1//=====- SystemZOperands.td - SystemZ Operands defs ---------*- tblgen-*-=====// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file describes the various SystemZ instruction operands. 11// 12//===----------------------------------------------------------------------===// 13 14//===----------------------------------------------------------------------===// 15// Instruction Pattern Stuff. 16//===----------------------------------------------------------------------===// 17 18// SystemZ specific condition code. These correspond to CondCode in 19// SystemZ.h. They must be kept in synch. 20def SYSTEMZ_COND_O : PatLeaf<(i8 0)>; 21def SYSTEMZ_COND_H : PatLeaf<(i8 1)>; 22def SYSTEMZ_COND_NLE : PatLeaf<(i8 2)>; 23def SYSTEMZ_COND_L : PatLeaf<(i8 3)>; 24def SYSTEMZ_COND_NHE : PatLeaf<(i8 4)>; 25def SYSTEMZ_COND_LH : PatLeaf<(i8 5)>; 26def SYSTEMZ_COND_NE : PatLeaf<(i8 6)>; 27def SYSTEMZ_COND_E : PatLeaf<(i8 7)>; 28def SYSTEMZ_COND_NLH : PatLeaf<(i8 8)>; 29def SYSTEMZ_COND_HE : PatLeaf<(i8 9)>; 30def SYSTEMZ_COND_NL : PatLeaf<(i8 10)>; 31def SYSTEMZ_COND_LE : PatLeaf<(i8 11)>; 32def SYSTEMZ_COND_NH : PatLeaf<(i8 12)>; 33def SYSTEMZ_COND_NO : PatLeaf<(i8 13)>; 34 35def LO8 : SDNodeXForm<imm, [{ 36 // Transformation function: return low 8 bits. 37 return getI8Imm(N->getZExtValue() & 0x00000000000000FFULL); 38}]>; 39 40def LL16 : SDNodeXForm<imm, [{ 41 // Transformation function: return low 16 bits. 42 return getI16Imm(N->getZExtValue() & 0x000000000000FFFFULL); 43}]>; 44 45def LH16 : SDNodeXForm<imm, [{ 46 // Transformation function: return bits 16-31. 47 return getI16Imm((N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16); 48}]>; 49 50def HL16 : SDNodeXForm<imm, [{ 51 // Transformation function: return bits 32-47. 52 return getI16Imm((N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32); 53}]>; 54 55def HH16 : SDNodeXForm<imm, [{ 56 // Transformation function: return bits 48-63. 57 return getI16Imm((N->getZExtValue() & 0xFFFF000000000000ULL) >> 48); 58}]>; 59 60def LO32 : SDNodeXForm<imm, [{ 61 // Transformation function: return low 32 bits. 62 return getI32Imm(N->getZExtValue() & 0x00000000FFFFFFFFULL); 63}]>; 64 65def HI32 : SDNodeXForm<imm, [{ 66 // Transformation function: return bits 32-63. 67 return getI32Imm(N->getZExtValue() >> 32); 68}]>; 69 70def GetI64FromI32 : SDNodeXForm<imm, [{ 71 return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i64); 72}]>; 73 74def i32ll16 : PatLeaf<(i32 imm), [{ 75 // i32ll16 predicate - true if the 32-bit immediate has only rightmost 16 76 // bits set. 77 return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue()); 78}], LL16>; 79 80def i32lh16 : PatLeaf<(i32 imm), [{ 81 // i32lh16 predicate - true if the 32-bit immediate has only bits 16-31 set. 82 return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue()); 83}], LH16>; 84 85def i32ll16c : PatLeaf<(i32 imm), [{ 86 // i32ll16c predicate - true if the 32-bit immediate has all bits 16-31 set. 87 return ((N->getZExtValue() | 0x00000000FFFF0000ULL) == N->getZExtValue()); 88}], LL16>; 89 90def i32lh16c : PatLeaf<(i32 imm), [{ 91 // i32lh16c predicate - true if the 32-bit immediate has all rightmost 16 92 // bits set. 93 return ((N->getZExtValue() | 0x000000000000FFFFULL) == N->getZExtValue()); 94}], LH16>; 95 96def i64ll16 : PatLeaf<(i64 imm), [{ 97 // i64ll16 predicate - true if the 64-bit immediate has only rightmost 16 98 // bits set. 99 return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue()); 100}], LL16>; 101 102def i64lh16 : PatLeaf<(i64 imm), [{ 103 // i64lh16 predicate - true if the 64-bit immediate has only bits 16-31 set. 104 return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue()); 105}], LH16>; 106 107def i64hl16 : PatLeaf<(i64 imm), [{ 108 // i64hl16 predicate - true if the 64-bit immediate has only bits 32-47 set. 109 return ((N->getZExtValue() & 0x0000FFFF00000000ULL) == N->getZExtValue()); 110}], HL16>; 111 112def i64hh16 : PatLeaf<(i64 imm), [{ 113 // i64hh16 predicate - true if the 64-bit immediate has only bits 48-63 set. 114 return ((N->getZExtValue() & 0xFFFF000000000000ULL) == N->getZExtValue()); 115}], HH16>; 116 117def i64ll16c : PatLeaf<(i64 imm), [{ 118 // i64ll16c predicate - true if the 64-bit immediate has only rightmost 16 119 // bits set. 120 return ((N->getZExtValue() | 0xFFFFFFFFFFFF0000ULL) == N->getZExtValue()); 121}], LL16>; 122 123def i64lh16c : PatLeaf<(i64 imm), [{ 124 // i64lh16c predicate - true if the 64-bit immediate has only bits 16-31 set. 125 return ((N->getZExtValue() | 0xFFFFFFFF0000FFFFULL) == N->getZExtValue()); 126}], LH16>; 127 128def i64hl16c : PatLeaf<(i64 imm), [{ 129 // i64hl16c predicate - true if the 64-bit immediate has only bits 32-47 set. 130 return ((N->getZExtValue() | 0xFFFF0000FFFFFFFFULL) == N->getZExtValue()); 131}], HL16>; 132 133def i64hh16c : PatLeaf<(i64 imm), [{ 134 // i64hh16c predicate - true if the 64-bit immediate has only bits 48-63 set. 135 return ((N->getZExtValue() | 0x0000FFFFFFFFFFFFULL) == N->getZExtValue()); 136}], HH16>; 137 138def immSExt16 : PatLeaf<(imm), [{ 139 // immSExt16 predicate - true if the immediate fits in a 16-bit sign extended 140 // field. 141 if (N->getValueType(0) == MVT::i64) { 142 uint64_t val = N->getZExtValue(); 143 return ((int64_t)val == (int16_t)val); 144 } else if (N->getValueType(0) == MVT::i32) { 145 uint32_t val = N->getZExtValue(); 146 return ((int32_t)val == (int16_t)val); 147 } 148 149 return false; 150}], LL16>; 151 152def immSExt32 : PatLeaf<(i64 imm), [{ 153 // immSExt32 predicate - true if the immediate fits in a 32-bit sign extended 154 // field. 155 uint64_t val = N->getZExtValue(); 156 return ((int64_t)val == (int32_t)val); 157}], LO32>; 158 159def i64lo32 : PatLeaf<(i64 imm), [{ 160 // i64lo32 predicate - true if the 64-bit immediate has only rightmost 32 161 // bits set. 162 return ((N->getZExtValue() & 0x00000000FFFFFFFFULL) == N->getZExtValue()); 163}], LO32>; 164 165def i64hi32 : PatLeaf<(i64 imm), [{ 166 // i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set. 167 return ((N->getZExtValue() & 0xFFFFFFFF00000000ULL) == N->getZExtValue()); 168}], HI32>; 169 170def i64lo32c : PatLeaf<(i64 imm), [{ 171 // i64lo32 predicate - true if the 64-bit immediate has only rightmost 32 172 // bits set. 173 return ((N->getZExtValue() | 0xFFFFFFFF00000000ULL) == N->getZExtValue()); 174}], LO32>; 175 176def i64hi32c : PatLeaf<(i64 imm), [{ 177 // i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set. 178 return ((N->getZExtValue() | 0x00000000FFFFFFFFULL) == N->getZExtValue()); 179}], HI32>; 180 181def i32immSExt8 : PatLeaf<(i32 imm), [{ 182 // i32immSExt8 predicate - True if the 32-bit immediate fits in a 8-bit 183 // sign extended field. 184 return (int32_t)N->getZExtValue() == (int8_t)N->getZExtValue(); 185}], LO8>; 186 187def i32immSExt16 : PatLeaf<(i32 imm), [{ 188 // i32immSExt16 predicate - True if the 32-bit immediate fits in a 16-bit 189 // sign extended field. 190 return (int32_t)N->getZExtValue() == (int16_t)N->getZExtValue(); 191}], LL16>; 192 193def i64immSExt32 : PatLeaf<(i64 imm), [{ 194 // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit 195 // sign extended field. 196 return (int64_t)N->getZExtValue() == (int32_t)N->getZExtValue(); 197}], LO32>; 198 199def i64immZExt32 : PatLeaf<(i64 imm), [{ 200 // i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit 201 // zero extended field. 202 return (uint64_t)N->getZExtValue() == (uint32_t)N->getZExtValue(); 203}], LO32>; 204 205// extloads 206def extloadi32i8 : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>; 207def extloadi32i16 : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>; 208def extloadi64i8 : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>; 209def extloadi64i16 : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>; 210def extloadi64i32 : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>; 211 212def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>; 213def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>; 214def sextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>; 215def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>; 216def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>; 217 218def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>; 219def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>; 220def zextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>; 221def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>; 222def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>; 223 224// A couple of more descriptive operand definitions. 225// 32-bits but only 8 bits are significant. 226def i32i8imm : Operand<i32>; 227// 32-bits but only 16 bits are significant. 228def i32i16imm : Operand<i32>; 229// 64-bits but only 32 bits are significant. 230def i64i32imm : Operand<i64>; 231// Branch targets have OtherVT type. 232def brtarget : Operand<OtherVT>; 233 234// Unsigned i12 235def u12imm : Operand<i32> { 236 let PrintMethod = "printU12ImmOperand"; 237} 238def u12imm64 : Operand<i64> { 239 let PrintMethod = "printU12ImmOperand"; 240} 241 242// Signed i16 243def s16imm : Operand<i32> { 244 let PrintMethod = "printS16ImmOperand"; 245} 246def s16imm64 : Operand<i64> { 247 let PrintMethod = "printS16ImmOperand"; 248} 249// Unsigned i16 250def u16imm : Operand<i32> { 251 let PrintMethod = "printU16ImmOperand"; 252} 253def u16imm64 : Operand<i64> { 254 let PrintMethod = "printU16ImmOperand"; 255} 256 257// Signed i20 258def s20imm : Operand<i32> { 259 let PrintMethod = "printS20ImmOperand"; 260} 261def s20imm64 : Operand<i64> { 262 let PrintMethod = "printS20ImmOperand"; 263} 264// Signed i32 265def s32imm : Operand<i32> { 266 let PrintMethod = "printS32ImmOperand"; 267} 268def s32imm64 : Operand<i64> { 269 let PrintMethod = "printS32ImmOperand"; 270} 271// Unsigned i32 272def u32imm : Operand<i32> { 273 let PrintMethod = "printU32ImmOperand"; 274} 275def u32imm64 : Operand<i64> { 276 let PrintMethod = "printU32ImmOperand"; 277} 278 279def imm_pcrel : Operand<i64> { 280 let PrintMethod = "printPCRelImmOperand"; 281} 282 283//===----------------------------------------------------------------------===// 284// SystemZ Operand Definitions. 285//===----------------------------------------------------------------------===// 286 287// Address operands 288 289// riaddr := reg + imm 290def riaddr32 : Operand<i64>, 291 ComplexPattern<i64, 2, "SelectAddrRI12Only", []> { 292 let PrintMethod = "printRIAddrOperand"; 293 let MIOperandInfo = (ops ADDR64:$base, u12imm:$disp); 294} 295 296def riaddr12 : Operand<i64>, 297 ComplexPattern<i64, 2, "SelectAddrRI12", []> { 298 let PrintMethod = "printRIAddrOperand"; 299 let MIOperandInfo = (ops ADDR64:$base, u12imm64:$disp); 300} 301 302def riaddr : Operand<i64>, 303 ComplexPattern<i64, 2, "SelectAddrRI", []> { 304 let PrintMethod = "printRIAddrOperand"; 305 let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp); 306} 307 308//===----------------------------------------------------------------------===// 309 310// rriaddr := reg + reg + imm 311def rriaddr12 : Operand<i64>, 312 ComplexPattern<i64, 3, "SelectAddrRRI12", [], []> { 313 let PrintMethod = "printRRIAddrOperand"; 314 let MIOperandInfo = (ops ADDR64:$base, u12imm64:$disp, ADDR64:$index); 315} 316def rriaddr : Operand<i64>, 317 ComplexPattern<i64, 3, "SelectAddrRRI20", [], []> { 318 let PrintMethod = "printRRIAddrOperand"; 319 let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp, ADDR64:$index); 320} 321def laaddr : Operand<i64>, 322 ComplexPattern<i64, 3, "SelectLAAddr", [add, sub, or, frameindex], []> { 323 let PrintMethod = "printRRIAddrOperand"; 324 let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp, ADDR64:$index); 325} 326