2198 } else if (TrueVal.getNode()->hasOneUse() &&
2199 (Subtarget->hasV6T2Ops() || ARM_AM::isSOImmTwoPartVal(TrueImm))) {
2200 // Large immediate.
2201 Opc = ARM::MOVCCi32imm;
2202 }
2203
2204 if (Opc) {
2205 SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32);
2206 SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
2207 SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
2208 return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
2209 }
2210
2211 return 0;
2212 }
2213
SelectCMOVOp(SDNode * N)2214 SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) {
2215 EVT VT = N->getValueType(0);
2216 SDValue FalseVal = N->getOperand(0);
2217 SDValue TrueVal = N->getOperand(1);
2218 SDValue CC = N->getOperand(2);
2219 SDValue CCR = N->getOperand(3);
2220 SDValue InFlag = N->getOperand(4);
2221 assert(CC.getOpcode() == ISD::Constant);
2222 assert(CCR.getOpcode() == ISD::Register);
2223 ARMCC::CondCodes CCVal =
2224 (ARMCC::CondCodes)cast<ConstantSDNode>(CC)->getZExtValue();
2225
2226 if (!Subtarget->isThumb1Only() && VT == MVT::i32) {
2227 // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
2228 // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
2229 // Pattern complexity = 18 cost = 1 size = 0
2230 SDValue CPTmp0;
2231 SDValue CPTmp1;
2232 SDValue CPTmp2;
2233 if (Subtarget->isThumb()) {
2234 SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal,
2235 CCVal, CCR, InFlag);
2236 if (!Res)
2237 Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal,
2238 ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
2239 if (Res)
2240 return Res;
2241 } else {
2242 SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal,
2243 CCVal, CCR, InFlag);
2244 if (!Res)
2245 Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal,
2246 ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
2247 if (Res)
2248 return Res;
2249 }
2250
2251 // Pattern: (ARMcmov:i32 GPR:i32:$false,
2252 // (imm:i32)<<P:Pred_so_imm>>:$true,
2253 // (imm:i32):$cc)
2254 // Emits: (MOVCCi:i32 GPR:i32:$false,
2255 // (so_imm:i32 (imm:i32):$true), (imm:i32):$cc)
2256 // Pattern complexity = 10 cost = 1 size = 0
2257 if (Subtarget->isThumb()) {
2258 SDNode *Res = SelectT2CMOVImmOp(N, FalseVal, TrueVal,
2259 CCVal, CCR, InFlag);
2260 if (!Res)
2261 Res = SelectT2CMOVImmOp(N, TrueVal, FalseVal,
2262 ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
2263 if (Res)
2264 return Res;
2265 } else {
2266 SDNode *Res = SelectARMCMOVImmOp(N, FalseVal, TrueVal,
2267 CCVal, CCR, InFlag);
2268 if (!Res)
2269 Res = SelectARMCMOVImmOp(N, TrueVal, FalseVal,
2270 ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
2271 if (Res)
2272 return Res;
2273 }
2274 }
2275
2276 // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
2277 // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
2278 // Pattern complexity = 6 cost = 1 size = 0
2279 //
2280 // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
2281 // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
2282 // Pattern complexity = 6 cost = 11 size = 0
2283 //
2284 // Also VMOVScc and VMOVDcc.
2285 SDValue Tmp2 = CurDAG->getTargetConstant(CCVal, MVT::i32);
2286 SDValue Ops[] = { FalseVal, TrueVal, Tmp2, CCR, InFlag };
2287 unsigned Opc = 0;
2288 switch (VT.getSimpleVT().SimpleTy) {
2289 default: assert(false && "Illegal conditional move type!");
2290 break;
2291 case MVT::i32:
2292 Opc = Subtarget->isThumb()
2293 ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo)
2294 : ARM::MOVCCr;
2295 break;
2296 case MVT::f32:
2297 Opc = ARM::VMOVScc;
2298 break;
2299 case MVT::f64:
2300 Opc = ARM::VMOVDcc;
2301 break;
2302 }
2303 return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
2304 }
2305
2306 /// Target-specific DAG combining for ISD::XOR.
2307 /// Target-independent combining lowers SELECT_CC nodes of the form
2308 /// select_cc setg[ge] X, 0, X, -X
2309 /// select_cc setgt X, -1, X, -X
2310 /// select_cc setl[te] X, 0, -X, X
2311 /// select_cc setlt X, 1, -X, X
2312 /// which represent Integer ABS into:
2313 /// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
2314 /// ARM instruction selection detects the latter and matches it to
2315 /// ARM::ABS or ARM::t2ABS machine node.
SelectABSOp(SDNode * N)2316 SDNode *ARMDAGToDAGISel::SelectABSOp(SDNode *N){
2317 SDValue XORSrc0 = N->getOperand(0);
2318 SDValue XORSrc1 = N->getOperand(1);
2319 DebugLoc DL = N->getDebugLoc();
2320 EVT VT = N->getValueType(0);
2321
2322 if (DisableARMIntABS)
2323 return NULL;
2324
2325 if (Subtarget->isThumb1Only())
2326 return NULL;
2327
2328 if (XORSrc0.getOpcode() != ISD::ADD ||
2329 XORSrc1.getOpcode() != ISD::SRA)
2330 return NULL;
2331
2332 SDValue ADDSrc0 = XORSrc0.getOperand(0);
2333 SDValue ADDSrc1 = XORSrc0.getOperand(1);
2334 SDValue SRASrc0 = XORSrc1.getOperand(0);
2335 SDValue SRASrc1 = XORSrc1.getOperand(1);
2336 ConstantSDNode *SRAConstant = dyn_cast<ConstantSDNode>(SRASrc1);
2337 EVT XType = SRASrc0.getValueType();
2338 unsigned Size = XType.getSizeInBits() - 1;
2339
2340 if (ADDSrc1 == XORSrc1 &&
2341 ADDSrc0 == SRASrc0 &&
2342 XType.isInteger() &&
2343 SRAConstant != NULL &&
2344 Size == SRAConstant->getZExtValue()) {
2345
2346 unsigned Opcode = ARM::ABS;
2347 if (Subtarget->isThumb2())
2348 Opcode = ARM::t2ABS;
2349
2350 return CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0);
2351 }
2352
2353 return NULL;
2354 }
2355
SelectConcatVector(SDNode * N)2356 SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
2357 // The only time a CONCAT_VECTORS operation can have legal types is when
2358 // two 64-bit vectors are concatenated to a 128-bit vector.
2359 EVT VT = N->getValueType(0);
2360 if (!VT.is128BitVector() || N->getNumOperands() != 2)
2361 llvm_unreachable("unexpected CONCAT_VECTORS");
2362 return PairDRegs(VT, N->getOperand(0), N->getOperand(1));
2363 }
2364
SelectAtomic64(SDNode * Node,unsigned Opc)2365 SDNode *ARMDAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
2366 SmallVector<SDValue, 6> Ops;
2367 Ops.push_back(Node->getOperand(1)); // Ptr
2368 Ops.push_back(Node->getOperand(2)); // Low part of Val1
2369 Ops.push_back(Node->getOperand(3)); // High part of Val1
2370 if (Opc == ARM::ATOMCMPXCHG6432) {
2371 Ops.push_back(Node->getOperand(4)); // Low part of Val2
2372 Ops.push_back(Node->getOperand(5)); // High part of Val2
2373 }
2374 Ops.push_back(Node->getOperand(0)); // Chain
2375 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2376 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
2377 SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
2378 MVT::i32, MVT::i32, MVT::Other,
2379 Ops.data() ,Ops.size());
2380 cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
2381 return ResNode;
2382 }
2383
Select(SDNode * N)2384 SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
2385 DebugLoc dl = N->getDebugLoc();
2386
2387 if (N->isMachineOpcode())
2388 return NULL; // Already selected.
2389
2390 switch (N->getOpcode()) {
2391 default: break;
2392 case ISD::XOR: {
2393 // Select special operations if XOR node forms integer ABS pattern
2394 SDNode *ResNode = SelectABSOp(N);
2395 if (ResNode)
2396 return ResNode;
2397 // Other cases are autogenerated.
2398 break;
2399 }
2400 case ISD::Constant: {
2401 unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
2402 bool UseCP = true;
2403 if (Subtarget->hasThumb2())
2404 // Thumb2-aware targets have the MOVT instruction, so all immediates can
2405 // be done with MOV + MOVT, at worst.
2406 UseCP = 0;
2407 else {
2408 if (Subtarget->isThumb()) {
2409 UseCP = (Val > 255 && // MOV
2410 ~Val > 255 && // MOV + MVN
2411 !ARM_AM::isThumbImmShiftedVal(Val)); // MOV + LSL
2412 } else
2413 UseCP = (ARM_AM::getSOImmVal(Val) == -1 && // MOV
2414 ARM_AM::getSOImmVal(~Val) == -1 && // MVN
2415 !ARM_AM::isSOImmTwoPartVal(Val)); // two instrs.
2416 }
2417
2418 if (UseCP) {
2419 SDValue CPIdx =
2420 CurDAG->getTargetConstantPool(ConstantInt::get(
2421 Type::getInt32Ty(*CurDAG->getContext()), Val),
2422 TLI.getPointerTy());
2423
2424 SDNode *ResNode;
2425 if (Subtarget->isThumb1Only()) {
2426 SDValue Pred = getAL(CurDAG);
2427 SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2428 SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
2429 ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
2430 Ops, 4);
2431 } else {
2432 SDValue Ops[] = {
2433 CPIdx,
2434 CurDAG->getTargetConstant(0, MVT::i32),
2435 getAL(CurDAG),
2436 CurDAG->getRegister(0, MVT::i32),
2437 CurDAG->getEntryNode()
2438 };
2439 ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
2440 Ops, 5);
2441 }
2442 ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
2443 return NULL;
2444 }
2445
2446 // Other cases are autogenerated.
2447 break;
2448 }
2449 case ISD::FrameIndex: {
2450 // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
2451 int FI = cast<FrameIndexSDNode>(N)->getIndex();
2452 SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
2453 if (Subtarget->isThumb1Only()) {
2454 SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
2455 getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2456 return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, Ops, 4);
2457 } else {
2458 unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
2459 ARM::t2ADDri : ARM::ADDri);
2460 SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
2461 getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2462 CurDAG->getRegister(0, MVT::i32) };
2463 return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
2464 }
2465 }
2466 case ISD::SRL:
2467 if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
2468 return I;
2469 break;
2470 case ISD::SRA:
2471 if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
2472 return I;
2473 break;
2474 case ISD::MUL:
2475 if (Subtarget->isThumb1Only())
2476 break;
2477 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
2478 unsigned RHSV = C->getZExtValue();
2479 if (!RHSV) break;
2480 if (isPowerOf2_32(RHSV-1)) { // 2^n+1?
2481 unsigned ShImm = Log2_32(RHSV-1);
2482 if (ShImm >= 32)
2483 break;
2484 SDValue V = N->getOperand(0);
2485 ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
2486 SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
2487 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2488 if (Subtarget->isThumb()) {
2489 SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
2490 return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6);
2491 } else {
2492 SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
2493 return CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops, 7);
2494 }
2495 }
2496 if (isPowerOf2_32(RHSV+1)) { // 2^n-1?
2497 unsigned ShImm = Log2_32(RHSV+1);
2498 if (ShImm >= 32)
2499 break;
2500 SDValue V = N->getOperand(0);
2501 ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
2502 SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
2503 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2504 if (Subtarget->isThumb()) {
2505 SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
2506 return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 6);
2507 } else {
2508 SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
2509 return CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops, 7);
2510 }
2511 }
2512 }
2513 break;
2514 case ISD::AND: {
2515 // Check for unsigned bitfield extract
2516 if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
2517 return I;
2518
2519 // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
2520 // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
2521 // are entirely contributed by c2 and lower 16-bits are entirely contributed
2522 // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
2523 // Select it to: "movt x, ((c1 & 0xffff) >> 16)
2524 EVT VT = N->getValueType(0);
2525 if (VT != MVT::i32)
2526 break;
2527 unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
2528 ? ARM::t2MOVTi16
2529 : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
2530 if (!Opc)
2531 break;
2532 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2533 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2534 if (!N1C)
2535 break;
2536 if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
2537 SDValue N2 = N0.getOperand(1);
2538 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2539 if (!N2C)
2540 break;
2541 unsigned N1CVal = N1C->getZExtValue();
2542 unsigned N2CVal = N2C->getZExtValue();
2543 if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
2544 (N1CVal & 0xffffU) == 0xffffU &&
2545 (N2CVal & 0xffffU) == 0x0U) {
2546 SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
2547 MVT::i32);
2548 SDValue Ops[] = { N0.getOperand(0), Imm16,
2549 getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2550 return CurDAG->getMachineNode(Opc, dl, VT, Ops, 4);
2551 }
2552 }
2553 break;
2554 }
2555 case ARMISD::VMOVRRD:
2556 return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
2557 N->getOperand(0), getAL(CurDAG),
2558 CurDAG->getRegister(0, MVT::i32));
2559 case ISD::UMUL_LOHI: {
2560 if (Subtarget->isThumb1Only())
2561 break;
2562 if (Subtarget->isThumb()) {
2563 SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2564 getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2565 CurDAG->getRegister(0, MVT::i32) };
2566 return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32,Ops,4);
2567 } else {
2568 SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2569 getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2570 CurDAG->getRegister(0, MVT::i32) };
2571 return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
2572 ARM::UMULL : ARM::UMULLv5,
2573 dl, MVT::i32, MVT::i32, Ops, 5);
2574 }
2575 }
2576 case ISD::SMUL_LOHI: {
2577 if (Subtarget->isThumb1Only())
2578 break;
2579 if (Subtarget->isThumb()) {
2580 SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2581 getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2582 return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32,Ops,4);
2583 } else {
2584 SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2585 getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2586 CurDAG->getRegister(0, MVT::i32) };
2587 return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
2588 ARM::SMULL : ARM::SMULLv5,
2589 dl, MVT::i32, MVT::i32, Ops, 5);
2590 }
2591 }
2592 case ISD::LOAD: {
2593 SDNode *ResNode = 0;
2594 if (Subtarget->isThumb() && Subtarget->hasThumb2())
2595 ResNode = SelectT2IndexedLoad(N);
2596 else
2597 ResNode = SelectARMIndexedLoad(N);
2598 if (ResNode)
2599 return ResNode;
2600 // Other cases are autogenerated.
2601 break;
2602 }
2603 case ARMISD::BRCOND: {
2604 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2605 // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2606 // Pattern complexity = 6 cost = 1 size = 0
2607
2608 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2609 // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
2610 // Pattern complexity = 6 cost = 1 size = 0
2611
2612 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2613 // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2614 // Pattern complexity = 6 cost = 1 size = 0
2615
2616 unsigned Opc = Subtarget->isThumb() ?
2617 ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
2618 SDValue Chain = N->getOperand(0);
2619 SDValue N1 = N->getOperand(1);
2620 SDValue N2 = N->getOperand(2);
2621 SDValue N3 = N->getOperand(3);
2622 SDValue InFlag = N->getOperand(4);
2623 assert(N1.getOpcode() == ISD::BasicBlock);
2624 assert(N2.getOpcode() == ISD::Constant);
2625 assert(N3.getOpcode() == ISD::Register);
2626
2627 SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
2628 cast<ConstantSDNode>(N2)->getZExtValue()),
2629 MVT::i32);
2630 SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
2631 SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
2632 MVT::Glue, Ops, 5);
2633 Chain = SDValue(ResNode, 0);
2634 if (N->getNumValues() == 2) {
2635 InFlag = SDValue(ResNode, 1);
2636 ReplaceUses(SDValue(N, 1), InFlag);
2637 }
2638 ReplaceUses(SDValue(N, 0),
2639 SDValue(Chain.getNode(), Chain.getResNo()));
2640 return NULL;
2641 }
2642 case ARMISD::CMOV:
2643 return SelectCMOVOp(N);
2644 case ARMISD::VZIP: {
2645 unsigned Opc = 0;
2646 EVT VT = N->getValueType(0);
2647 switch (VT.getSimpleVT().SimpleTy) {
2648 default: return NULL;
2649 case MVT::v8i8: Opc = ARM::VZIPd8; break;
2650 case MVT::v4i16: Opc = ARM::VZIPd16; break;
2651 case MVT::v2f32:
2652 case MVT::v2i32: Opc = ARM::VZIPd32; break;
2653 case MVT::v16i8: Opc = ARM::VZIPq8; break;
2654 case MVT::v8i16: Opc = ARM::VZIPq16; break;
2655 case MVT::v4f32:
2656 case MVT::v4i32: Opc = ARM::VZIPq32; break;
2657 }
2658 SDValue Pred = getAL(CurDAG);
2659 SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2660 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2661 return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2662 }
2663 case ARMISD::VUZP: {
2664 unsigned Opc = 0;
2665 EVT VT = N->getValueType(0);
2666 switch (VT.getSimpleVT().SimpleTy) {
2667 default: return NULL;
2668 case MVT::v8i8: Opc = ARM::VUZPd8; break;
2669 case MVT::v4i16: Opc = ARM::VUZPd16; break;
2670 case MVT::v2f32:
2671 case MVT::v2i32: Opc = ARM::VUZPd32; break;
2672 case MVT::v16i8: Opc = ARM::VUZPq8; break;
2673 case MVT::v8i16: Opc = ARM::VUZPq16; break;
2674 case MVT::v4f32:
2675 case MVT::v4i32: Opc = ARM::VUZPq32; break;
2676 }
2677 SDValue Pred = getAL(CurDAG);
2678 SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2679 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2680 return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2681 }
2682 case ARMISD::VTRN: {
2683 unsigned Opc = 0;
2684 EVT VT = N->getValueType(0);
2685 switch (VT.getSimpleVT().SimpleTy) {
2686 default: return NULL;
2687 case MVT::v8i8: Opc = ARM::VTRNd8; break;
2688 case MVT::v4i16: Opc = ARM::VTRNd16; break;
2689 case MVT::v2f32:
2690 case MVT::v2i32: Opc = ARM::VTRNd32; break;
2691 case MVT::v16i8: Opc = ARM::VTRNq8; break;
2692 case MVT::v8i16: Opc = ARM::VTRNq16; break;
2693 case MVT::v4f32:
2694 case MVT::v4i32: Opc = ARM::VTRNq32; break;
2695 }
2696 SDValue Pred = getAL(CurDAG);
2697 SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2698 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2699 return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2700 }
2701 case ARMISD::BUILD_VECTOR: {
2702 EVT VecVT = N->getValueType(0);
2703 EVT EltVT = VecVT.getVectorElementType();
2704 unsigned NumElts = VecVT.getVectorNumElements();
2705 if (EltVT == MVT::f64) {
2706 assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
2707 return PairDRegs(VecVT, N->getOperand(0), N->getOperand(1));
2708 }
2709 assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
2710 if (NumElts == 2)
2711 return PairSRegs(VecVT, N->getOperand(0), N->getOperand(1));
2712 assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
2713 return QuadSRegs(VecVT, N->getOperand(0), N->getOperand(1),
2714 N->getOperand(2), N->getOperand(3));
2715 }
2716
2717 case ARMISD::VLD2DUP: {
2718 unsigned Opcodes[] = { ARM::VLD2DUPd8Pseudo, ARM::VLD2DUPd16Pseudo,
2719 ARM::VLD2DUPd32Pseudo };
2720 return SelectVLDDup(N, false, 2, Opcodes);
2721 }
2722
2723 case ARMISD::VLD3DUP: {
2724 unsigned Opcodes[] = { ARM::VLD3DUPd8Pseudo, ARM::VLD3DUPd16Pseudo,
2725 ARM::VLD3DUPd32Pseudo };
2726 return SelectVLDDup(N, false, 3, Opcodes);
2727 }
2728
2729 case ARMISD::VLD4DUP: {
2730 unsigned Opcodes[] = { ARM::VLD4DUPd8Pseudo, ARM::VLD4DUPd16Pseudo,
2731 ARM::VLD4DUPd32Pseudo };
2732 return SelectVLDDup(N, false, 4, Opcodes);
2733 }
2734
2735 case ARMISD::VLD2DUP_UPD: {
2736 unsigned Opcodes[] = { ARM::VLD2DUPd8Pseudo_UPD, ARM::VLD2DUPd16Pseudo_UPD,
2737 ARM::VLD2DUPd32Pseudo_UPD };
2738 return SelectVLDDup(N, true, 2, Opcodes);
2739 }
2740
2741 case ARMISD::VLD3DUP_UPD: {
2742 unsigned Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD, ARM::VLD3DUPd16Pseudo_UPD,
2743 ARM::VLD3DUPd32Pseudo_UPD };
2744 return SelectVLDDup(N, true, 3, Opcodes);
2745 }
2746
2747 case ARMISD::VLD4DUP_UPD: {
2748 unsigned Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD, ARM::VLD4DUPd16Pseudo_UPD,
2749 ARM::VLD4DUPd32Pseudo_UPD };
2750 return SelectVLDDup(N, true, 4, Opcodes);
2751 }
2752
2753 case ARMISD::VLD1_UPD: {
2754 unsigned DOpcodes[] = { ARM::VLD1d8_UPD, ARM::VLD1d16_UPD,
2755 ARM::VLD1d32_UPD, ARM::VLD1d64_UPD };
2756 unsigned QOpcodes[] = { ARM::VLD1q8Pseudo_UPD, ARM::VLD1q16Pseudo_UPD,
2757 ARM::VLD1q32Pseudo_UPD, ARM::VLD1q64Pseudo_UPD };
2758 return SelectVLD(N, true, 1, DOpcodes, QOpcodes, 0);
2759 }
2760
2761 case ARMISD::VLD2_UPD: {
2762 unsigned DOpcodes[] = { ARM::VLD2d8Pseudo_UPD, ARM::VLD2d16Pseudo_UPD,
2763 ARM::VLD2d32Pseudo_UPD, ARM::VLD1q64Pseudo_UPD };
2764 unsigned QOpcodes[] = { ARM::VLD2q8Pseudo_UPD, ARM::VLD2q16Pseudo_UPD,
2765 ARM::VLD2q32Pseudo_UPD };
2766 return SelectVLD(N, true, 2, DOpcodes, QOpcodes, 0);
2767 }
2768
2769 case ARMISD::VLD3_UPD: {
2770 unsigned DOpcodes[] = { ARM::VLD3d8Pseudo_UPD, ARM::VLD3d16Pseudo_UPD,
2771 ARM::VLD3d32Pseudo_UPD, ARM::VLD1d64TPseudo_UPD };
2772 unsigned QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
2773 ARM::VLD3q16Pseudo_UPD,
2774 ARM::VLD3q32Pseudo_UPD };
2775 unsigned QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
2776 ARM::VLD3q16oddPseudo_UPD,
2777 ARM::VLD3q32oddPseudo_UPD };
2778 return SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
2779 }
2780
2781 case ARMISD::VLD4_UPD: {
2782 unsigned DOpcodes[] = { ARM::VLD4d8Pseudo_UPD, ARM::VLD4d16Pseudo_UPD,
2783 ARM::VLD4d32Pseudo_UPD, ARM::VLD1d64QPseudo_UPD };
2784 unsigned QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
2785 ARM::VLD4q16Pseudo_UPD,
2786 ARM::VLD4q32Pseudo_UPD };
2787 unsigned QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD,
2788 ARM::VLD4q16oddPseudo_UPD,
2789 ARM::VLD4q32oddPseudo_UPD };
2790 return SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
2791 }
2792
2793 case ARMISD::VLD2LN_UPD: {
2794 unsigned DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD, ARM::VLD2LNd16Pseudo_UPD,
2795 ARM::VLD2LNd32Pseudo_UPD };
2796 unsigned QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
2797 ARM::VLD2LNq32Pseudo_UPD };
2798 return SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
2799 }
2800
2801 case ARMISD::VLD3LN_UPD: {
2802 unsigned DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD, ARM::VLD3LNd16Pseudo_UPD,
2803 ARM::VLD3LNd32Pseudo_UPD };
2804 unsigned QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
2805 ARM::VLD3LNq32Pseudo_UPD };
2806 return SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
2807 }
2808
2809 case ARMISD::VLD4LN_UPD: {
2810 unsigned DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD, ARM::VLD4LNd16Pseudo_UPD,
2811 ARM::VLD4LNd32Pseudo_UPD };
2812 unsigned QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
2813 ARM::VLD4LNq32Pseudo_UPD };
2814 return SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
2815 }
2816
2817 case ARMISD::VST1_UPD: {
2818 unsigned DOpcodes[] = { ARM::VST1d8_UPD, ARM::VST1d16_UPD,
2819 ARM::VST1d32_UPD, ARM::VST1d64_UPD };
2820 unsigned QOpcodes[] = { ARM::VST1q8Pseudo_UPD, ARM::VST1q16Pseudo_UPD,
2821 ARM::VST1q32Pseudo_UPD, ARM::VST1q64Pseudo_UPD };
2822 return SelectVST(N, true, 1, DOpcodes, QOpcodes, 0);
2823 }
2824
2825 case ARMISD::VST2_UPD: {
2826 unsigned DOpcodes[] = { ARM::VST2d8Pseudo_UPD, ARM::VST2d16Pseudo_UPD,
2827 ARM::VST2d32Pseudo_UPD, ARM::VST1q64Pseudo_UPD };
2828 unsigned QOpcodes[] = { ARM::VST2q8Pseudo_UPD, ARM::VST2q16Pseudo_UPD,
2829 ARM::VST2q32Pseudo_UPD };
2830 return SelectVST(N, true, 2, DOpcodes, QOpcodes, 0);
2831 }
2832
2833 case ARMISD::VST3_UPD: {
2834 unsigned DOpcodes[] = { ARM::VST3d8Pseudo_UPD, ARM::VST3d16Pseudo_UPD,
2835 ARM::VST3d32Pseudo_UPD, ARM::VST1d64TPseudo_UPD };
2836 unsigned QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
2837 ARM::VST3q16Pseudo_UPD,
2838 ARM::VST3q32Pseudo_UPD };
2839 unsigned QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
2840 ARM::VST3q16oddPseudo_UPD,
2841 ARM::VST3q32oddPseudo_UPD };
2842 return SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
2843 }
2844
2845 case ARMISD::VST4_UPD: {
2846 unsigned DOpcodes[] = { ARM::VST4d8Pseudo_UPD, ARM::VST4d16Pseudo_UPD,
2847 ARM::VST4d32Pseudo_UPD, ARM::VST1d64QPseudo_UPD };
2848 unsigned QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
2849 ARM::VST4q16Pseudo_UPD,
2850 ARM::VST4q32Pseudo_UPD };
2851 unsigned QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD,
2852 ARM::VST4q16oddPseudo_UPD,
2853 ARM::VST4q32oddPseudo_UPD };
2854 return SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
2855 }
2856
2857 case ARMISD::VST2LN_UPD: {
2858 unsigned DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD, ARM::VST2LNd16Pseudo_UPD,
2859 ARM::VST2LNd32Pseudo_UPD };
2860 unsigned QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
2861 ARM::VST2LNq32Pseudo_UPD };
2862 return SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
2863 }
2864
2865 case ARMISD::VST3LN_UPD: {
2866 unsigned DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD, ARM::VST3LNd16Pseudo_UPD,
2867 ARM::VST3LNd32Pseudo_UPD };
2868 unsigned QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
2869 ARM::VST3LNq32Pseudo_UPD };
2870 return SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
2871 }
2872
2873 case ARMISD::VST4LN_UPD: {
2874 unsigned DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD, ARM::VST4LNd16Pseudo_UPD,
2875 ARM::VST4LNd32Pseudo_UPD };
2876 unsigned QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
2877 ARM::VST4LNq32Pseudo_UPD };
2878 return SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
2879 }
2880
2881 case ISD::INTRINSIC_VOID:
2882 case ISD::INTRINSIC_W_CHAIN: {
2883 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2884 switch (IntNo) {
2885 default:
2886 break;
2887
2888 case Intrinsic::arm_ldrexd: {
2889 SDValue MemAddr = N->getOperand(2);
2890 DebugLoc dl = N->getDebugLoc();
2891 SDValue Chain = N->getOperand(0);
2892
2893 unsigned NewOpc = ARM::LDREXD;
2894 if (Subtarget->isThumb() && Subtarget->hasThumb2())
2895 NewOpc = ARM::t2LDREXD;
2896
2897 // arm_ldrexd returns a i64 value in {i32, i32}
2898 std::vector<EVT> ResTys;
2899 ResTys.push_back(MVT::i32);
2900 ResTys.push_back(MVT::i32);
2901 ResTys.push_back(MVT::Other);
2902
2903 // place arguments in the right order
2904 SmallVector<SDValue, 7> Ops;
2905 Ops.push_back(MemAddr);
2906 Ops.push_back(getAL(CurDAG));
2907 Ops.push_back(CurDAG->getRegister(0, MVT::i32));
2908 Ops.push_back(Chain);
2909 SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops.data(),
2910 Ops.size());
2911 // Transfer memoperands.
2912 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2913 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2914 cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
2915
2916 // Until there's support for specifing explicit register constraints
2917 // like the use of even/odd register pair, hardcode ldrexd to always
2918 // use the pair [R0, R1] to hold the load result.
2919 Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ARM::R0,
2920 SDValue(Ld, 0), SDValue(0,0));
2921 Chain = CurDAG->getCopyToReg(Chain, dl, ARM::R1,
2922 SDValue(Ld, 1), Chain.getValue(1));
2923
2924 // Remap uses.
2925 SDValue Glue = Chain.getValue(1);
2926 if (!SDValue(N, 0).use_empty()) {
2927 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2928 ARM::R0, MVT::i32, Glue);
2929 Glue = Result.getValue(2);
2930 ReplaceUses(SDValue(N, 0), Result);
2931 }
2932 if (!SDValue(N, 1).use_empty()) {
2933 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2934 ARM::R1, MVT::i32, Glue);
2935 Glue = Result.getValue(2);
2936 ReplaceUses(SDValue(N, 1), Result);
2937 }
2938
2939 ReplaceUses(SDValue(N, 2), SDValue(Ld, 2));
2940 return NULL;
2941 }
2942
2943 case Intrinsic::arm_strexd: {
2944 DebugLoc dl = N->getDebugLoc();
2945 SDValue Chain = N->getOperand(0);
2946 SDValue Val0 = N->getOperand(2);
2947 SDValue Val1 = N->getOperand(3);
2948 SDValue MemAddr = N->getOperand(4);
2949
2950 // Until there's support for specifing explicit register constraints
2951 // like the use of even/odd register pair, hardcode strexd to always
2952 // use the pair [R2, R3] to hold the i64 (i32, i32) value to be stored.
2953 Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ARM::R2, Val0,
2954 SDValue(0, 0));
2955 Chain = CurDAG->getCopyToReg(Chain, dl, ARM::R3, Val1, Chain.getValue(1));
2956
2957 SDValue Glue = Chain.getValue(1);
2958 Val0 = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2959 ARM::R2, MVT::i32, Glue);
2960 Glue = Val0.getValue(1);
2961 Val1 = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2962 ARM::R3, MVT::i32, Glue);
2963
2964 // Store exclusive double return a i32 value which is the return status
2965 // of the issued store.
2966 std::vector<EVT> ResTys;
2967 ResTys.push_back(MVT::i32);
2968 ResTys.push_back(MVT::Other);
2969
2970 // place arguments in the right order
2971 SmallVector<SDValue, 7> Ops;
2972 Ops.push_back(Val0);
2973 Ops.push_back(Val1);
2974 Ops.push_back(MemAddr);
2975 Ops.push_back(getAL(CurDAG));
2976 Ops.push_back(CurDAG->getRegister(0, MVT::i32));
2977 Ops.push_back(Chain);
2978
2979 unsigned NewOpc = ARM::STREXD;
2980 if (Subtarget->isThumb() && Subtarget->hasThumb2())
2981 NewOpc = ARM::t2STREXD;
2982
2983 SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops.data(),
2984 Ops.size());
2985 // Transfer memoperands.
2986 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2987 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2988 cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
2989
2990 return St;
2991 }
2992
2993 case Intrinsic::arm_neon_vld1: {
2994 unsigned DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
2995 ARM::VLD1d32, ARM::VLD1d64 };
2996 unsigned QOpcodes[] = { ARM::VLD1q8Pseudo, ARM::VLD1q16Pseudo,
2997 ARM::VLD1q32Pseudo, ARM::VLD1q64Pseudo };
2998 return SelectVLD(N, false, 1, DOpcodes, QOpcodes, 0);
2999 }
3000
3001 case Intrinsic::arm_neon_vld2: {
3002 unsigned DOpcodes[] = { ARM::VLD2d8Pseudo, ARM::VLD2d16Pseudo,
3003 ARM::VLD2d32Pseudo, ARM::VLD1q64Pseudo };
3004 unsigned QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
3005 ARM::VLD2q32Pseudo };
3006 return SelectVLD(N, false, 2, DOpcodes, QOpcodes, 0);
3007 }
3008
3009 case Intrinsic::arm_neon_vld3: {
3010 unsigned DOpcodes[] = { ARM::VLD3d8Pseudo, ARM::VLD3d16Pseudo,
3011 ARM::VLD3d32Pseudo, ARM::VLD1d64TPseudo };
3012 unsigned QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
3013 ARM::VLD3q16Pseudo_UPD,
3014 ARM::VLD3q32Pseudo_UPD };
3015 unsigned QOpcodes1[] = { ARM::VLD3q8oddPseudo,
3016 ARM::VLD3q16oddPseudo,
3017 ARM::VLD3q32oddPseudo };
3018 return SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3019 }
3020
3021 case Intrinsic::arm_neon_vld4: {
3022 unsigned DOpcodes[] = { ARM::VLD4d8Pseudo, ARM::VLD4d16Pseudo,
3023 ARM::VLD4d32Pseudo, ARM::VLD1d64QPseudo };
3024 unsigned QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
3025 ARM::VLD4q16Pseudo_UPD,
3026 ARM::VLD4q32Pseudo_UPD };
3027 unsigned QOpcodes1[] = { ARM::VLD4q8oddPseudo,
3028 ARM::VLD4q16oddPseudo,
3029 ARM::VLD4q32oddPseudo };
3030 return SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
3031 }
3032
3033 case Intrinsic::arm_neon_vld2lane: {
3034 unsigned DOpcodes[] = { ARM::VLD2LNd8Pseudo, ARM::VLD2LNd16Pseudo,
3035 ARM::VLD2LNd32Pseudo };
3036 unsigned QOpcodes[] = { ARM::VLD2LNq16Pseudo, ARM::VLD2LNq32Pseudo };
3037 return SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
3038 }
3039
3040 case Intrinsic::arm_neon_vld3lane: {
3041 unsigned DOpcodes[] = { ARM::VLD3LNd8Pseudo, ARM::VLD3LNd16Pseudo,
3042 ARM::VLD3LNd32Pseudo };
3043 unsigned QOpcodes[] = { ARM::VLD3LNq16Pseudo, ARM::VLD3LNq32Pseudo };
3044 return SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
3045 }
3046
3047 case Intrinsic::arm_neon_vld4lane: {
3048 unsigned DOpcodes[] = { ARM::VLD4LNd8Pseudo, ARM::VLD4LNd16Pseudo,
3049 ARM::VLD4LNd32Pseudo };
3050 unsigned QOpcodes[] = { ARM::VLD4LNq16Pseudo, ARM::VLD4LNq32Pseudo };
3051 return SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
3052 }
3053
3054 case Intrinsic::arm_neon_vst1: {
3055 unsigned DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
3056 ARM::VST1d32, ARM::VST1d64 };
3057 unsigned QOpcodes[] = { ARM::VST1q8Pseudo, ARM::VST1q16Pseudo,
3058 ARM::VST1q32Pseudo, ARM::VST1q64Pseudo };
3059 return SelectVST(N, false, 1, DOpcodes, QOpcodes, 0);
3060 }
3061
3062 case Intrinsic::arm_neon_vst2: {
3063 unsigned DOpcodes[] = { ARM::VST2d8Pseudo, ARM::VST2d16Pseudo,
3064 ARM::VST2d32Pseudo, ARM::VST1q64Pseudo };
3065 unsigned QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
3066 ARM::VST2q32Pseudo };
3067 return SelectVST(N, false, 2, DOpcodes, QOpcodes, 0);
3068 }
3069
3070 case Intrinsic::arm_neon_vst3: {
3071 unsigned DOpcodes[] = { ARM::VST3d8Pseudo, ARM::VST3d16Pseudo,
3072 ARM::VST3d32Pseudo, ARM::VST1d64TPseudo };
3073 unsigned QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
3074 ARM::VST3q16Pseudo_UPD,
3075 ARM::VST3q32Pseudo_UPD };
3076 unsigned QOpcodes1[] = { ARM::VST3q8oddPseudo,
3077 ARM::VST3q16oddPseudo,
3078 ARM::VST3q32oddPseudo };
3079 return SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3080 }
3081
3082 case Intrinsic::arm_neon_vst4: {
3083 unsigned DOpcodes[] = { ARM::VST4d8Pseudo, ARM::VST4d16Pseudo,
3084 ARM::VST4d32Pseudo, ARM::VST1d64QPseudo };
3085 unsigned QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
3086 ARM::VST4q16Pseudo_UPD,
3087 ARM::VST4q32Pseudo_UPD };
3088 unsigned QOpcodes1[] = { ARM::VST4q8oddPseudo,
3089 ARM::VST4q16oddPseudo,
3090 ARM::VST4q32oddPseudo };
3091 return SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
3092 }
3093
3094 case Intrinsic::arm_neon_vst2lane: {
3095 unsigned DOpcodes[] = { ARM::VST2LNd8Pseudo, ARM::VST2LNd16Pseudo,
3096 ARM::VST2LNd32Pseudo };
3097 unsigned QOpcodes[] = { ARM::VST2LNq16Pseudo, ARM::VST2LNq32Pseudo };
3098 return SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
3099 }
3100
3101 case Intrinsic::arm_neon_vst3lane: {
3102 unsigned DOpcodes[] = { ARM::VST3LNd8Pseudo, ARM::VST3LNd16Pseudo,
3103 ARM::VST3LNd32Pseudo };
3104 unsigned QOpcodes[] = { ARM::VST3LNq16Pseudo, ARM::VST3LNq32Pseudo };
3105 return SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
3106 }
3107
3108 case Intrinsic::arm_neon_vst4lane: {
3109 unsigned DOpcodes[] = { ARM::VST4LNd8Pseudo, ARM::VST4LNd16Pseudo,
3110 ARM::VST4LNd32Pseudo };
3111 unsigned QOpcodes[] = { ARM::VST4LNq16Pseudo, ARM::VST4LNq32Pseudo };
3112 return SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
3113 }
3114 }
3115 break;
3116 }
3117
3118 case ISD::INTRINSIC_WO_CHAIN: {
3119 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3120 switch (IntNo) {
3121 default:
3122 break;
3123
3124 case Intrinsic::arm_neon_vtbl2:
3125 return SelectVTBL(N, false, 2, ARM::VTBL2Pseudo);
3126 case Intrinsic::arm_neon_vtbl3:
3127 return SelectVTBL(N, false, 3, ARM::VTBL3Pseudo);
3128 case Intrinsic::arm_neon_vtbl4:
3129 return SelectVTBL(N, false, 4, ARM::VTBL4Pseudo);
3130
3131 case Intrinsic::arm_neon_vtbx2:
3132 return SelectVTBL(N, true, 2, ARM::VTBX2Pseudo);
3133 case Intrinsic::arm_neon_vtbx3:
3134 return SelectVTBL(N, true, 3, ARM::VTBX3Pseudo);
3135 case Intrinsic::arm_neon_vtbx4:
3136 return SelectVTBL(N, true, 4, ARM::VTBX4Pseudo);
3137 }
3138 break;
3139 }
3140
3141 case ARMISD::VTBL1: {
3142 DebugLoc dl = N->getDebugLoc();
3143 EVT VT = N->getValueType(0);
3144 SmallVector<SDValue, 6> Ops;
3145
3146 Ops.push_back(N->getOperand(0));
3147 Ops.push_back(N->getOperand(1));
3148 Ops.push_back(getAL(CurDAG)); // Predicate
3149 Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
3150 return CurDAG->getMachineNode(ARM::VTBL1, dl, VT, Ops.data(), Ops.size());
3151 }
3152 case ARMISD::VTBL2: {
3153 DebugLoc dl = N->getDebugLoc();
3154 EVT VT = N->getValueType(0);
3155
3156 // Form a REG_SEQUENCE to force register allocation.
3157 SDValue V0 = N->getOperand(0);
3158 SDValue V1 = N->getOperand(1);
3159 SDValue RegSeq = SDValue(PairDRegs(MVT::v16i8, V0, V1), 0);
3160
3161 SmallVector<SDValue, 6> Ops;
3162 Ops.push_back(RegSeq);
3163 Ops.push_back(N->getOperand(2));
3164 Ops.push_back(getAL(CurDAG)); // Predicate
3165 Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
3166 return CurDAG->getMachineNode(ARM::VTBL2Pseudo, dl, VT,
3167 Ops.data(), Ops.size());
3168 }
3169
3170 case ISD::CONCAT_VECTORS:
3171 return SelectConcatVector(N);
3172
3173 case ARMISD::ATOMOR64_DAG:
3174 return SelectAtomic64(N, ARM::ATOMOR6432);
3175 case ARMISD::ATOMXOR64_DAG:
3176 return SelectAtomic64(N, ARM::ATOMXOR6432);
3177 case ARMISD::ATOMADD64_DAG:
3178 return SelectAtomic64(N, ARM::ATOMADD6432);
3179 case ARMISD::ATOMSUB64_DAG:
3180 return SelectAtomic64(N, ARM::ATOMSUB6432);
3181 case ARMISD::ATOMNAND64_DAG:
3182 return SelectAtomic64(N, ARM::ATOMNAND6432);
3183 case ARMISD::ATOMAND64_DAG:
3184 return SelectAtomic64(N, ARM::ATOMAND6432);
3185 case ARMISD::ATOMSWAP64_DAG:
3186 return SelectAtomic64(N, ARM::ATOMSWAP6432);
3187 case ARMISD::ATOMCMPXCHG64_DAG:
3188 return SelectAtomic64(N, ARM::ATOMCMPXCHG6432);
3189 }
3190
3191 return SelectCode(N);
3192 }
3193
3194 bool ARMDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,char ConstraintCode,std::vector<SDValue> & OutOps)3195 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
3196 std::vector<SDValue> &OutOps) {
3197 assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
3198 // Require the address to be in a register. That is safe for all ARM
3199 // variants and it is hard to do anything much smarter without knowing
3200 // how the operand is used.
3201 OutOps.push_back(Op);
3202 return false;
3203 }
3204
3205 /// createARMISelDag - This pass converts a legalized DAG into a
3206 /// ARM-specific DAG, ready for instruction scheduling.
3207 ///
createARMISelDag(ARMBaseTargetMachine & TM,CodeGenOpt::Level OptLevel)3208 FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
3209 CodeGenOpt::Level OptLevel) {
3210 return new ARMDAGToDAGISel(TM, OptLevel);
3211 }
3212