1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
11 // LLVM IR interface. The input module is assumed to be verified.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CPPTargetMachine.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instruction.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/PassManager.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCInstrInfo.h"
27 #include "llvm/MC/MCSubtargetInfo.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/FormattedStream.h"
32 #include "llvm/Support/TargetRegistry.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/Config/config.h"
35 #include <algorithm>
36 #include <set>
37 #include <map>
38 using namespace llvm;
39
40 static cl::opt<std::string>
41 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
42 cl::value_desc("function name"));
43
44 enum WhatToGenerate {
45 GenProgram,
46 GenModule,
47 GenContents,
48 GenFunction,
49 GenFunctions,
50 GenInline,
51 GenVariable,
52 GenType
53 };
54
55 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
56 cl::desc("Choose what kind of output to generate"),
57 cl::init(GenProgram),
58 cl::values(
59 clEnumValN(GenProgram, "program", "Generate a complete program"),
60 clEnumValN(GenModule, "module", "Generate a module definition"),
61 clEnumValN(GenContents, "contents", "Generate contents of a module"),
62 clEnumValN(GenFunction, "function", "Generate a function definition"),
63 clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
64 clEnumValN(GenInline, "inline", "Generate an inline function"),
65 clEnumValN(GenVariable, "variable", "Generate a variable definition"),
66 clEnumValN(GenType, "type", "Generate a type definition"),
67 clEnumValEnd
68 )
69 );
70
71 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
72 cl::desc("Specify the name of the thing to generate"),
73 cl::init("!bad!"));
74
LLVMInitializeCppBackendTarget()75 extern "C" void LLVMInitializeCppBackendTarget() {
76 // Register the target.
77 RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
78 }
79
80 namespace {
81 typedef std::vector<Type*> TypeList;
82 typedef std::map<Type*,std::string> TypeMap;
83 typedef std::map<const Value*,std::string> ValueMap;
84 typedef std::set<std::string> NameSet;
85 typedef std::set<Type*> TypeSet;
86 typedef std::set<const Value*> ValueSet;
87 typedef std::map<const Value*,std::string> ForwardRefMap;
88
89 /// CppWriter - This class is the main chunk of code that converts an LLVM
90 /// module to a C++ translation unit.
91 class CppWriter : public ModulePass {
92 formatted_raw_ostream &Out;
93 const Module *TheModule;
94 uint64_t uniqueNum;
95 TypeMap TypeNames;
96 ValueMap ValueNames;
97 NameSet UsedNames;
98 TypeSet DefinedTypes;
99 ValueSet DefinedValues;
100 ForwardRefMap ForwardRefs;
101 bool is_inline;
102 unsigned indent_level;
103
104 public:
105 static char ID;
CppWriter(formatted_raw_ostream & o)106 explicit CppWriter(formatted_raw_ostream &o) :
107 ModulePass(ID), Out(o), uniqueNum(0), is_inline(false), indent_level(0){}
108
getPassName() const109 virtual const char *getPassName() const { return "C++ backend"; }
110
111 bool runOnModule(Module &M);
112
113 void printProgram(const std::string& fname, const std::string& modName );
114 void printModule(const std::string& fname, const std::string& modName );
115 void printContents(const std::string& fname, const std::string& modName );
116 void printFunction(const std::string& fname, const std::string& funcName );
117 void printFunctions();
118 void printInline(const std::string& fname, const std::string& funcName );
119 void printVariable(const std::string& fname, const std::string& varName );
120 void printType(const std::string& fname, const std::string& typeName );
121
122 void error(const std::string& msg);
123
124
125 formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
in()126 inline void in() { indent_level++; }
out()127 inline void out() { if (indent_level >0) indent_level--; }
128
129 private:
130 void printLinkageType(GlobalValue::LinkageTypes LT);
131 void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
132 void printCallingConv(CallingConv::ID cc);
133 void printEscapedString(const std::string& str);
134 void printCFP(const ConstantFP* CFP);
135
136 std::string getCppName(Type* val);
137 inline void printCppName(Type* val);
138
139 std::string getCppName(const Value* val);
140 inline void printCppName(const Value* val);
141
142 void printAttributes(const AttrListPtr &PAL, const std::string &name);
143 void printType(Type* Ty);
144 void printTypes(const Module* M);
145
146 void printConstant(const Constant *CPV);
147 void printConstants(const Module* M);
148
149 void printVariableUses(const GlobalVariable *GV);
150 void printVariableHead(const GlobalVariable *GV);
151 void printVariableBody(const GlobalVariable *GV);
152
153 void printFunctionUses(const Function *F);
154 void printFunctionHead(const Function *F);
155 void printFunctionBody(const Function *F);
156 void printInstruction(const Instruction *I, const std::string& bbname);
157 std::string getOpName(const Value*);
158
159 void printModuleBody();
160 };
161 } // end anonymous namespace.
162
nl(formatted_raw_ostream & Out,int delta)163 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
164 Out << '\n';
165 if (delta >= 0 || indent_level >= unsigned(-delta))
166 indent_level += delta;
167 Out.indent(indent_level);
168 return Out;
169 }
170
sanitize(std::string & str)171 static inline void sanitize(std::string &str) {
172 for (size_t i = 0; i < str.length(); ++i)
173 if (!isalnum(str[i]) && str[i] != '_')
174 str[i] = '_';
175 }
176
getTypePrefix(Type * Ty)177 static std::string getTypePrefix(Type *Ty) {
178 switch (Ty->getTypeID()) {
179 case Type::VoidTyID: return "void_";
180 case Type::IntegerTyID:
181 return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
182 case Type::FloatTyID: return "float_";
183 case Type::DoubleTyID: return "double_";
184 case Type::LabelTyID: return "label_";
185 case Type::FunctionTyID: return "func_";
186 case Type::StructTyID: return "struct_";
187 case Type::ArrayTyID: return "array_";
188 case Type::PointerTyID: return "ptr_";
189 case Type::VectorTyID: return "packed_";
190 default: return "other_";
191 }
192 return "unknown_";
193 }
194
error(const std::string & msg)195 void CppWriter::error(const std::string& msg) {
196 report_fatal_error(msg);
197 }
198
199 // printCFP - Print a floating point constant .. very carefully :)
200 // This makes sure that conversion to/from floating yields the same binary
201 // result so that we don't lose precision.
printCFP(const ConstantFP * CFP)202 void CppWriter::printCFP(const ConstantFP *CFP) {
203 bool ignored;
204 APFloat APF = APFloat(CFP->getValueAPF()); // copy
205 if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
206 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
207 Out << "ConstantFP::get(mod->getContext(), ";
208 Out << "APFloat(";
209 #if HAVE_PRINTF_A
210 char Buffer[100];
211 sprintf(Buffer, "%A", APF.convertToDouble());
212 if ((!strncmp(Buffer, "0x", 2) ||
213 !strncmp(Buffer, "-0x", 3) ||
214 !strncmp(Buffer, "+0x", 3)) &&
215 APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
216 if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
217 Out << "BitsToDouble(" << Buffer << ")";
218 else
219 Out << "BitsToFloat((float)" << Buffer << ")";
220 Out << ")";
221 } else {
222 #endif
223 std::string StrVal = ftostr(CFP->getValueAPF());
224
225 while (StrVal[0] == ' ')
226 StrVal.erase(StrVal.begin());
227
228 // Check to make sure that the stringized number is not some string like
229 // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
230 if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
231 ((StrVal[0] == '-' || StrVal[0] == '+') &&
232 (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
233 (CFP->isExactlyValue(atof(StrVal.c_str())))) {
234 if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
235 Out << StrVal;
236 else
237 Out << StrVal << "f";
238 } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
239 Out << "BitsToDouble(0x"
240 << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
241 << "ULL) /* " << StrVal << " */";
242 else
243 Out << "BitsToFloat(0x"
244 << utohexstr((uint32_t)CFP->getValueAPF().
245 bitcastToAPInt().getZExtValue())
246 << "U) /* " << StrVal << " */";
247 Out << ")";
248 #if HAVE_PRINTF_A
249 }
250 #endif
251 Out << ")";
252 }
253
printCallingConv(CallingConv::ID cc)254 void CppWriter::printCallingConv(CallingConv::ID cc){
255 // Print the calling convention.
256 switch (cc) {
257 case CallingConv::C: Out << "CallingConv::C"; break;
258 case CallingConv::Fast: Out << "CallingConv::Fast"; break;
259 case CallingConv::Cold: Out << "CallingConv::Cold"; break;
260 case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
261 default: Out << cc; break;
262 }
263 }
264
printLinkageType(GlobalValue::LinkageTypes LT)265 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
266 switch (LT) {
267 case GlobalValue::InternalLinkage:
268 Out << "GlobalValue::InternalLinkage"; break;
269 case GlobalValue::PrivateLinkage:
270 Out << "GlobalValue::PrivateLinkage"; break;
271 case GlobalValue::LinkerPrivateLinkage:
272 Out << "GlobalValue::LinkerPrivateLinkage"; break;
273 case GlobalValue::LinkerPrivateWeakLinkage:
274 Out << "GlobalValue::LinkerPrivateWeakLinkage"; break;
275 case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
276 Out << "GlobalValue::LinkerPrivateWeakDefAutoLinkage"; break;
277 case GlobalValue::AvailableExternallyLinkage:
278 Out << "GlobalValue::AvailableExternallyLinkage "; break;
279 case GlobalValue::LinkOnceAnyLinkage:
280 Out << "GlobalValue::LinkOnceAnyLinkage "; break;
281 case GlobalValue::LinkOnceODRLinkage:
282 Out << "GlobalValue::LinkOnceODRLinkage "; break;
283 case GlobalValue::WeakAnyLinkage:
284 Out << "GlobalValue::WeakAnyLinkage"; break;
285 case GlobalValue::WeakODRLinkage:
286 Out << "GlobalValue::WeakODRLinkage"; break;
287 case GlobalValue::AppendingLinkage:
288 Out << "GlobalValue::AppendingLinkage"; break;
289 case GlobalValue::ExternalLinkage:
290 Out << "GlobalValue::ExternalLinkage"; break;
291 case GlobalValue::DLLImportLinkage:
292 Out << "GlobalValue::DLLImportLinkage"; break;
293 case GlobalValue::DLLExportLinkage:
294 Out << "GlobalValue::DLLExportLinkage"; break;
295 case GlobalValue::ExternalWeakLinkage:
296 Out << "GlobalValue::ExternalWeakLinkage"; break;
297 case GlobalValue::CommonLinkage:
298 Out << "GlobalValue::CommonLinkage"; break;
299 }
300 }
301
printVisibilityType(GlobalValue::VisibilityTypes VisType)302 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
303 switch (VisType) {
304 default: llvm_unreachable("Unknown GVar visibility");
305 case GlobalValue::DefaultVisibility:
306 Out << "GlobalValue::DefaultVisibility";
307 break;
308 case GlobalValue::HiddenVisibility:
309 Out << "GlobalValue::HiddenVisibility";
310 break;
311 case GlobalValue::ProtectedVisibility:
312 Out << "GlobalValue::ProtectedVisibility";
313 break;
314 }
315 }
316
317 // printEscapedString - Print each character of the specified string, escaping
318 // it if it is not printable or if it is an escape char.
printEscapedString(const std::string & Str)319 void CppWriter::printEscapedString(const std::string &Str) {
320 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
321 unsigned char C = Str[i];
322 if (isprint(C) && C != '"' && C != '\\') {
323 Out << C;
324 } else {
325 Out << "\\x"
326 << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
327 << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
328 }
329 }
330 }
331
getCppName(Type * Ty)332 std::string CppWriter::getCppName(Type* Ty) {
333 // First, handle the primitive types .. easy
334 if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
335 switch (Ty->getTypeID()) {
336 case Type::VoidTyID: return "Type::getVoidTy(mod->getContext())";
337 case Type::IntegerTyID: {
338 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
339 return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
340 }
341 case Type::X86_FP80TyID: return "Type::getX86_FP80Ty(mod->getContext())";
342 case Type::FloatTyID: return "Type::getFloatTy(mod->getContext())";
343 case Type::DoubleTyID: return "Type::getDoubleTy(mod->getContext())";
344 case Type::LabelTyID: return "Type::getLabelTy(mod->getContext())";
345 case Type::X86_MMXTyID: return "Type::getX86_MMXTy(mod->getContext())";
346 default:
347 error("Invalid primitive type");
348 break;
349 }
350 // shouldn't be returned, but make it sensible
351 return "Type::getVoidTy(mod->getContext())";
352 }
353
354 // Now, see if we've seen the type before and return that
355 TypeMap::iterator I = TypeNames.find(Ty);
356 if (I != TypeNames.end())
357 return I->second;
358
359 // Okay, let's build a new name for this type. Start with a prefix
360 const char* prefix = 0;
361 switch (Ty->getTypeID()) {
362 case Type::FunctionTyID: prefix = "FuncTy_"; break;
363 case Type::StructTyID: prefix = "StructTy_"; break;
364 case Type::ArrayTyID: prefix = "ArrayTy_"; break;
365 case Type::PointerTyID: prefix = "PointerTy_"; break;
366 case Type::VectorTyID: prefix = "VectorTy_"; break;
367 default: prefix = "OtherTy_"; break; // prevent breakage
368 }
369
370 // See if the type has a name in the symboltable and build accordingly
371 std::string name;
372 if (StructType *STy = dyn_cast<StructType>(Ty))
373 if (STy->hasName())
374 name = STy->getName();
375
376 if (name.empty())
377 name = utostr(uniqueNum++);
378
379 name = std::string(prefix) + name;
380 sanitize(name);
381
382 // Save the name
383 return TypeNames[Ty] = name;
384 }
385
printCppName(Type * Ty)386 void CppWriter::printCppName(Type* Ty) {
387 printEscapedString(getCppName(Ty));
388 }
389
getCppName(const Value * val)390 std::string CppWriter::getCppName(const Value* val) {
391 std::string name;
392 ValueMap::iterator I = ValueNames.find(val);
393 if (I != ValueNames.end() && I->first == val)
394 return I->second;
395
396 if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
397 name = std::string("gvar_") +
398 getTypePrefix(GV->getType()->getElementType());
399 } else if (isa<Function>(val)) {
400 name = std::string("func_");
401 } else if (const Constant* C = dyn_cast<Constant>(val)) {
402 name = std::string("const_") + getTypePrefix(C->getType());
403 } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
404 if (is_inline) {
405 unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
406 Function::const_arg_iterator(Arg)) + 1;
407 name = std::string("arg_") + utostr(argNum);
408 NameSet::iterator NI = UsedNames.find(name);
409 if (NI != UsedNames.end())
410 name += std::string("_") + utostr(uniqueNum++);
411 UsedNames.insert(name);
412 return ValueNames[val] = name;
413 } else {
414 name = getTypePrefix(val->getType());
415 }
416 } else {
417 name = getTypePrefix(val->getType());
418 }
419 if (val->hasName())
420 name += val->getName();
421 else
422 name += utostr(uniqueNum++);
423 sanitize(name);
424 NameSet::iterator NI = UsedNames.find(name);
425 if (NI != UsedNames.end())
426 name += std::string("_") + utostr(uniqueNum++);
427 UsedNames.insert(name);
428 return ValueNames[val] = name;
429 }
430
printCppName(const Value * val)431 void CppWriter::printCppName(const Value* val) {
432 printEscapedString(getCppName(val));
433 }
434
printAttributes(const AttrListPtr & PAL,const std::string & name)435 void CppWriter::printAttributes(const AttrListPtr &PAL,
436 const std::string &name) {
437 Out << "AttrListPtr " << name << "_PAL;";
438 nl(Out);
439 if (!PAL.isEmpty()) {
440 Out << '{'; in(); nl(Out);
441 Out << "SmallVector<AttributeWithIndex, 4> Attrs;"; nl(Out);
442 Out << "AttributeWithIndex PAWI;"; nl(Out);
443 for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
444 unsigned index = PAL.getSlot(i).Index;
445 Attributes attrs = PAL.getSlot(i).Attrs;
446 Out << "PAWI.Index = " << index << "U; PAWI.Attrs = 0 ";
447 #define HANDLE_ATTR(X) \
448 if (attrs & Attribute::X) \
449 Out << " | Attribute::" #X; \
450 attrs &= ~Attribute::X;
451
452 HANDLE_ATTR(SExt);
453 HANDLE_ATTR(ZExt);
454 HANDLE_ATTR(NoReturn);
455 HANDLE_ATTR(InReg);
456 HANDLE_ATTR(StructRet);
457 HANDLE_ATTR(NoUnwind);
458 HANDLE_ATTR(NoAlias);
459 HANDLE_ATTR(ByVal);
460 HANDLE_ATTR(Nest);
461 HANDLE_ATTR(ReadNone);
462 HANDLE_ATTR(ReadOnly);
463 HANDLE_ATTR(NoInline);
464 HANDLE_ATTR(AlwaysInline);
465 HANDLE_ATTR(OptimizeForSize);
466 HANDLE_ATTR(StackProtect);
467 HANDLE_ATTR(StackProtectReq);
468 HANDLE_ATTR(NoCapture);
469 HANDLE_ATTR(NoRedZone);
470 HANDLE_ATTR(NoImplicitFloat);
471 HANDLE_ATTR(Naked);
472 HANDLE_ATTR(InlineHint);
473 HANDLE_ATTR(ReturnsTwice);
474 HANDLE_ATTR(UWTable);
475 HANDLE_ATTR(NonLazyBind);
476 #undef HANDLE_ATTR
477 if (attrs & Attribute::StackAlignment)
478 Out << " | Attribute::constructStackAlignmentFromInt("
479 << Attribute::getStackAlignmentFromAttrs(attrs)
480 << ")";
481 attrs &= ~Attribute::StackAlignment;
482 assert(attrs == 0 && "Unhandled attribute!");
483 Out << ";";
484 nl(Out);
485 Out << "Attrs.push_back(PAWI);";
486 nl(Out);
487 }
488 Out << name << "_PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());";
489 nl(Out);
490 out(); nl(Out);
491 Out << '}'; nl(Out);
492 }
493 }
494
printType(Type * Ty)495 void CppWriter::printType(Type* Ty) {
496 // We don't print definitions for primitive types
497 if (Ty->isPrimitiveType() || Ty->isIntegerTy())
498 return;
499
500 // If we already defined this type, we don't need to define it again.
501 if (DefinedTypes.find(Ty) != DefinedTypes.end())
502 return;
503
504 // Everything below needs the name for the type so get it now.
505 std::string typeName(getCppName(Ty));
506
507 // Print the type definition
508 switch (Ty->getTypeID()) {
509 case Type::FunctionTyID: {
510 FunctionType* FT = cast<FunctionType>(Ty);
511 Out << "std::vector<Type*>" << typeName << "_args;";
512 nl(Out);
513 FunctionType::param_iterator PI = FT->param_begin();
514 FunctionType::param_iterator PE = FT->param_end();
515 for (; PI != PE; ++PI) {
516 Type* argTy = static_cast<Type*>(*PI);
517 printType(argTy);
518 std::string argName(getCppName(argTy));
519 Out << typeName << "_args.push_back(" << argName;
520 Out << ");";
521 nl(Out);
522 }
523 printType(FT->getReturnType());
524 std::string retTypeName(getCppName(FT->getReturnType()));
525 Out << "FunctionType* " << typeName << " = FunctionType::get(";
526 in(); nl(Out) << "/*Result=*/" << retTypeName;
527 Out << ",";
528 nl(Out) << "/*Params=*/" << typeName << "_args,";
529 nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
530 out();
531 nl(Out);
532 break;
533 }
534 case Type::StructTyID: {
535 StructType* ST = cast<StructType>(Ty);
536 if (!ST->isLiteral()) {
537 Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
538 printEscapedString(ST->getName());
539 Out << "\");";
540 nl(Out);
541 Out << "if (!" << typeName << ") {";
542 nl(Out);
543 Out << typeName << " = ";
544 Out << "StructType::create(mod->getContext(), \"";
545 printEscapedString(ST->getName());
546 Out << "\");";
547 nl(Out);
548 Out << "}";
549 nl(Out);
550 // Indicate that this type is now defined.
551 DefinedTypes.insert(Ty);
552 }
553
554 Out << "std::vector<Type*>" << typeName << "_fields;";
555 nl(Out);
556 StructType::element_iterator EI = ST->element_begin();
557 StructType::element_iterator EE = ST->element_end();
558 for (; EI != EE; ++EI) {
559 Type* fieldTy = static_cast<Type*>(*EI);
560 printType(fieldTy);
561 std::string fieldName(getCppName(fieldTy));
562 Out << typeName << "_fields.push_back(" << fieldName;
563 Out << ");";
564 nl(Out);
565 }
566
567 if (ST->isLiteral()) {
568 Out << "StructType *" << typeName << " = ";
569 Out << "StructType::get(" << "mod->getContext(), ";
570 } else {
571 Out << "if (" << typeName << "->isOpaque()) {";
572 nl(Out);
573 Out << typeName << "->setBody(";
574 }
575
576 Out << typeName << "_fields, /*isPacked=*/"
577 << (ST->isPacked() ? "true" : "false") << ");";
578 nl(Out);
579 if (!ST->isLiteral()) {
580 Out << "}";
581 nl(Out);
582 }
583 break;
584 }
585 case Type::ArrayTyID: {
586 ArrayType* AT = cast<ArrayType>(Ty);
587 Type* ET = AT->getElementType();
588 printType(ET);
589 if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
590 std::string elemName(getCppName(ET));
591 Out << "ArrayType* " << typeName << " = ArrayType::get("
592 << elemName
593 << ", " << utostr(AT->getNumElements()) << ");";
594 nl(Out);
595 }
596 break;
597 }
598 case Type::PointerTyID: {
599 PointerType* PT = cast<PointerType>(Ty);
600 Type* ET = PT->getElementType();
601 printType(ET);
602 if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
603 std::string elemName(getCppName(ET));
604 Out << "PointerType* " << typeName << " = PointerType::get("
605 << elemName
606 << ", " << utostr(PT->getAddressSpace()) << ");";
607 nl(Out);
608 }
609 break;
610 }
611 case Type::VectorTyID: {
612 VectorType* PT = cast<VectorType>(Ty);
613 Type* ET = PT->getElementType();
614 printType(ET);
615 if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
616 std::string elemName(getCppName(ET));
617 Out << "VectorType* " << typeName << " = VectorType::get("
618 << elemName
619 << ", " << utostr(PT->getNumElements()) << ");";
620 nl(Out);
621 }
622 break;
623 }
624 default:
625 error("Invalid TypeID");
626 }
627
628 // Indicate that this type is now defined.
629 DefinedTypes.insert(Ty);
630
631 // Finally, separate the type definition from other with a newline.
632 nl(Out);
633 }
634
printTypes(const Module * M)635 void CppWriter::printTypes(const Module* M) {
636 // Add all of the global variables to the value table.
637 for (Module::const_global_iterator I = TheModule->global_begin(),
638 E = TheModule->global_end(); I != E; ++I) {
639 if (I->hasInitializer())
640 printType(I->getInitializer()->getType());
641 printType(I->getType());
642 }
643
644 // Add all the functions to the table
645 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
646 FI != FE; ++FI) {
647 printType(FI->getReturnType());
648 printType(FI->getFunctionType());
649 // Add all the function arguments
650 for (Function::const_arg_iterator AI = FI->arg_begin(),
651 AE = FI->arg_end(); AI != AE; ++AI) {
652 printType(AI->getType());
653 }
654
655 // Add all of the basic blocks and instructions
656 for (Function::const_iterator BB = FI->begin(),
657 E = FI->end(); BB != E; ++BB) {
658 printType(BB->getType());
659 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
660 ++I) {
661 printType(I->getType());
662 for (unsigned i = 0; i < I->getNumOperands(); ++i)
663 printType(I->getOperand(i)->getType());
664 }
665 }
666 }
667 }
668
669
670 // printConstant - Print out a constant pool entry...
printConstant(const Constant * CV)671 void CppWriter::printConstant(const Constant *CV) {
672 // First, if the constant is actually a GlobalValue (variable or function)
673 // or its already in the constant list then we've printed it already and we
674 // can just return.
675 if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
676 return;
677
678 std::string constName(getCppName(CV));
679 std::string typeName(getCppName(CV->getType()));
680
681 if (isa<GlobalValue>(CV)) {
682 // Skip variables and functions, we emit them elsewhere
683 return;
684 }
685
686 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
687 std::string constValue = CI->getValue().toString(10, true);
688 Out << "ConstantInt* " << constName
689 << " = ConstantInt::get(mod->getContext(), APInt("
690 << cast<IntegerType>(CI->getType())->getBitWidth()
691 << ", StringRef(\"" << constValue << "\"), 10));";
692 } else if (isa<ConstantAggregateZero>(CV)) {
693 Out << "ConstantAggregateZero* " << constName
694 << " = ConstantAggregateZero::get(" << typeName << ");";
695 } else if (isa<ConstantPointerNull>(CV)) {
696 Out << "ConstantPointerNull* " << constName
697 << " = ConstantPointerNull::get(" << typeName << ");";
698 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
699 Out << "ConstantFP* " << constName << " = ";
700 printCFP(CFP);
701 Out << ";";
702 } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
703 if (CA->isString() &&
704 CA->getType()->getElementType() ==
705 Type::getInt8Ty(CA->getContext())) {
706 Out << "Constant* " << constName <<
707 " = ConstantArray::get(mod->getContext(), \"";
708 std::string tmp = CA->getAsString();
709 bool nullTerminate = false;
710 if (tmp[tmp.length()-1] == 0) {
711 tmp.erase(tmp.length()-1);
712 nullTerminate = true;
713 }
714 printEscapedString(tmp);
715 // Determine if we want null termination or not.
716 if (nullTerminate)
717 Out << "\", true"; // Indicate that the null terminator should be
718 // added.
719 else
720 Out << "\", false";// No null terminator
721 Out << ");";
722 } else {
723 Out << "std::vector<Constant*> " << constName << "_elems;";
724 nl(Out);
725 unsigned N = CA->getNumOperands();
726 for (unsigned i = 0; i < N; ++i) {
727 printConstant(CA->getOperand(i)); // recurse to print operands
728 Out << constName << "_elems.push_back("
729 << getCppName(CA->getOperand(i)) << ");";
730 nl(Out);
731 }
732 Out << "Constant* " << constName << " = ConstantArray::get("
733 << typeName << ", " << constName << "_elems);";
734 }
735 } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
736 Out << "std::vector<Constant*> " << constName << "_fields;";
737 nl(Out);
738 unsigned N = CS->getNumOperands();
739 for (unsigned i = 0; i < N; i++) {
740 printConstant(CS->getOperand(i));
741 Out << constName << "_fields.push_back("
742 << getCppName(CS->getOperand(i)) << ");";
743 nl(Out);
744 }
745 Out << "Constant* " << constName << " = ConstantStruct::get("
746 << typeName << ", " << constName << "_fields);";
747 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
748 Out << "std::vector<Constant*> " << constName << "_elems;";
749 nl(Out);
750 unsigned N = CP->getNumOperands();
751 for (unsigned i = 0; i < N; ++i) {
752 printConstant(CP->getOperand(i));
753 Out << constName << "_elems.push_back("
754 << getCppName(CP->getOperand(i)) << ");";
755 nl(Out);
756 }
757 Out << "Constant* " << constName << " = ConstantVector::get("
758 << typeName << ", " << constName << "_elems);";
759 } else if (isa<UndefValue>(CV)) {
760 Out << "UndefValue* " << constName << " = UndefValue::get("
761 << typeName << ");";
762 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
763 if (CE->getOpcode() == Instruction::GetElementPtr) {
764 Out << "std::vector<Constant*> " << constName << "_indices;";
765 nl(Out);
766 printConstant(CE->getOperand(0));
767 for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
768 printConstant(CE->getOperand(i));
769 Out << constName << "_indices.push_back("
770 << getCppName(CE->getOperand(i)) << ");";
771 nl(Out);
772 }
773 Out << "Constant* " << constName
774 << " = ConstantExpr::getGetElementPtr("
775 << getCppName(CE->getOperand(0)) << ", "
776 << constName << "_indices);";
777 } else if (CE->isCast()) {
778 printConstant(CE->getOperand(0));
779 Out << "Constant* " << constName << " = ConstantExpr::getCast(";
780 switch (CE->getOpcode()) {
781 default: llvm_unreachable("Invalid cast opcode");
782 case Instruction::Trunc: Out << "Instruction::Trunc"; break;
783 case Instruction::ZExt: Out << "Instruction::ZExt"; break;
784 case Instruction::SExt: Out << "Instruction::SExt"; break;
785 case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break;
786 case Instruction::FPExt: Out << "Instruction::FPExt"; break;
787 case Instruction::FPToUI: Out << "Instruction::FPToUI"; break;
788 case Instruction::FPToSI: Out << "Instruction::FPToSI"; break;
789 case Instruction::UIToFP: Out << "Instruction::UIToFP"; break;
790 case Instruction::SIToFP: Out << "Instruction::SIToFP"; break;
791 case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break;
792 case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break;
793 case Instruction::BitCast: Out << "Instruction::BitCast"; break;
794 }
795 Out << ", " << getCppName(CE->getOperand(0)) << ", "
796 << getCppName(CE->getType()) << ");";
797 } else {
798 unsigned N = CE->getNumOperands();
799 for (unsigned i = 0; i < N; ++i ) {
800 printConstant(CE->getOperand(i));
801 }
802 Out << "Constant* " << constName << " = ConstantExpr::";
803 switch (CE->getOpcode()) {
804 case Instruction::Add: Out << "getAdd("; break;
805 case Instruction::FAdd: Out << "getFAdd("; break;
806 case Instruction::Sub: Out << "getSub("; break;
807 case Instruction::FSub: Out << "getFSub("; break;
808 case Instruction::Mul: Out << "getMul("; break;
809 case Instruction::FMul: Out << "getFMul("; break;
810 case Instruction::UDiv: Out << "getUDiv("; break;
811 case Instruction::SDiv: Out << "getSDiv("; break;
812 case Instruction::FDiv: Out << "getFDiv("; break;
813 case Instruction::URem: Out << "getURem("; break;
814 case Instruction::SRem: Out << "getSRem("; break;
815 case Instruction::FRem: Out << "getFRem("; break;
816 case Instruction::And: Out << "getAnd("; break;
817 case Instruction::Or: Out << "getOr("; break;
818 case Instruction::Xor: Out << "getXor("; break;
819 case Instruction::ICmp:
820 Out << "getICmp(ICmpInst::ICMP_";
821 switch (CE->getPredicate()) {
822 case ICmpInst::ICMP_EQ: Out << "EQ"; break;
823 case ICmpInst::ICMP_NE: Out << "NE"; break;
824 case ICmpInst::ICMP_SLT: Out << "SLT"; break;
825 case ICmpInst::ICMP_ULT: Out << "ULT"; break;
826 case ICmpInst::ICMP_SGT: Out << "SGT"; break;
827 case ICmpInst::ICMP_UGT: Out << "UGT"; break;
828 case ICmpInst::ICMP_SLE: Out << "SLE"; break;
829 case ICmpInst::ICMP_ULE: Out << "ULE"; break;
830 case ICmpInst::ICMP_SGE: Out << "SGE"; break;
831 case ICmpInst::ICMP_UGE: Out << "UGE"; break;
832 default: error("Invalid ICmp Predicate");
833 }
834 break;
835 case Instruction::FCmp:
836 Out << "getFCmp(FCmpInst::FCMP_";
837 switch (CE->getPredicate()) {
838 case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
839 case FCmpInst::FCMP_ORD: Out << "ORD"; break;
840 case FCmpInst::FCMP_UNO: Out << "UNO"; break;
841 case FCmpInst::FCMP_OEQ: Out << "OEQ"; break;
842 case FCmpInst::FCMP_UEQ: Out << "UEQ"; break;
843 case FCmpInst::FCMP_ONE: Out << "ONE"; break;
844 case FCmpInst::FCMP_UNE: Out << "UNE"; break;
845 case FCmpInst::FCMP_OLT: Out << "OLT"; break;
846 case FCmpInst::FCMP_ULT: Out << "ULT"; break;
847 case FCmpInst::FCMP_OGT: Out << "OGT"; break;
848 case FCmpInst::FCMP_UGT: Out << "UGT"; break;
849 case FCmpInst::FCMP_OLE: Out << "OLE"; break;
850 case FCmpInst::FCMP_ULE: Out << "ULE"; break;
851 case FCmpInst::FCMP_OGE: Out << "OGE"; break;
852 case FCmpInst::FCMP_UGE: Out << "UGE"; break;
853 case FCmpInst::FCMP_TRUE: Out << "TRUE"; break;
854 default: error("Invalid FCmp Predicate");
855 }
856 break;
857 case Instruction::Shl: Out << "getShl("; break;
858 case Instruction::LShr: Out << "getLShr("; break;
859 case Instruction::AShr: Out << "getAShr("; break;
860 case Instruction::Select: Out << "getSelect("; break;
861 case Instruction::ExtractElement: Out << "getExtractElement("; break;
862 case Instruction::InsertElement: Out << "getInsertElement("; break;
863 case Instruction::ShuffleVector: Out << "getShuffleVector("; break;
864 default:
865 error("Invalid constant expression");
866 break;
867 }
868 Out << getCppName(CE->getOperand(0));
869 for (unsigned i = 1; i < CE->getNumOperands(); ++i)
870 Out << ", " << getCppName(CE->getOperand(i));
871 Out << ");";
872 }
873 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
874 Out << "Constant* " << constName << " = ";
875 Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
876 } else {
877 error("Bad Constant");
878 Out << "Constant* " << constName << " = 0; ";
879 }
880 nl(Out);
881 }
882
printConstants(const Module * M)883 void CppWriter::printConstants(const Module* M) {
884 // Traverse all the global variables looking for constant initializers
885 for (Module::const_global_iterator I = TheModule->global_begin(),
886 E = TheModule->global_end(); I != E; ++I)
887 if (I->hasInitializer())
888 printConstant(I->getInitializer());
889
890 // Traverse the LLVM functions looking for constants
891 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
892 FI != FE; ++FI) {
893 // Add all of the basic blocks and instructions
894 for (Function::const_iterator BB = FI->begin(),
895 E = FI->end(); BB != E; ++BB) {
896 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
897 ++I) {
898 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
899 if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
900 printConstant(C);
901 }
902 }
903 }
904 }
905 }
906 }
907
printVariableUses(const GlobalVariable * GV)908 void CppWriter::printVariableUses(const GlobalVariable *GV) {
909 nl(Out) << "// Type Definitions";
910 nl(Out);
911 printType(GV->getType());
912 if (GV->hasInitializer()) {
913 const Constant *Init = GV->getInitializer();
914 printType(Init->getType());
915 if (const Function *F = dyn_cast<Function>(Init)) {
916 nl(Out)<< "/ Function Declarations"; nl(Out);
917 printFunctionHead(F);
918 } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
919 nl(Out) << "// Global Variable Declarations"; nl(Out);
920 printVariableHead(gv);
921
922 nl(Out) << "// Global Variable Definitions"; nl(Out);
923 printVariableBody(gv);
924 } else {
925 nl(Out) << "// Constant Definitions"; nl(Out);
926 printConstant(Init);
927 }
928 }
929 }
930
printVariableHead(const GlobalVariable * GV)931 void CppWriter::printVariableHead(const GlobalVariable *GV) {
932 nl(Out) << "GlobalVariable* " << getCppName(GV);
933 if (is_inline) {
934 Out << " = mod->getGlobalVariable(mod->getContext(), ";
935 printEscapedString(GV->getName());
936 Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
937 nl(Out) << "if (!" << getCppName(GV) << ") {";
938 in(); nl(Out) << getCppName(GV);
939 }
940 Out << " = new GlobalVariable(/*Module=*/*mod, ";
941 nl(Out) << "/*Type=*/";
942 printCppName(GV->getType()->getElementType());
943 Out << ",";
944 nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
945 Out << ",";
946 nl(Out) << "/*Linkage=*/";
947 printLinkageType(GV->getLinkage());
948 Out << ",";
949 nl(Out) << "/*Initializer=*/0, ";
950 if (GV->hasInitializer()) {
951 Out << "// has initializer, specified below";
952 }
953 nl(Out) << "/*Name=*/\"";
954 printEscapedString(GV->getName());
955 Out << "\");";
956 nl(Out);
957
958 if (GV->hasSection()) {
959 printCppName(GV);
960 Out << "->setSection(\"";
961 printEscapedString(GV->getSection());
962 Out << "\");";
963 nl(Out);
964 }
965 if (GV->getAlignment()) {
966 printCppName(GV);
967 Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
968 nl(Out);
969 }
970 if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
971 printCppName(GV);
972 Out << "->setVisibility(";
973 printVisibilityType(GV->getVisibility());
974 Out << ");";
975 nl(Out);
976 }
977 if (GV->isThreadLocal()) {
978 printCppName(GV);
979 Out << "->setThreadLocal(true);";
980 nl(Out);
981 }
982 if (is_inline) {
983 out(); Out << "}"; nl(Out);
984 }
985 }
986
printVariableBody(const GlobalVariable * GV)987 void CppWriter::printVariableBody(const GlobalVariable *GV) {
988 if (GV->hasInitializer()) {
989 printCppName(GV);
990 Out << "->setInitializer(";
991 Out << getCppName(GV->getInitializer()) << ");";
992 nl(Out);
993 }
994 }
995
getOpName(const Value * V)996 std::string CppWriter::getOpName(const Value* V) {
997 if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
998 return getCppName(V);
999
1000 // See if its alread in the map of forward references, if so just return the
1001 // name we already set up for it
1002 ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1003 if (I != ForwardRefs.end())
1004 return I->second;
1005
1006 // This is a new forward reference. Generate a unique name for it
1007 std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1008
1009 // Yes, this is a hack. An Argument is the smallest instantiable value that
1010 // we can make as a placeholder for the real value. We'll replace these
1011 // Argument instances later.
1012 Out << "Argument* " << result << " = new Argument("
1013 << getCppName(V->getType()) << ");";
1014 nl(Out);
1015 ForwardRefs[V] = result;
1016 return result;
1017 }
1018
1019 // printInstruction - This member is called for each Instruction in a function.
printInstruction(const Instruction * I,const std::string & bbname)1020 void CppWriter::printInstruction(const Instruction *I,
1021 const std::string& bbname) {
1022 std::string iName(getCppName(I));
1023
1024 // Before we emit this instruction, we need to take care of generating any
1025 // forward references. So, we get the names of all the operands in advance
1026 const unsigned Ops(I->getNumOperands());
1027 std::string* opNames = new std::string[Ops];
1028 for (unsigned i = 0; i < Ops; i++)
1029 opNames[i] = getOpName(I->getOperand(i));
1030
1031 switch (I->getOpcode()) {
1032 default:
1033 error("Invalid instruction");
1034 break;
1035
1036 case Instruction::Ret: {
1037 const ReturnInst* ret = cast<ReturnInst>(I);
1038 Out << "ReturnInst::Create(mod->getContext(), "
1039 << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1040 break;
1041 }
1042 case Instruction::Br: {
1043 const BranchInst* br = cast<BranchInst>(I);
1044 Out << "BranchInst::Create(" ;
1045 if (br->getNumOperands() == 3) {
1046 Out << opNames[2] << ", "
1047 << opNames[1] << ", "
1048 << opNames[0] << ", ";
1049
1050 } else if (br->getNumOperands() == 1) {
1051 Out << opNames[0] << ", ";
1052 } else {
1053 error("Branch with 2 operands?");
1054 }
1055 Out << bbname << ");";
1056 break;
1057 }
1058 case Instruction::Switch: {
1059 const SwitchInst *SI = cast<SwitchInst>(I);
1060 Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1061 << getOpName(SI->getCondition()) << ", "
1062 << getOpName(SI->getDefaultDest()) << ", "
1063 << SI->getNumCases() << ", " << bbname << ");";
1064 nl(Out);
1065 unsigned NumCases = SI->getNumCases();
1066 for (unsigned i = 1; i < NumCases; ++i) {
1067 const ConstantInt* CaseVal = SI->getCaseValue(i);
1068 const BasicBlock* BB = SI->getSuccessor(i);
1069 Out << iName << "->addCase("
1070 << getOpName(CaseVal) << ", "
1071 << getOpName(BB) << ");";
1072 nl(Out);
1073 }
1074 break;
1075 }
1076 case Instruction::IndirectBr: {
1077 const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
1078 Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
1079 << opNames[0] << ", " << IBI->getNumDestinations() << ");";
1080 nl(Out);
1081 for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
1082 Out << iName << "->addDestination(" << opNames[i] << ");";
1083 nl(Out);
1084 }
1085 break;
1086 }
1087 case Instruction::Resume: {
1088 Out << "ResumeInst::Create(mod->getContext(), " << opNames[0]
1089 << ", " << bbname << ");";
1090 break;
1091 }
1092 case Instruction::Invoke: {
1093 const InvokeInst* inv = cast<InvokeInst>(I);
1094 Out << "std::vector<Value*> " << iName << "_params;";
1095 nl(Out);
1096 for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
1097 Out << iName << "_params.push_back("
1098 << getOpName(inv->getArgOperand(i)) << ");";
1099 nl(Out);
1100 }
1101 // FIXME: This shouldn't use magic numbers -3, -2, and -1.
1102 Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1103 << getOpName(inv->getCalledFunction()) << ", "
1104 << getOpName(inv->getNormalDest()) << ", "
1105 << getOpName(inv->getUnwindDest()) << ", "
1106 << iName << "_params, \"";
1107 printEscapedString(inv->getName());
1108 Out << "\", " << bbname << ");";
1109 nl(Out) << iName << "->setCallingConv(";
1110 printCallingConv(inv->getCallingConv());
1111 Out << ");";
1112 printAttributes(inv->getAttributes(), iName);
1113 Out << iName << "->setAttributes(" << iName << "_PAL);";
1114 nl(Out);
1115 break;
1116 }
1117 case Instruction::Unwind: {
1118 Out << "new UnwindInst("
1119 << bbname << ");";
1120 break;
1121 }
1122 case Instruction::Unreachable: {
1123 Out << "new UnreachableInst("
1124 << "mod->getContext(), "
1125 << bbname << ");";
1126 break;
1127 }
1128 case Instruction::Add:
1129 case Instruction::FAdd:
1130 case Instruction::Sub:
1131 case Instruction::FSub:
1132 case Instruction::Mul:
1133 case Instruction::FMul:
1134 case Instruction::UDiv:
1135 case Instruction::SDiv:
1136 case Instruction::FDiv:
1137 case Instruction::URem:
1138 case Instruction::SRem:
1139 case Instruction::FRem:
1140 case Instruction::And:
1141 case Instruction::Or:
1142 case Instruction::Xor:
1143 case Instruction::Shl:
1144 case Instruction::LShr:
1145 case Instruction::AShr:{
1146 Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
1147 switch (I->getOpcode()) {
1148 case Instruction::Add: Out << "Instruction::Add"; break;
1149 case Instruction::FAdd: Out << "Instruction::FAdd"; break;
1150 case Instruction::Sub: Out << "Instruction::Sub"; break;
1151 case Instruction::FSub: Out << "Instruction::FSub"; break;
1152 case Instruction::Mul: Out << "Instruction::Mul"; break;
1153 case Instruction::FMul: Out << "Instruction::FMul"; break;
1154 case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1155 case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1156 case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1157 case Instruction::URem:Out << "Instruction::URem"; break;
1158 case Instruction::SRem:Out << "Instruction::SRem"; break;
1159 case Instruction::FRem:Out << "Instruction::FRem"; break;
1160 case Instruction::And: Out << "Instruction::And"; break;
1161 case Instruction::Or: Out << "Instruction::Or"; break;
1162 case Instruction::Xor: Out << "Instruction::Xor"; break;
1163 case Instruction::Shl: Out << "Instruction::Shl"; break;
1164 case Instruction::LShr:Out << "Instruction::LShr"; break;
1165 case Instruction::AShr:Out << "Instruction::AShr"; break;
1166 default: Out << "Instruction::BadOpCode"; break;
1167 }
1168 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1169 printEscapedString(I->getName());
1170 Out << "\", " << bbname << ");";
1171 break;
1172 }
1173 case Instruction::FCmp: {
1174 Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
1175 switch (cast<FCmpInst>(I)->getPredicate()) {
1176 case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1177 case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break;
1178 case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break;
1179 case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break;
1180 case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break;
1181 case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break;
1182 case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break;
1183 case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break;
1184 case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break;
1185 case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break;
1186 case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break;
1187 case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break;
1188 case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break;
1189 case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break;
1190 case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break;
1191 case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1192 default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1193 }
1194 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1195 printEscapedString(I->getName());
1196 Out << "\");";
1197 break;
1198 }
1199 case Instruction::ICmp: {
1200 Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
1201 switch (cast<ICmpInst>(I)->getPredicate()) {
1202 case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break;
1203 case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break;
1204 case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1205 case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1206 case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1207 case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1208 case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1209 case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1210 case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1211 case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1212 default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1213 }
1214 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1215 printEscapedString(I->getName());
1216 Out << "\");";
1217 break;
1218 }
1219 case Instruction::Alloca: {
1220 const AllocaInst* allocaI = cast<AllocaInst>(I);
1221 Out << "AllocaInst* " << iName << " = new AllocaInst("
1222 << getCppName(allocaI->getAllocatedType()) << ", ";
1223 if (allocaI->isArrayAllocation())
1224 Out << opNames[0] << ", ";
1225 Out << "\"";
1226 printEscapedString(allocaI->getName());
1227 Out << "\", " << bbname << ");";
1228 if (allocaI->getAlignment())
1229 nl(Out) << iName << "->setAlignment("
1230 << allocaI->getAlignment() << ");";
1231 break;
1232 }
1233 case Instruction::Load: {
1234 const LoadInst* load = cast<LoadInst>(I);
1235 Out << "LoadInst* " << iName << " = new LoadInst("
1236 << opNames[0] << ", \"";
1237 printEscapedString(load->getName());
1238 Out << "\", " << (load->isVolatile() ? "true" : "false" )
1239 << ", " << bbname << ");";
1240 break;
1241 }
1242 case Instruction::Store: {
1243 const StoreInst* store = cast<StoreInst>(I);
1244 Out << " new StoreInst("
1245 << opNames[0] << ", "
1246 << opNames[1] << ", "
1247 << (store->isVolatile() ? "true" : "false")
1248 << ", " << bbname << ");";
1249 break;
1250 }
1251 case Instruction::GetElementPtr: {
1252 const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1253 if (gep->getNumOperands() <= 2) {
1254 Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1255 << opNames[0];
1256 if (gep->getNumOperands() == 2)
1257 Out << ", " << opNames[1];
1258 } else {
1259 Out << "std::vector<Value*> " << iName << "_indices;";
1260 nl(Out);
1261 for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1262 Out << iName << "_indices.push_back("
1263 << opNames[i] << ");";
1264 nl(Out);
1265 }
1266 Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
1267 << opNames[0] << ", " << iName << "_indices";
1268 }
1269 Out << ", \"";
1270 printEscapedString(gep->getName());
1271 Out << "\", " << bbname << ");";
1272 break;
1273 }
1274 case Instruction::PHI: {
1275 const PHINode* phi = cast<PHINode>(I);
1276
1277 Out << "PHINode* " << iName << " = PHINode::Create("
1278 << getCppName(phi->getType()) << ", "
1279 << phi->getNumIncomingValues() << ", \"";
1280 printEscapedString(phi->getName());
1281 Out << "\", " << bbname << ");";
1282 nl(Out);
1283 for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
1284 Out << iName << "->addIncoming("
1285 << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
1286 << getOpName(phi->getIncomingBlock(i)) << ");";
1287 nl(Out);
1288 }
1289 break;
1290 }
1291 case Instruction::Trunc:
1292 case Instruction::ZExt:
1293 case Instruction::SExt:
1294 case Instruction::FPTrunc:
1295 case Instruction::FPExt:
1296 case Instruction::FPToUI:
1297 case Instruction::FPToSI:
1298 case Instruction::UIToFP:
1299 case Instruction::SIToFP:
1300 case Instruction::PtrToInt:
1301 case Instruction::IntToPtr:
1302 case Instruction::BitCast: {
1303 const CastInst* cst = cast<CastInst>(I);
1304 Out << "CastInst* " << iName << " = new ";
1305 switch (I->getOpcode()) {
1306 case Instruction::Trunc: Out << "TruncInst"; break;
1307 case Instruction::ZExt: Out << "ZExtInst"; break;
1308 case Instruction::SExt: Out << "SExtInst"; break;
1309 case Instruction::FPTrunc: Out << "FPTruncInst"; break;
1310 case Instruction::FPExt: Out << "FPExtInst"; break;
1311 case Instruction::FPToUI: Out << "FPToUIInst"; break;
1312 case Instruction::FPToSI: Out << "FPToSIInst"; break;
1313 case Instruction::UIToFP: Out << "UIToFPInst"; break;
1314 case Instruction::SIToFP: Out << "SIToFPInst"; break;
1315 case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1316 case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1317 case Instruction::BitCast: Out << "BitCastInst"; break;
1318 default: assert(0 && "Unreachable"); break;
1319 }
1320 Out << "(" << opNames[0] << ", "
1321 << getCppName(cst->getType()) << ", \"";
1322 printEscapedString(cst->getName());
1323 Out << "\", " << bbname << ");";
1324 break;
1325 }
1326 case Instruction::Call: {
1327 const CallInst* call = cast<CallInst>(I);
1328 if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
1329 Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1330 << getCppName(ila->getFunctionType()) << ", \""
1331 << ila->getAsmString() << "\", \""
1332 << ila->getConstraintString() << "\","
1333 << (ila->hasSideEffects() ? "true" : "false") << ");";
1334 nl(Out);
1335 }
1336 if (call->getNumArgOperands() > 1) {
1337 Out << "std::vector<Value*> " << iName << "_params;";
1338 nl(Out);
1339 for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
1340 Out << iName << "_params.push_back(" << opNames[i] << ");";
1341 nl(Out);
1342 }
1343 Out << "CallInst* " << iName << " = CallInst::Create("
1344 << opNames[call->getNumArgOperands()] << ", "
1345 << iName << "_params, \"";
1346 } else if (call->getNumArgOperands() == 1) {
1347 Out << "CallInst* " << iName << " = CallInst::Create("
1348 << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
1349 } else {
1350 Out << "CallInst* " << iName << " = CallInst::Create("
1351 << opNames[call->getNumArgOperands()] << ", \"";
1352 }
1353 printEscapedString(call->getName());
1354 Out << "\", " << bbname << ");";
1355 nl(Out) << iName << "->setCallingConv(";
1356 printCallingConv(call->getCallingConv());
1357 Out << ");";
1358 nl(Out) << iName << "->setTailCall("
1359 << (call->isTailCall() ? "true" : "false");
1360 Out << ");";
1361 nl(Out);
1362 printAttributes(call->getAttributes(), iName);
1363 Out << iName << "->setAttributes(" << iName << "_PAL);";
1364 nl(Out);
1365 break;
1366 }
1367 case Instruction::Select: {
1368 const SelectInst* sel = cast<SelectInst>(I);
1369 Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1370 Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1371 printEscapedString(sel->getName());
1372 Out << "\", " << bbname << ");";
1373 break;
1374 }
1375 case Instruction::UserOp1:
1376 /// FALL THROUGH
1377 case Instruction::UserOp2: {
1378 /// FIXME: What should be done here?
1379 break;
1380 }
1381 case Instruction::VAArg: {
1382 const VAArgInst* va = cast<VAArgInst>(I);
1383 Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1384 << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1385 printEscapedString(va->getName());
1386 Out << "\", " << bbname << ");";
1387 break;
1388 }
1389 case Instruction::ExtractElement: {
1390 const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1391 Out << "ExtractElementInst* " << getCppName(eei)
1392 << " = new ExtractElementInst(" << opNames[0]
1393 << ", " << opNames[1] << ", \"";
1394 printEscapedString(eei->getName());
1395 Out << "\", " << bbname << ");";
1396 break;
1397 }
1398 case Instruction::InsertElement: {
1399 const InsertElementInst* iei = cast<InsertElementInst>(I);
1400 Out << "InsertElementInst* " << getCppName(iei)
1401 << " = InsertElementInst::Create(" << opNames[0]
1402 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1403 printEscapedString(iei->getName());
1404 Out << "\", " << bbname << ");";
1405 break;
1406 }
1407 case Instruction::ShuffleVector: {
1408 const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1409 Out << "ShuffleVectorInst* " << getCppName(svi)
1410 << " = new ShuffleVectorInst(" << opNames[0]
1411 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1412 printEscapedString(svi->getName());
1413 Out << "\", " << bbname << ");";
1414 break;
1415 }
1416 case Instruction::ExtractValue: {
1417 const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1418 Out << "std::vector<unsigned> " << iName << "_indices;";
1419 nl(Out);
1420 for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1421 Out << iName << "_indices.push_back("
1422 << evi->idx_begin()[i] << ");";
1423 nl(Out);
1424 }
1425 Out << "ExtractValueInst* " << getCppName(evi)
1426 << " = ExtractValueInst::Create(" << opNames[0]
1427 << ", "
1428 << iName << "_indices, \"";
1429 printEscapedString(evi->getName());
1430 Out << "\", " << bbname << ");";
1431 break;
1432 }
1433 case Instruction::InsertValue: {
1434 const InsertValueInst *ivi = cast<InsertValueInst>(I);
1435 Out << "std::vector<unsigned> " << iName << "_indices;";
1436 nl(Out);
1437 for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1438 Out << iName << "_indices.push_back("
1439 << ivi->idx_begin()[i] << ");";
1440 nl(Out);
1441 }
1442 Out << "InsertValueInst* " << getCppName(ivi)
1443 << " = InsertValueInst::Create(" << opNames[0]
1444 << ", " << opNames[1] << ", "
1445 << iName << "_indices, \"";
1446 printEscapedString(ivi->getName());
1447 Out << "\", " << bbname << ");";
1448 break;
1449 }
1450 }
1451 DefinedValues.insert(I);
1452 nl(Out);
1453 delete [] opNames;
1454 }
1455
1456 // Print out the types, constants and declarations needed by one function
printFunctionUses(const Function * F)1457 void CppWriter::printFunctionUses(const Function* F) {
1458 nl(Out) << "// Type Definitions"; nl(Out);
1459 if (!is_inline) {
1460 // Print the function's return type
1461 printType(F->getReturnType());
1462
1463 // Print the function's function type
1464 printType(F->getFunctionType());
1465
1466 // Print the types of each of the function's arguments
1467 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1468 AI != AE; ++AI) {
1469 printType(AI->getType());
1470 }
1471 }
1472
1473 // Print type definitions for every type referenced by an instruction and
1474 // make a note of any global values or constants that are referenced
1475 SmallPtrSet<GlobalValue*,64> gvs;
1476 SmallPtrSet<Constant*,64> consts;
1477 for (Function::const_iterator BB = F->begin(), BE = F->end();
1478 BB != BE; ++BB){
1479 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1480 I != E; ++I) {
1481 // Print the type of the instruction itself
1482 printType(I->getType());
1483
1484 // Print the type of each of the instruction's operands
1485 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1486 Value* operand = I->getOperand(i);
1487 printType(operand->getType());
1488
1489 // If the operand references a GVal or Constant, make a note of it
1490 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1491 gvs.insert(GV);
1492 if (GenerationType != GenFunction)
1493 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1494 if (GVar->hasInitializer())
1495 consts.insert(GVar->getInitializer());
1496 } else if (Constant* C = dyn_cast<Constant>(operand)) {
1497 consts.insert(C);
1498 for (unsigned j = 0; j < C->getNumOperands(); ++j) {
1499 // If the operand references a GVal or Constant, make a note of it
1500 Value* operand = C->getOperand(j);
1501 printType(operand->getType());
1502 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1503 gvs.insert(GV);
1504 if (GenerationType != GenFunction)
1505 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1506 if (GVar->hasInitializer())
1507 consts.insert(GVar->getInitializer());
1508 }
1509 }
1510 }
1511 }
1512 }
1513 }
1514
1515 // Print the function declarations for any functions encountered
1516 nl(Out) << "// Function Declarations"; nl(Out);
1517 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1518 I != E; ++I) {
1519 if (Function* Fun = dyn_cast<Function>(*I)) {
1520 if (!is_inline || Fun != F)
1521 printFunctionHead(Fun);
1522 }
1523 }
1524
1525 // Print the global variable declarations for any variables encountered
1526 nl(Out) << "// Global Variable Declarations"; nl(Out);
1527 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1528 I != E; ++I) {
1529 if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
1530 printVariableHead(F);
1531 }
1532
1533 // Print the constants found
1534 nl(Out) << "// Constant Definitions"; nl(Out);
1535 for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(),
1536 E = consts.end(); I != E; ++I) {
1537 printConstant(*I);
1538 }
1539
1540 // Process the global variables definitions now that all the constants have
1541 // been emitted. These definitions just couple the gvars with their constant
1542 // initializers.
1543 if (GenerationType != GenFunction) {
1544 nl(Out) << "// Global Variable Definitions"; nl(Out);
1545 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1546 I != E; ++I) {
1547 if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
1548 printVariableBody(GV);
1549 }
1550 }
1551 }
1552
printFunctionHead(const Function * F)1553 void CppWriter::printFunctionHead(const Function* F) {
1554 nl(Out) << "Function* " << getCppName(F);
1555 Out << " = mod->getFunction(\"";
1556 printEscapedString(F->getName());
1557 Out << "\");";
1558 nl(Out) << "if (!" << getCppName(F) << ") {";
1559 nl(Out) << getCppName(F);
1560
1561 Out<< " = Function::Create(";
1562 nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1563 nl(Out) << "/*Linkage=*/";
1564 printLinkageType(F->getLinkage());
1565 Out << ",";
1566 nl(Out) << "/*Name=*/\"";
1567 printEscapedString(F->getName());
1568 Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1569 nl(Out,-1);
1570 printCppName(F);
1571 Out << "->setCallingConv(";
1572 printCallingConv(F->getCallingConv());
1573 Out << ");";
1574 nl(Out);
1575 if (F->hasSection()) {
1576 printCppName(F);
1577 Out << "->setSection(\"" << F->getSection() << "\");";
1578 nl(Out);
1579 }
1580 if (F->getAlignment()) {
1581 printCppName(F);
1582 Out << "->setAlignment(" << F->getAlignment() << ");";
1583 nl(Out);
1584 }
1585 if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1586 printCppName(F);
1587 Out << "->setVisibility(";
1588 printVisibilityType(F->getVisibility());
1589 Out << ");";
1590 nl(Out);
1591 }
1592 if (F->hasGC()) {
1593 printCppName(F);
1594 Out << "->setGC(\"" << F->getGC() << "\");";
1595 nl(Out);
1596 }
1597 Out << "}";
1598 nl(Out);
1599 printAttributes(F->getAttributes(), getCppName(F));
1600 printCppName(F);
1601 Out << "->setAttributes(" << getCppName(F) << "_PAL);";
1602 nl(Out);
1603 }
1604
printFunctionBody(const Function * F)1605 void CppWriter::printFunctionBody(const Function *F) {
1606 if (F->isDeclaration())
1607 return; // external functions have no bodies.
1608
1609 // Clear the DefinedValues and ForwardRefs maps because we can't have
1610 // cross-function forward refs
1611 ForwardRefs.clear();
1612 DefinedValues.clear();
1613
1614 // Create all the argument values
1615 if (!is_inline) {
1616 if (!F->arg_empty()) {
1617 Out << "Function::arg_iterator args = " << getCppName(F)
1618 << "->arg_begin();";
1619 nl(Out);
1620 }
1621 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1622 AI != AE; ++AI) {
1623 Out << "Value* " << getCppName(AI) << " = args++;";
1624 nl(Out);
1625 if (AI->hasName()) {
1626 Out << getCppName(AI) << "->setName(\"" << AI->getName() << "\");";
1627 nl(Out);
1628 }
1629 }
1630 }
1631
1632 // Create all the basic blocks
1633 nl(Out);
1634 for (Function::const_iterator BI = F->begin(), BE = F->end();
1635 BI != BE; ++BI) {
1636 std::string bbname(getCppName(BI));
1637 Out << "BasicBlock* " << bbname <<
1638 " = BasicBlock::Create(mod->getContext(), \"";
1639 if (BI->hasName())
1640 printEscapedString(BI->getName());
1641 Out << "\"," << getCppName(BI->getParent()) << ",0);";
1642 nl(Out);
1643 }
1644
1645 // Output all of its basic blocks... for the function
1646 for (Function::const_iterator BI = F->begin(), BE = F->end();
1647 BI != BE; ++BI) {
1648 std::string bbname(getCppName(BI));
1649 nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
1650 nl(Out);
1651
1652 // Output all of the instructions in the basic block...
1653 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
1654 I != E; ++I) {
1655 printInstruction(I,bbname);
1656 }
1657 }
1658
1659 // Loop over the ForwardRefs and resolve them now that all instructions
1660 // are generated.
1661 if (!ForwardRefs.empty()) {
1662 nl(Out) << "// Resolve Forward References";
1663 nl(Out);
1664 }
1665
1666 while (!ForwardRefs.empty()) {
1667 ForwardRefMap::iterator I = ForwardRefs.begin();
1668 Out << I->second << "->replaceAllUsesWith("
1669 << getCppName(I->first) << "); delete " << I->second << ";";
1670 nl(Out);
1671 ForwardRefs.erase(I);
1672 }
1673 }
1674
printInline(const std::string & fname,const std::string & func)1675 void CppWriter::printInline(const std::string& fname,
1676 const std::string& func) {
1677 const Function* F = TheModule->getFunction(func);
1678 if (!F) {
1679 error(std::string("Function '") + func + "' not found in input module");
1680 return;
1681 }
1682 if (F->isDeclaration()) {
1683 error(std::string("Function '") + func + "' is external!");
1684 return;
1685 }
1686 nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1687 << getCppName(F);
1688 unsigned arg_count = 1;
1689 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1690 AI != AE; ++AI) {
1691 Out << ", Value* arg_" << arg_count;
1692 }
1693 Out << ") {";
1694 nl(Out);
1695 is_inline = true;
1696 printFunctionUses(F);
1697 printFunctionBody(F);
1698 is_inline = false;
1699 Out << "return " << getCppName(F->begin()) << ";";
1700 nl(Out) << "}";
1701 nl(Out);
1702 }
1703
printModuleBody()1704 void CppWriter::printModuleBody() {
1705 // Print out all the type definitions
1706 nl(Out) << "// Type Definitions"; nl(Out);
1707 printTypes(TheModule);
1708
1709 // Functions can call each other and global variables can reference them so
1710 // define all the functions first before emitting their function bodies.
1711 nl(Out) << "// Function Declarations"; nl(Out);
1712 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1713 I != E; ++I)
1714 printFunctionHead(I);
1715
1716 // Process the global variables declarations. We can't initialze them until
1717 // after the constants are printed so just print a header for each global
1718 nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1719 for (Module::const_global_iterator I = TheModule->global_begin(),
1720 E = TheModule->global_end(); I != E; ++I) {
1721 printVariableHead(I);
1722 }
1723
1724 // Print out all the constants definitions. Constants don't recurse except
1725 // through GlobalValues. All GlobalValues have been declared at this point
1726 // so we can proceed to generate the constants.
1727 nl(Out) << "// Constant Definitions"; nl(Out);
1728 printConstants(TheModule);
1729
1730 // Process the global variables definitions now that all the constants have
1731 // been emitted. These definitions just couple the gvars with their constant
1732 // initializers.
1733 nl(Out) << "// Global Variable Definitions"; nl(Out);
1734 for (Module::const_global_iterator I = TheModule->global_begin(),
1735 E = TheModule->global_end(); I != E; ++I) {
1736 printVariableBody(I);
1737 }
1738
1739 // Finally, we can safely put out all of the function bodies.
1740 nl(Out) << "// Function Definitions"; nl(Out);
1741 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1742 I != E; ++I) {
1743 if (!I->isDeclaration()) {
1744 nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
1745 << ")";
1746 nl(Out) << "{";
1747 nl(Out,1);
1748 printFunctionBody(I);
1749 nl(Out,-1) << "}";
1750 nl(Out);
1751 }
1752 }
1753 }
1754
printProgram(const std::string & fname,const std::string & mName)1755 void CppWriter::printProgram(const std::string& fname,
1756 const std::string& mName) {
1757 Out << "#include <llvm/LLVMContext.h>\n";
1758 Out << "#include <llvm/Module.h>\n";
1759 Out << "#include <llvm/DerivedTypes.h>\n";
1760 Out << "#include <llvm/Constants.h>\n";
1761 Out << "#include <llvm/GlobalVariable.h>\n";
1762 Out << "#include <llvm/Function.h>\n";
1763 Out << "#include <llvm/CallingConv.h>\n";
1764 Out << "#include <llvm/BasicBlock.h>\n";
1765 Out << "#include <llvm/Instructions.h>\n";
1766 Out << "#include <llvm/InlineAsm.h>\n";
1767 Out << "#include <llvm/Support/FormattedStream.h>\n";
1768 Out << "#include <llvm/Support/MathExtras.h>\n";
1769 Out << "#include <llvm/Pass.h>\n";
1770 Out << "#include <llvm/PassManager.h>\n";
1771 Out << "#include <llvm/ADT/SmallVector.h>\n";
1772 Out << "#include <llvm/Analysis/Verifier.h>\n";
1773 Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
1774 Out << "#include <algorithm>\n";
1775 Out << "using namespace llvm;\n\n";
1776 Out << "Module* " << fname << "();\n\n";
1777 Out << "int main(int argc, char**argv) {\n";
1778 Out << " Module* Mod = " << fname << "();\n";
1779 Out << " verifyModule(*Mod, PrintMessageAction);\n";
1780 Out << " PassManager PM;\n";
1781 Out << " PM.add(createPrintModulePass(&outs()));\n";
1782 Out << " PM.run(*Mod);\n";
1783 Out << " return 0;\n";
1784 Out << "}\n\n";
1785 printModule(fname,mName);
1786 }
1787
printModule(const std::string & fname,const std::string & mName)1788 void CppWriter::printModule(const std::string& fname,
1789 const std::string& mName) {
1790 nl(Out) << "Module* " << fname << "() {";
1791 nl(Out,1) << "// Module Construction";
1792 nl(Out) << "Module* mod = new Module(\"";
1793 printEscapedString(mName);
1794 Out << "\", getGlobalContext());";
1795 if (!TheModule->getTargetTriple().empty()) {
1796 nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
1797 }
1798 if (!TheModule->getTargetTriple().empty()) {
1799 nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1800 << "\");";
1801 }
1802
1803 if (!TheModule->getModuleInlineAsm().empty()) {
1804 nl(Out) << "mod->setModuleInlineAsm(\"";
1805 printEscapedString(TheModule->getModuleInlineAsm());
1806 Out << "\");";
1807 }
1808 nl(Out);
1809
1810 // Loop over the dependent libraries and emit them.
1811 Module::lib_iterator LI = TheModule->lib_begin();
1812 Module::lib_iterator LE = TheModule->lib_end();
1813 while (LI != LE) {
1814 Out << "mod->addLibrary(\"" << *LI << "\");";
1815 nl(Out);
1816 ++LI;
1817 }
1818 printModuleBody();
1819 nl(Out) << "return mod;";
1820 nl(Out,-1) << "}";
1821 nl(Out);
1822 }
1823
printContents(const std::string & fname,const std::string & mName)1824 void CppWriter::printContents(const std::string& fname,
1825 const std::string& mName) {
1826 Out << "\nModule* " << fname << "(Module *mod) {\n";
1827 Out << "\nmod->setModuleIdentifier(\"";
1828 printEscapedString(mName);
1829 Out << "\");\n";
1830 printModuleBody();
1831 Out << "\nreturn mod;\n";
1832 Out << "\n}\n";
1833 }
1834
printFunction(const std::string & fname,const std::string & funcName)1835 void CppWriter::printFunction(const std::string& fname,
1836 const std::string& funcName) {
1837 const Function* F = TheModule->getFunction(funcName);
1838 if (!F) {
1839 error(std::string("Function '") + funcName + "' not found in input module");
1840 return;
1841 }
1842 Out << "\nFunction* " << fname << "(Module *mod) {\n";
1843 printFunctionUses(F);
1844 printFunctionHead(F);
1845 printFunctionBody(F);
1846 Out << "return " << getCppName(F) << ";\n";
1847 Out << "}\n";
1848 }
1849
printFunctions()1850 void CppWriter::printFunctions() {
1851 const Module::FunctionListType &funcs = TheModule->getFunctionList();
1852 Module::const_iterator I = funcs.begin();
1853 Module::const_iterator IE = funcs.end();
1854
1855 for (; I != IE; ++I) {
1856 const Function &func = *I;
1857 if (!func.isDeclaration()) {
1858 std::string name("define_");
1859 name += func.getName();
1860 printFunction(name, func.getName());
1861 }
1862 }
1863 }
1864
printVariable(const std::string & fname,const std::string & varName)1865 void CppWriter::printVariable(const std::string& fname,
1866 const std::string& varName) {
1867 const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
1868
1869 if (!GV) {
1870 error(std::string("Variable '") + varName + "' not found in input module");
1871 return;
1872 }
1873 Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
1874 printVariableUses(GV);
1875 printVariableHead(GV);
1876 printVariableBody(GV);
1877 Out << "return " << getCppName(GV) << ";\n";
1878 Out << "}\n";
1879 }
1880
printType(const std::string & fname,const std::string & typeName)1881 void CppWriter::printType(const std::string &fname,
1882 const std::string &typeName) {
1883 Type* Ty = TheModule->getTypeByName(typeName);
1884 if (!Ty) {
1885 error(std::string("Type '") + typeName + "' not found in input module");
1886 return;
1887 }
1888 Out << "\nType* " << fname << "(Module *mod) {\n";
1889 printType(Ty);
1890 Out << "return " << getCppName(Ty) << ";\n";
1891 Out << "}\n";
1892 }
1893
runOnModule(Module & M)1894 bool CppWriter::runOnModule(Module &M) {
1895 TheModule = &M;
1896
1897 // Emit a header
1898 Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
1899
1900 // Get the name of the function we're supposed to generate
1901 std::string fname = FuncName.getValue();
1902
1903 // Get the name of the thing we are to generate
1904 std::string tgtname = NameToGenerate.getValue();
1905 if (GenerationType == GenModule ||
1906 GenerationType == GenContents ||
1907 GenerationType == GenProgram ||
1908 GenerationType == GenFunctions) {
1909 if (tgtname == "!bad!") {
1910 if (M.getModuleIdentifier() == "-")
1911 tgtname = "<stdin>";
1912 else
1913 tgtname = M.getModuleIdentifier();
1914 }
1915 } else if (tgtname == "!bad!")
1916 error("You must use the -for option with -gen-{function,variable,type}");
1917
1918 switch (WhatToGenerate(GenerationType)) {
1919 case GenProgram:
1920 if (fname.empty())
1921 fname = "makeLLVMModule";
1922 printProgram(fname,tgtname);
1923 break;
1924 case GenModule:
1925 if (fname.empty())
1926 fname = "makeLLVMModule";
1927 printModule(fname,tgtname);
1928 break;
1929 case GenContents:
1930 if (fname.empty())
1931 fname = "makeLLVMModuleContents";
1932 printContents(fname,tgtname);
1933 break;
1934 case GenFunction:
1935 if (fname.empty())
1936 fname = "makeLLVMFunction";
1937 printFunction(fname,tgtname);
1938 break;
1939 case GenFunctions:
1940 printFunctions();
1941 break;
1942 case GenInline:
1943 if (fname.empty())
1944 fname = "makeLLVMInline";
1945 printInline(fname,tgtname);
1946 break;
1947 case GenVariable:
1948 if (fname.empty())
1949 fname = "makeLLVMVariable";
1950 printVariable(fname,tgtname);
1951 break;
1952 case GenType:
1953 if (fname.empty())
1954 fname = "makeLLVMType";
1955 printType(fname,tgtname);
1956 break;
1957 default:
1958 error("Invalid generation option");
1959 }
1960
1961 return false;
1962 }
1963
1964 char CppWriter::ID = 0;
1965
1966 //===----------------------------------------------------------------------===//
1967 // External Interface declaration
1968 //===----------------------------------------------------------------------===//
1969
addPassesToEmitFile(PassManagerBase & PM,formatted_raw_ostream & o,CodeGenFileType FileType,CodeGenOpt::Level OptLevel,bool DisableVerify)1970 bool CPPTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
1971 formatted_raw_ostream &o,
1972 CodeGenFileType FileType,
1973 CodeGenOpt::Level OptLevel,
1974 bool DisableVerify) {
1975 if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
1976 PM.add(new CppWriter(o));
1977 return false;
1978 }
1979