1 /*===- X86DisassemblerDecoder.c - Disassembler decoder -------------*- C -*-==*
2 *
3 * The LLVM Compiler Infrastructure
4 *
5 * This file is distributed under the University of Illinois Open Source
6 * License. See LICENSE.TXT for details.
7 *
8 *===----------------------------------------------------------------------===*
9 *
10 * This file is part of the X86 Disassembler.
11 * It contains the implementation of the instruction decoder.
12 * Documentation for the disassembler can be found in X86Disassembler.h.
13 *
14 *===----------------------------------------------------------------------===*/
15
16 #include <stdarg.h> /* for va_*() */
17 #include <stdio.h> /* for vsnprintf() */
18 #include <stdlib.h> /* for exit() */
19 #include <string.h> /* for memset() */
20
21 #include "X86DisassemblerDecoder.h"
22
23 #include "X86GenDisassemblerTables.inc"
24
25 #define TRUE 1
26 #define FALSE 0
27
28 typedef int8_t bool;
29
30 #ifndef NDEBUG
31 #define debug(s) do { x86DisassemblerDebug(__FILE__, __LINE__, s); } while (0)
32 #else
33 #define debug(s) do { } while (0)
34 #endif
35
36
37 /*
38 * contextForAttrs - Client for the instruction context table. Takes a set of
39 * attributes and returns the appropriate decode context.
40 *
41 * @param attrMask - Attributes, from the enumeration attributeBits.
42 * @return - The InstructionContext to use when looking up an
43 * an instruction with these attributes.
44 */
contextForAttrs(uint8_t attrMask)45 static InstructionContext contextForAttrs(uint8_t attrMask) {
46 return CONTEXTS_SYM[attrMask];
47 }
48
49 /*
50 * modRMRequired - Reads the appropriate instruction table to determine whether
51 * the ModR/M byte is required to decode a particular instruction.
52 *
53 * @param type - The opcode type (i.e., how many bytes it has).
54 * @param insnContext - The context for the instruction, as returned by
55 * contextForAttrs.
56 * @param opcode - The last byte of the instruction's opcode, not counting
57 * ModR/M extensions and escapes.
58 * @return - TRUE if the ModR/M byte is required, FALSE otherwise.
59 */
modRMRequired(OpcodeType type,InstructionContext insnContext,uint8_t opcode)60 static int modRMRequired(OpcodeType type,
61 InstructionContext insnContext,
62 uint8_t opcode) {
63 const struct ContextDecision* decision = 0;
64
65 switch (type) {
66 case ONEBYTE:
67 decision = &ONEBYTE_SYM;
68 break;
69 case TWOBYTE:
70 decision = &TWOBYTE_SYM;
71 break;
72 case THREEBYTE_38:
73 decision = &THREEBYTE38_SYM;
74 break;
75 case THREEBYTE_3A:
76 decision = &THREEBYTE3A_SYM;
77 break;
78 case THREEBYTE_A6:
79 decision = &THREEBYTEA6_SYM;
80 break;
81 case THREEBYTE_A7:
82 decision = &THREEBYTEA7_SYM;
83 break;
84 }
85
86 return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
87 modrm_type != MODRM_ONEENTRY;
88
89 return 0;
90 }
91
92 /*
93 * decode - Reads the appropriate instruction table to obtain the unique ID of
94 * an instruction.
95 *
96 * @param type - See modRMRequired().
97 * @param insnContext - See modRMRequired().
98 * @param opcode - See modRMRequired().
99 * @param modRM - The ModR/M byte if required, or any value if not.
100 * @return - The UID of the instruction, or 0 on failure.
101 */
decode(OpcodeType type,InstructionContext insnContext,uint8_t opcode,uint8_t modRM)102 static InstrUID decode(OpcodeType type,
103 InstructionContext insnContext,
104 uint8_t opcode,
105 uint8_t modRM) {
106 const struct ModRMDecision* dec;
107
108 switch (type) {
109 default:
110 debug("Unknown opcode type");
111 return 0;
112 case ONEBYTE:
113 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
114 break;
115 case TWOBYTE:
116 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
117 break;
118 case THREEBYTE_38:
119 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
120 break;
121 case THREEBYTE_3A:
122 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
123 break;
124 case THREEBYTE_A6:
125 dec = &THREEBYTEA6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
126 break;
127 case THREEBYTE_A7:
128 dec = &THREEBYTEA7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
129 break;
130 }
131
132 switch (dec->modrm_type) {
133 default:
134 debug("Corrupt table! Unknown modrm_type");
135 return 0;
136 case MODRM_ONEENTRY:
137 return dec->instructionIDs[0];
138 case MODRM_SPLITRM:
139 if (modFromModRM(modRM) == 0x3)
140 return dec->instructionIDs[1];
141 else
142 return dec->instructionIDs[0];
143 case MODRM_FULL:
144 return dec->instructionIDs[modRM];
145 }
146 }
147
148 /*
149 * specifierForUID - Given a UID, returns the name and operand specification for
150 * that instruction.
151 *
152 * @param uid - The unique ID for the instruction. This should be returned by
153 * decode(); specifierForUID will not check bounds.
154 * @return - A pointer to the specification for that instruction.
155 */
specifierForUID(InstrUID uid)156 static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
157 return &INSTRUCTIONS_SYM[uid];
158 }
159
160 /*
161 * consumeByte - Uses the reader function provided by the user to consume one
162 * byte from the instruction's memory and advance the cursor.
163 *
164 * @param insn - The instruction with the reader function to use. The cursor
165 * for this instruction is advanced.
166 * @param byte - A pointer to a pre-allocated memory buffer to be populated
167 * with the data read.
168 * @return - 0 if the read was successful; nonzero otherwise.
169 */
consumeByte(struct InternalInstruction * insn,uint8_t * byte)170 static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
171 int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
172
173 if (!ret)
174 ++(insn->readerCursor);
175
176 return ret;
177 }
178
179 /*
180 * lookAtByte - Like consumeByte, but does not advance the cursor.
181 *
182 * @param insn - See consumeByte().
183 * @param byte - See consumeByte().
184 * @return - See consumeByte().
185 */
lookAtByte(struct InternalInstruction * insn,uint8_t * byte)186 static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
187 return insn->reader(insn->readerArg, byte, insn->readerCursor);
188 }
189
unconsumeByte(struct InternalInstruction * insn)190 static void unconsumeByte(struct InternalInstruction* insn) {
191 insn->readerCursor--;
192 }
193
194 #define CONSUME_FUNC(name, type) \
195 static int name(struct InternalInstruction* insn, type* ptr) { \
196 type combined = 0; \
197 unsigned offset; \
198 for (offset = 0; offset < sizeof(type); ++offset) { \
199 uint8_t byte; \
200 int ret = insn->reader(insn->readerArg, \
201 &byte, \
202 insn->readerCursor + offset); \
203 if (ret) \
204 return ret; \
205 combined = combined | ((type)byte << ((type)offset * 8)); \
206 } \
207 *ptr = combined; \
208 insn->readerCursor += sizeof(type); \
209 return 0; \
210 }
211
212 /*
213 * consume* - Use the reader function provided by the user to consume data
214 * values of various sizes from the instruction's memory and advance the
215 * cursor appropriately. These readers perform endian conversion.
216 *
217 * @param insn - See consumeByte().
218 * @param ptr - A pointer to a pre-allocated memory of appropriate size to
219 * be populated with the data read.
220 * @return - See consumeByte().
221 */
CONSUME_FUNC(consumeInt8,int8_t)222 CONSUME_FUNC(consumeInt8, int8_t)
223 CONSUME_FUNC(consumeInt16, int16_t)
224 CONSUME_FUNC(consumeInt32, int32_t)
225 CONSUME_FUNC(consumeUInt16, uint16_t)
226 CONSUME_FUNC(consumeUInt32, uint32_t)
227 CONSUME_FUNC(consumeUInt64, uint64_t)
228
229 /*
230 * dbgprintf - Uses the logging function provided by the user to log a single
231 * message, typically without a carriage-return.
232 *
233 * @param insn - The instruction containing the logging function.
234 * @param format - See printf().
235 * @param ... - See printf().
236 */
237 static void dbgprintf(struct InternalInstruction* insn,
238 const char* format,
239 ...) {
240 char buffer[256];
241 va_list ap;
242
243 if (!insn->dlog)
244 return;
245
246 va_start(ap, format);
247 (void)vsnprintf(buffer, sizeof(buffer), format, ap);
248 va_end(ap);
249
250 insn->dlog(insn->dlogArg, buffer);
251
252 return;
253 }
254
255 /*
256 * setPrefixPresent - Marks that a particular prefix is present at a particular
257 * location.
258 *
259 * @param insn - The instruction to be marked as having the prefix.
260 * @param prefix - The prefix that is present.
261 * @param location - The location where the prefix is located (in the address
262 * space of the instruction's reader).
263 */
setPrefixPresent(struct InternalInstruction * insn,uint8_t prefix,uint64_t location)264 static void setPrefixPresent(struct InternalInstruction* insn,
265 uint8_t prefix,
266 uint64_t location)
267 {
268 insn->prefixPresent[prefix] = 1;
269 insn->prefixLocations[prefix] = location;
270 }
271
272 /*
273 * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
274 * present at a given location.
275 *
276 * @param insn - The instruction to be queried.
277 * @param prefix - The prefix.
278 * @param location - The location to query.
279 * @return - Whether the prefix is at that location.
280 */
isPrefixAtLocation(struct InternalInstruction * insn,uint8_t prefix,uint64_t location)281 static BOOL isPrefixAtLocation(struct InternalInstruction* insn,
282 uint8_t prefix,
283 uint64_t location)
284 {
285 if (insn->prefixPresent[prefix] == 1 &&
286 insn->prefixLocations[prefix] == location)
287 return TRUE;
288 else
289 return FALSE;
290 }
291
292 /*
293 * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
294 * instruction as having them. Also sets the instruction's default operand,
295 * address, and other relevant data sizes to report operands correctly.
296 *
297 * @param insn - The instruction whose prefixes are to be read.
298 * @return - 0 if the instruction could be read until the end of the prefix
299 * bytes, and no prefixes conflicted; nonzero otherwise.
300 */
readPrefixes(struct InternalInstruction * insn)301 static int readPrefixes(struct InternalInstruction* insn) {
302 BOOL isPrefix = TRUE;
303 BOOL prefixGroups[4] = { FALSE };
304 uint64_t prefixLocation;
305 uint8_t byte = 0;
306
307 BOOL hasAdSize = FALSE;
308 BOOL hasOpSize = FALSE;
309
310 dbgprintf(insn, "readPrefixes()");
311
312 while (isPrefix) {
313 prefixLocation = insn->readerCursor;
314
315 if (consumeByte(insn, &byte))
316 return -1;
317
318 switch (byte) {
319 case 0xf0: /* LOCK */
320 case 0xf2: /* REPNE/REPNZ */
321 case 0xf3: /* REP or REPE/REPZ */
322 if (prefixGroups[0])
323 dbgprintf(insn, "Redundant Group 1 prefix");
324 prefixGroups[0] = TRUE;
325 setPrefixPresent(insn, byte, prefixLocation);
326 break;
327 case 0x2e: /* CS segment override -OR- Branch not taken */
328 case 0x36: /* SS segment override -OR- Branch taken */
329 case 0x3e: /* DS segment override */
330 case 0x26: /* ES segment override */
331 case 0x64: /* FS segment override */
332 case 0x65: /* GS segment override */
333 switch (byte) {
334 case 0x2e:
335 insn->segmentOverride = SEG_OVERRIDE_CS;
336 break;
337 case 0x36:
338 insn->segmentOverride = SEG_OVERRIDE_SS;
339 break;
340 case 0x3e:
341 insn->segmentOverride = SEG_OVERRIDE_DS;
342 break;
343 case 0x26:
344 insn->segmentOverride = SEG_OVERRIDE_ES;
345 break;
346 case 0x64:
347 insn->segmentOverride = SEG_OVERRIDE_FS;
348 break;
349 case 0x65:
350 insn->segmentOverride = SEG_OVERRIDE_GS;
351 break;
352 default:
353 debug("Unhandled override");
354 return -1;
355 }
356 if (prefixGroups[1])
357 dbgprintf(insn, "Redundant Group 2 prefix");
358 prefixGroups[1] = TRUE;
359 setPrefixPresent(insn, byte, prefixLocation);
360 break;
361 case 0x66: /* Operand-size override */
362 if (prefixGroups[2])
363 dbgprintf(insn, "Redundant Group 3 prefix");
364 prefixGroups[2] = TRUE;
365 hasOpSize = TRUE;
366 setPrefixPresent(insn, byte, prefixLocation);
367 break;
368 case 0x67: /* Address-size override */
369 if (prefixGroups[3])
370 dbgprintf(insn, "Redundant Group 4 prefix");
371 prefixGroups[3] = TRUE;
372 hasAdSize = TRUE;
373 setPrefixPresent(insn, byte, prefixLocation);
374 break;
375 default: /* Not a prefix byte */
376 isPrefix = FALSE;
377 break;
378 }
379
380 if (isPrefix)
381 dbgprintf(insn, "Found prefix 0x%hhx", byte);
382 }
383
384 insn->vexSize = 0;
385
386 if (byte == 0xc4) {
387 uint8_t byte1;
388
389 if (lookAtByte(insn, &byte1)) {
390 dbgprintf(insn, "Couldn't read second byte of VEX");
391 return -1;
392 }
393
394 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
395 insn->vexSize = 3;
396 insn->necessaryPrefixLocation = insn->readerCursor - 1;
397 }
398 else {
399 unconsumeByte(insn);
400 insn->necessaryPrefixLocation = insn->readerCursor - 1;
401 }
402
403 if (insn->vexSize == 3) {
404 insn->vexPrefix[0] = byte;
405 consumeByte(insn, &insn->vexPrefix[1]);
406 consumeByte(insn, &insn->vexPrefix[2]);
407
408 /* We simulate the REX prefix for simplicity's sake */
409
410 if (insn->mode == MODE_64BIT) {
411 insn->rexPrefix = 0x40
412 | (wFromVEX3of3(insn->vexPrefix[2]) << 3)
413 | (rFromVEX2of3(insn->vexPrefix[1]) << 2)
414 | (xFromVEX2of3(insn->vexPrefix[1]) << 1)
415 | (bFromVEX2of3(insn->vexPrefix[1]) << 0);
416 }
417
418 switch (ppFromVEX3of3(insn->vexPrefix[2]))
419 {
420 default:
421 break;
422 case VEX_PREFIX_66:
423 hasOpSize = TRUE;
424 break;
425 }
426
427 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1], insn->vexPrefix[2]);
428 }
429 }
430 else if (byte == 0xc5) {
431 uint8_t byte1;
432
433 if (lookAtByte(insn, &byte1)) {
434 dbgprintf(insn, "Couldn't read second byte of VEX");
435 return -1;
436 }
437
438 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
439 insn->vexSize = 2;
440 }
441 else {
442 unconsumeByte(insn);
443 }
444
445 if (insn->vexSize == 2) {
446 insn->vexPrefix[0] = byte;
447 consumeByte(insn, &insn->vexPrefix[1]);
448
449 if (insn->mode == MODE_64BIT) {
450 insn->rexPrefix = 0x40
451 | (rFromVEX2of2(insn->vexPrefix[1]) << 2);
452 }
453
454 switch (ppFromVEX2of2(insn->vexPrefix[1]))
455 {
456 default:
457 break;
458 case VEX_PREFIX_66:
459 hasOpSize = TRUE;
460 break;
461 }
462
463 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1]);
464 }
465 }
466 else {
467 if (insn->mode == MODE_64BIT) {
468 if ((byte & 0xf0) == 0x40) {
469 uint8_t opcodeByte;
470
471 if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
472 dbgprintf(insn, "Redundant REX prefix");
473 return -1;
474 }
475
476 insn->rexPrefix = byte;
477 insn->necessaryPrefixLocation = insn->readerCursor - 2;
478
479 dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
480 } else {
481 unconsumeByte(insn);
482 insn->necessaryPrefixLocation = insn->readerCursor - 1;
483 }
484 } else {
485 unconsumeByte(insn);
486 insn->necessaryPrefixLocation = insn->readerCursor - 1;
487 }
488 }
489
490 if (insn->mode == MODE_16BIT) {
491 insn->registerSize = (hasOpSize ? 4 : 2);
492 insn->addressSize = (hasAdSize ? 4 : 2);
493 insn->displacementSize = (hasAdSize ? 4 : 2);
494 insn->immediateSize = (hasOpSize ? 4 : 2);
495 } else if (insn->mode == MODE_32BIT) {
496 insn->registerSize = (hasOpSize ? 2 : 4);
497 insn->addressSize = (hasAdSize ? 2 : 4);
498 insn->displacementSize = (hasAdSize ? 2 : 4);
499 insn->immediateSize = (hasOpSize ? 2 : 4);
500 } else if (insn->mode == MODE_64BIT) {
501 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
502 insn->registerSize = 8;
503 insn->addressSize = (hasAdSize ? 4 : 8);
504 insn->displacementSize = 4;
505 insn->immediateSize = 4;
506 } else if (insn->rexPrefix) {
507 insn->registerSize = (hasOpSize ? 2 : 4);
508 insn->addressSize = (hasAdSize ? 4 : 8);
509 insn->displacementSize = (hasOpSize ? 2 : 4);
510 insn->immediateSize = (hasOpSize ? 2 : 4);
511 } else {
512 insn->registerSize = (hasOpSize ? 2 : 4);
513 insn->addressSize = (hasAdSize ? 4 : 8);
514 insn->displacementSize = (hasOpSize ? 2 : 4);
515 insn->immediateSize = (hasOpSize ? 2 : 4);
516 }
517 }
518
519 return 0;
520 }
521
522 /*
523 * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
524 * extended or escape opcodes).
525 *
526 * @param insn - The instruction whose opcode is to be read.
527 * @return - 0 if the opcode could be read successfully; nonzero otherwise.
528 */
readOpcode(struct InternalInstruction * insn)529 static int readOpcode(struct InternalInstruction* insn) {
530 /* Determine the length of the primary opcode */
531
532 uint8_t current;
533
534 dbgprintf(insn, "readOpcode()");
535
536 insn->opcodeType = ONEBYTE;
537
538 if (insn->vexSize == 3)
539 {
540 switch (mmmmmFromVEX2of3(insn->vexPrefix[1]))
541 {
542 default:
543 dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", mmmmmFromVEX2of3(insn->vexPrefix[1]));
544 return -1;
545 case 0:
546 break;
547 case VEX_LOB_0F:
548 insn->twoByteEscape = 0x0f;
549 insn->opcodeType = TWOBYTE;
550 return consumeByte(insn, &insn->opcode);
551 case VEX_LOB_0F38:
552 insn->twoByteEscape = 0x0f;
553 insn->threeByteEscape = 0x38;
554 insn->opcodeType = THREEBYTE_38;
555 return consumeByte(insn, &insn->opcode);
556 case VEX_LOB_0F3A:
557 insn->twoByteEscape = 0x0f;
558 insn->threeByteEscape = 0x3a;
559 insn->opcodeType = THREEBYTE_3A;
560 return consumeByte(insn, &insn->opcode);
561 }
562 }
563 else if (insn->vexSize == 2)
564 {
565 insn->twoByteEscape = 0x0f;
566 insn->opcodeType = TWOBYTE;
567 return consumeByte(insn, &insn->opcode);
568 }
569
570 if (consumeByte(insn, ¤t))
571 return -1;
572
573 if (current == 0x0f) {
574 dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
575
576 insn->twoByteEscape = current;
577
578 if (consumeByte(insn, ¤t))
579 return -1;
580
581 if (current == 0x38) {
582 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
583
584 insn->threeByteEscape = current;
585
586 if (consumeByte(insn, ¤t))
587 return -1;
588
589 insn->opcodeType = THREEBYTE_38;
590 } else if (current == 0x3a) {
591 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
592
593 insn->threeByteEscape = current;
594
595 if (consumeByte(insn, ¤t))
596 return -1;
597
598 insn->opcodeType = THREEBYTE_3A;
599 } else if (current == 0xa6) {
600 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
601
602 insn->threeByteEscape = current;
603
604 if (consumeByte(insn, ¤t))
605 return -1;
606
607 insn->opcodeType = THREEBYTE_A6;
608 } else if (current == 0xa7) {
609 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
610
611 insn->threeByteEscape = current;
612
613 if (consumeByte(insn, ¤t))
614 return -1;
615
616 insn->opcodeType = THREEBYTE_A7;
617 } else {
618 dbgprintf(insn, "Didn't find a three-byte escape prefix");
619
620 insn->opcodeType = TWOBYTE;
621 }
622 }
623
624 /*
625 * At this point we have consumed the full opcode.
626 * Anything we consume from here on must be unconsumed.
627 */
628
629 insn->opcode = current;
630
631 return 0;
632 }
633
634 static int readModRM(struct InternalInstruction* insn);
635
636 /*
637 * getIDWithAttrMask - Determines the ID of an instruction, consuming
638 * the ModR/M byte as appropriate for extended and escape opcodes,
639 * and using a supplied attribute mask.
640 *
641 * @param instructionID - A pointer whose target is filled in with the ID of the
642 * instruction.
643 * @param insn - The instruction whose ID is to be determined.
644 * @param attrMask - The attribute mask to search.
645 * @return - 0 if the ModR/M could be read when needed or was not
646 * needed; nonzero otherwise.
647 */
getIDWithAttrMask(uint16_t * instructionID,struct InternalInstruction * insn,uint8_t attrMask)648 static int getIDWithAttrMask(uint16_t* instructionID,
649 struct InternalInstruction* insn,
650 uint8_t attrMask) {
651 BOOL hasModRMExtension;
652
653 uint8_t instructionClass;
654
655 instructionClass = contextForAttrs(attrMask);
656
657 hasModRMExtension = modRMRequired(insn->opcodeType,
658 instructionClass,
659 insn->opcode);
660
661 if (hasModRMExtension) {
662 if (readModRM(insn))
663 return -1;
664
665 *instructionID = decode(insn->opcodeType,
666 instructionClass,
667 insn->opcode,
668 insn->modRM);
669 } else {
670 *instructionID = decode(insn->opcodeType,
671 instructionClass,
672 insn->opcode,
673 0);
674 }
675
676 return 0;
677 }
678
679 /*
680 * is16BitEquivalent - Determines whether two instruction names refer to
681 * equivalent instructions but one is 16-bit whereas the other is not.
682 *
683 * @param orig - The instruction that is not 16-bit
684 * @param equiv - The instruction that is 16-bit
685 */
is16BitEquvalent(const char * orig,const char * equiv)686 static BOOL is16BitEquvalent(const char* orig, const char* equiv) {
687 off_t i;
688
689 for (i = 0;; i++) {
690 if (orig[i] == '\0' && equiv[i] == '\0')
691 return TRUE;
692 if (orig[i] == '\0' || equiv[i] == '\0')
693 return FALSE;
694 if (orig[i] != equiv[i]) {
695 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
696 continue;
697 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
698 continue;
699 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
700 continue;
701 return FALSE;
702 }
703 }
704 }
705
706 /*
707 * getID - Determines the ID of an instruction, consuming the ModR/M byte as
708 * appropriate for extended and escape opcodes. Determines the attributes and
709 * context for the instruction before doing so.
710 *
711 * @param insn - The instruction whose ID is to be determined.
712 * @return - 0 if the ModR/M could be read when needed or was not needed;
713 * nonzero otherwise.
714 */
getID(struct InternalInstruction * insn)715 static int getID(struct InternalInstruction* insn) {
716 uint8_t attrMask;
717 uint16_t instructionID;
718
719 dbgprintf(insn, "getID()");
720
721 attrMask = ATTR_NONE;
722
723 if (insn->mode == MODE_64BIT)
724 attrMask |= ATTR_64BIT;
725
726 if (insn->vexSize) {
727 attrMask |= ATTR_VEX;
728
729 if (insn->vexSize == 3) {
730 switch (ppFromVEX3of3(insn->vexPrefix[2])) {
731 case VEX_PREFIX_66:
732 attrMask |= ATTR_OPSIZE;
733 break;
734 case VEX_PREFIX_F3:
735 attrMask |= ATTR_XS;
736 break;
737 case VEX_PREFIX_F2:
738 attrMask |= ATTR_XD;
739 break;
740 }
741
742 if (lFromVEX3of3(insn->vexPrefix[2]))
743 attrMask |= ATTR_VEXL;
744 }
745 else if (insn->vexSize == 2) {
746 switch (ppFromVEX2of2(insn->vexPrefix[1])) {
747 case VEX_PREFIX_66:
748 attrMask |= ATTR_OPSIZE;
749 break;
750 case VEX_PREFIX_F3:
751 attrMask |= ATTR_XS;
752 break;
753 case VEX_PREFIX_F2:
754 attrMask |= ATTR_XD;
755 break;
756 }
757
758 if (lFromVEX2of2(insn->vexPrefix[1]))
759 attrMask |= ATTR_VEXL;
760 }
761 else {
762 return -1;
763 }
764 }
765 else {
766 if (isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
767 attrMask |= ATTR_OPSIZE;
768 else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
769 attrMask |= ATTR_XS;
770 else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
771 attrMask |= ATTR_XD;
772 }
773
774 if (insn->rexPrefix & 0x08)
775 attrMask |= ATTR_REXW;
776
777 if (getIDWithAttrMask(&instructionID, insn, attrMask))
778 return -1;
779
780 /* The following clauses compensate for limitations of the tables. */
781
782 if ((attrMask & ATTR_VEXL) && (attrMask & ATTR_REXW)) {
783 /*
784 * Some VEX instructions ignore the L-bit, but use the W-bit. Normally L-bit
785 * has precedence since there are no L-bit with W-bit entries in the tables.
786 * So if the L-bit isn't significant we should use the W-bit instead.
787 */
788
789 const struct InstructionSpecifier *spec;
790 uint16_t instructionIDWithWBit;
791 const struct InstructionSpecifier *specWithWBit;
792
793 spec = specifierForUID(instructionID);
794
795 if (getIDWithAttrMask(&instructionIDWithWBit,
796 insn,
797 (attrMask & (~ATTR_VEXL)) | ATTR_REXW)) {
798 insn->instructionID = instructionID;
799 insn->spec = spec;
800 return 0;
801 }
802
803 specWithWBit = specifierForUID(instructionIDWithWBit);
804
805 if (instructionID != instructionIDWithWBit) {
806 insn->instructionID = instructionIDWithWBit;
807 insn->spec = specWithWBit;
808 } else {
809 insn->instructionID = instructionID;
810 insn->spec = spec;
811 }
812 return 0;
813 }
814
815 if (insn->prefixPresent[0x66] && !(attrMask & ATTR_OPSIZE)) {
816 /*
817 * The instruction tables make no distinction between instructions that
818 * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
819 * particular spot (i.e., many MMX operations). In general we're
820 * conservative, but in the specific case where OpSize is present but not
821 * in the right place we check if there's a 16-bit operation.
822 */
823
824 const struct InstructionSpecifier *spec;
825 uint16_t instructionIDWithOpsize;
826 const struct InstructionSpecifier *specWithOpsize;
827
828 spec = specifierForUID(instructionID);
829
830 if (getIDWithAttrMask(&instructionIDWithOpsize,
831 insn,
832 attrMask | ATTR_OPSIZE)) {
833 /*
834 * ModRM required with OpSize but not present; give up and return version
835 * without OpSize set
836 */
837
838 insn->instructionID = instructionID;
839 insn->spec = spec;
840 return 0;
841 }
842
843 specWithOpsize = specifierForUID(instructionIDWithOpsize);
844
845 if (is16BitEquvalent(spec->name, specWithOpsize->name)) {
846 insn->instructionID = instructionIDWithOpsize;
847 insn->spec = specWithOpsize;
848 } else {
849 insn->instructionID = instructionID;
850 insn->spec = spec;
851 }
852 return 0;
853 }
854
855 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
856 insn->rexPrefix & 0x01) {
857 /*
858 * NOOP shouldn't decode as NOOP if REX.b is set. Instead
859 * it should decode as XCHG %r8, %eax.
860 */
861
862 const struct InstructionSpecifier *spec;
863 uint16_t instructionIDWithNewOpcode;
864 const struct InstructionSpecifier *specWithNewOpcode;
865
866 spec = specifierForUID(instructionID);
867
868 /* Borrow opcode from one of the other XCHGar opcodes */
869 insn->opcode = 0x91;
870
871 if (getIDWithAttrMask(&instructionIDWithNewOpcode,
872 insn,
873 attrMask)) {
874 insn->opcode = 0x90;
875
876 insn->instructionID = instructionID;
877 insn->spec = spec;
878 return 0;
879 }
880
881 specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
882
883 /* Change back */
884 insn->opcode = 0x90;
885
886 insn->instructionID = instructionIDWithNewOpcode;
887 insn->spec = specWithNewOpcode;
888
889 return 0;
890 }
891
892 insn->instructionID = instructionID;
893 insn->spec = specifierForUID(insn->instructionID);
894
895 return 0;
896 }
897
898 /*
899 * readSIB - Consumes the SIB byte to determine addressing information for an
900 * instruction.
901 *
902 * @param insn - The instruction whose SIB byte is to be read.
903 * @return - 0 if the SIB byte was successfully read; nonzero otherwise.
904 */
readSIB(struct InternalInstruction * insn)905 static int readSIB(struct InternalInstruction* insn) {
906 SIBIndex sibIndexBase = 0;
907 SIBBase sibBaseBase = 0;
908 uint8_t index, base;
909
910 dbgprintf(insn, "readSIB()");
911
912 if (insn->consumedSIB)
913 return 0;
914
915 insn->consumedSIB = TRUE;
916
917 switch (insn->addressSize) {
918 case 2:
919 dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
920 return -1;
921 break;
922 case 4:
923 sibIndexBase = SIB_INDEX_EAX;
924 sibBaseBase = SIB_BASE_EAX;
925 break;
926 case 8:
927 sibIndexBase = SIB_INDEX_RAX;
928 sibBaseBase = SIB_BASE_RAX;
929 break;
930 }
931
932 if (consumeByte(insn, &insn->sib))
933 return -1;
934
935 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
936
937 switch (index) {
938 case 0x4:
939 insn->sibIndex = SIB_INDEX_NONE;
940 break;
941 default:
942 insn->sibIndex = (SIBIndex)(sibIndexBase + index);
943 if (insn->sibIndex == SIB_INDEX_sib ||
944 insn->sibIndex == SIB_INDEX_sib64)
945 insn->sibIndex = SIB_INDEX_NONE;
946 break;
947 }
948
949 switch (scaleFromSIB(insn->sib)) {
950 case 0:
951 insn->sibScale = 1;
952 break;
953 case 1:
954 insn->sibScale = 2;
955 break;
956 case 2:
957 insn->sibScale = 4;
958 break;
959 case 3:
960 insn->sibScale = 8;
961 break;
962 }
963
964 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
965
966 switch (base) {
967 case 0x5:
968 switch (modFromModRM(insn->modRM)) {
969 case 0x0:
970 insn->eaDisplacement = EA_DISP_32;
971 insn->sibBase = SIB_BASE_NONE;
972 break;
973 case 0x1:
974 insn->eaDisplacement = EA_DISP_8;
975 insn->sibBase = (insn->addressSize == 4 ?
976 SIB_BASE_EBP : SIB_BASE_RBP);
977 break;
978 case 0x2:
979 insn->eaDisplacement = EA_DISP_32;
980 insn->sibBase = (insn->addressSize == 4 ?
981 SIB_BASE_EBP : SIB_BASE_RBP);
982 break;
983 case 0x3:
984 debug("Cannot have Mod = 0b11 and a SIB byte");
985 return -1;
986 }
987 break;
988 default:
989 insn->sibBase = (SIBBase)(sibBaseBase + base);
990 break;
991 }
992
993 return 0;
994 }
995
996 /*
997 * readDisplacement - Consumes the displacement of an instruction.
998 *
999 * @param insn - The instruction whose displacement is to be read.
1000 * @return - 0 if the displacement byte was successfully read; nonzero
1001 * otherwise.
1002 */
readDisplacement(struct InternalInstruction * insn)1003 static int readDisplacement(struct InternalInstruction* insn) {
1004 int8_t d8;
1005 int16_t d16;
1006 int32_t d32;
1007
1008 dbgprintf(insn, "readDisplacement()");
1009
1010 if (insn->consumedDisplacement)
1011 return 0;
1012
1013 insn->consumedDisplacement = TRUE;
1014
1015 switch (insn->eaDisplacement) {
1016 case EA_DISP_NONE:
1017 insn->consumedDisplacement = FALSE;
1018 break;
1019 case EA_DISP_8:
1020 if (consumeInt8(insn, &d8))
1021 return -1;
1022 insn->displacement = d8;
1023 break;
1024 case EA_DISP_16:
1025 if (consumeInt16(insn, &d16))
1026 return -1;
1027 insn->displacement = d16;
1028 break;
1029 case EA_DISP_32:
1030 if (consumeInt32(insn, &d32))
1031 return -1;
1032 insn->displacement = d32;
1033 break;
1034 }
1035
1036 insn->consumedDisplacement = TRUE;
1037 return 0;
1038 }
1039
1040 /*
1041 * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1042 * displacement) for an instruction and interprets it.
1043 *
1044 * @param insn - The instruction whose addressing information is to be read.
1045 * @return - 0 if the information was successfully read; nonzero otherwise.
1046 */
readModRM(struct InternalInstruction * insn)1047 static int readModRM(struct InternalInstruction* insn) {
1048 uint8_t mod, rm, reg;
1049
1050 dbgprintf(insn, "readModRM()");
1051
1052 if (insn->consumedModRM)
1053 return 0;
1054
1055 if (consumeByte(insn, &insn->modRM))
1056 return -1;
1057 insn->consumedModRM = TRUE;
1058
1059 mod = modFromModRM(insn->modRM);
1060 rm = rmFromModRM(insn->modRM);
1061 reg = regFromModRM(insn->modRM);
1062
1063 /*
1064 * This goes by insn->registerSize to pick the correct register, which messes
1065 * up if we're using (say) XMM or 8-bit register operands. That gets fixed in
1066 * fixupReg().
1067 */
1068 switch (insn->registerSize) {
1069 case 2:
1070 insn->regBase = MODRM_REG_AX;
1071 insn->eaRegBase = EA_REG_AX;
1072 break;
1073 case 4:
1074 insn->regBase = MODRM_REG_EAX;
1075 insn->eaRegBase = EA_REG_EAX;
1076 break;
1077 case 8:
1078 insn->regBase = MODRM_REG_RAX;
1079 insn->eaRegBase = EA_REG_RAX;
1080 break;
1081 }
1082
1083 reg |= rFromREX(insn->rexPrefix) << 3;
1084 rm |= bFromREX(insn->rexPrefix) << 3;
1085
1086 insn->reg = (Reg)(insn->regBase + reg);
1087
1088 switch (insn->addressSize) {
1089 case 2:
1090 insn->eaBaseBase = EA_BASE_BX_SI;
1091
1092 switch (mod) {
1093 case 0x0:
1094 if (rm == 0x6) {
1095 insn->eaBase = EA_BASE_NONE;
1096 insn->eaDisplacement = EA_DISP_16;
1097 if (readDisplacement(insn))
1098 return -1;
1099 } else {
1100 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1101 insn->eaDisplacement = EA_DISP_NONE;
1102 }
1103 break;
1104 case 0x1:
1105 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1106 insn->eaDisplacement = EA_DISP_8;
1107 if (readDisplacement(insn))
1108 return -1;
1109 break;
1110 case 0x2:
1111 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1112 insn->eaDisplacement = EA_DISP_16;
1113 if (readDisplacement(insn))
1114 return -1;
1115 break;
1116 case 0x3:
1117 insn->eaBase = (EABase)(insn->eaRegBase + rm);
1118 if (readDisplacement(insn))
1119 return -1;
1120 break;
1121 }
1122 break;
1123 case 4:
1124 case 8:
1125 insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1126
1127 switch (mod) {
1128 case 0x0:
1129 insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1130 switch (rm) {
1131 case 0x4:
1132 case 0xc: /* in case REXW.b is set */
1133 insn->eaBase = (insn->addressSize == 4 ?
1134 EA_BASE_sib : EA_BASE_sib64);
1135 readSIB(insn);
1136 if (readDisplacement(insn))
1137 return -1;
1138 break;
1139 case 0x5:
1140 insn->eaBase = EA_BASE_NONE;
1141 insn->eaDisplacement = EA_DISP_32;
1142 if (readDisplacement(insn))
1143 return -1;
1144 break;
1145 default:
1146 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1147 break;
1148 }
1149 break;
1150 case 0x1:
1151 case 0x2:
1152 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1153 switch (rm) {
1154 case 0x4:
1155 case 0xc: /* in case REXW.b is set */
1156 insn->eaBase = EA_BASE_sib;
1157 readSIB(insn);
1158 if (readDisplacement(insn))
1159 return -1;
1160 break;
1161 default:
1162 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1163 if (readDisplacement(insn))
1164 return -1;
1165 break;
1166 }
1167 break;
1168 case 0x3:
1169 insn->eaDisplacement = EA_DISP_NONE;
1170 insn->eaBase = (EABase)(insn->eaRegBase + rm);
1171 break;
1172 }
1173 break;
1174 } /* switch (insn->addressSize) */
1175
1176 return 0;
1177 }
1178
1179 #define GENERIC_FIXUP_FUNC(name, base, prefix) \
1180 static uint8_t name(struct InternalInstruction *insn, \
1181 OperandType type, \
1182 uint8_t index, \
1183 uint8_t *valid) { \
1184 *valid = 1; \
1185 switch (type) { \
1186 default: \
1187 debug("Unhandled register type"); \
1188 *valid = 0; \
1189 return 0; \
1190 case TYPE_Rv: \
1191 return base + index; \
1192 case TYPE_R8: \
1193 if (insn->rexPrefix && \
1194 index >= 4 && index <= 7) { \
1195 return prefix##_SPL + (index - 4); \
1196 } else { \
1197 return prefix##_AL + index; \
1198 } \
1199 case TYPE_R16: \
1200 return prefix##_AX + index; \
1201 case TYPE_R32: \
1202 return prefix##_EAX + index; \
1203 case TYPE_R64: \
1204 return prefix##_RAX + index; \
1205 case TYPE_XMM256: \
1206 return prefix##_YMM0 + index; \
1207 case TYPE_XMM128: \
1208 case TYPE_XMM64: \
1209 case TYPE_XMM32: \
1210 case TYPE_XMM: \
1211 return prefix##_XMM0 + index; \
1212 case TYPE_MM64: \
1213 case TYPE_MM32: \
1214 case TYPE_MM: \
1215 if (index > 7) \
1216 *valid = 0; \
1217 return prefix##_MM0 + index; \
1218 case TYPE_SEGMENTREG: \
1219 if (index > 5) \
1220 *valid = 0; \
1221 return prefix##_ES + index; \
1222 case TYPE_DEBUGREG: \
1223 if (index > 7) \
1224 *valid = 0; \
1225 return prefix##_DR0 + index; \
1226 case TYPE_CONTROLREG: \
1227 if (index > 8) \
1228 *valid = 0; \
1229 return prefix##_CR0 + index; \
1230 } \
1231 }
1232
1233 /*
1234 * fixup*Value - Consults an operand type to determine the meaning of the
1235 * reg or R/M field. If the operand is an XMM operand, for example, an
1236 * operand would be XMM0 instead of AX, which readModRM() would otherwise
1237 * misinterpret it as.
1238 *
1239 * @param insn - The instruction containing the operand.
1240 * @param type - The operand type.
1241 * @param index - The existing value of the field as reported by readModRM().
1242 * @param valid - The address of a uint8_t. The target is set to 1 if the
1243 * field is valid for the register class; 0 if not.
1244 * @return - The proper value.
1245 */
1246 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
1247 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
1248
1249 /*
1250 * fixupReg - Consults an operand specifier to determine which of the
1251 * fixup*Value functions to use in correcting readModRM()'ss interpretation.
1252 *
1253 * @param insn - See fixup*Value().
1254 * @param op - The operand specifier.
1255 * @return - 0 if fixup was successful; -1 if the register returned was
1256 * invalid for its class.
1257 */
fixupReg(struct InternalInstruction * insn,const struct OperandSpecifier * op)1258 static int fixupReg(struct InternalInstruction *insn,
1259 const struct OperandSpecifier *op) {
1260 uint8_t valid;
1261
1262 dbgprintf(insn, "fixupReg()");
1263
1264 switch ((OperandEncoding)op->encoding) {
1265 default:
1266 debug("Expected a REG or R/M encoding in fixupReg");
1267 return -1;
1268 case ENCODING_VVVV:
1269 insn->vvvv = (Reg)fixupRegValue(insn,
1270 (OperandType)op->type,
1271 insn->vvvv,
1272 &valid);
1273 if (!valid)
1274 return -1;
1275 break;
1276 case ENCODING_REG:
1277 insn->reg = (Reg)fixupRegValue(insn,
1278 (OperandType)op->type,
1279 insn->reg - insn->regBase,
1280 &valid);
1281 if (!valid)
1282 return -1;
1283 break;
1284 case ENCODING_RM:
1285 if (insn->eaBase >= insn->eaRegBase) {
1286 insn->eaBase = (EABase)fixupRMValue(insn,
1287 (OperandType)op->type,
1288 insn->eaBase - insn->eaRegBase,
1289 &valid);
1290 if (!valid)
1291 return -1;
1292 }
1293 break;
1294 }
1295
1296 return 0;
1297 }
1298
1299 /*
1300 * readOpcodeModifier - Reads an operand from the opcode field of an
1301 * instruction. Handles AddRegFrm instructions.
1302 *
1303 * @param insn - The instruction whose opcode field is to be read.
1304 * @param inModRM - Indicates that the opcode field is to be read from the
1305 * ModR/M extension; useful for escape opcodes
1306 * @return - 0 on success; nonzero otherwise.
1307 */
readOpcodeModifier(struct InternalInstruction * insn)1308 static int readOpcodeModifier(struct InternalInstruction* insn) {
1309 dbgprintf(insn, "readOpcodeModifier()");
1310
1311 if (insn->consumedOpcodeModifier)
1312 return 0;
1313
1314 insn->consumedOpcodeModifier = TRUE;
1315
1316 switch (insn->spec->modifierType) {
1317 default:
1318 debug("Unknown modifier type.");
1319 return -1;
1320 case MODIFIER_NONE:
1321 debug("No modifier but an operand expects one.");
1322 return -1;
1323 case MODIFIER_OPCODE:
1324 insn->opcodeModifier = insn->opcode - insn->spec->modifierBase;
1325 return 0;
1326 case MODIFIER_MODRM:
1327 insn->opcodeModifier = insn->modRM - insn->spec->modifierBase;
1328 return 0;
1329 }
1330 }
1331
1332 /*
1333 * readOpcodeRegister - Reads an operand from the opcode field of an
1334 * instruction and interprets it appropriately given the operand width.
1335 * Handles AddRegFrm instructions.
1336 *
1337 * @param insn - See readOpcodeModifier().
1338 * @param size - The width (in bytes) of the register being specified.
1339 * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1340 * RAX.
1341 * @return - 0 on success; nonzero otherwise.
1342 */
readOpcodeRegister(struct InternalInstruction * insn,uint8_t size)1343 static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1344 dbgprintf(insn, "readOpcodeRegister()");
1345
1346 if (readOpcodeModifier(insn))
1347 return -1;
1348
1349 if (size == 0)
1350 size = insn->registerSize;
1351
1352 switch (size) {
1353 case 1:
1354 insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1355 | insn->opcodeModifier));
1356 if (insn->rexPrefix &&
1357 insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1358 insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1359 insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1360 + (insn->opcodeRegister - MODRM_REG_AL - 4));
1361 }
1362
1363 break;
1364 case 2:
1365 insn->opcodeRegister = (Reg)(MODRM_REG_AX
1366 + ((bFromREX(insn->rexPrefix) << 3)
1367 | insn->opcodeModifier));
1368 break;
1369 case 4:
1370 insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1371 + ((bFromREX(insn->rexPrefix) << 3)
1372 | insn->opcodeModifier));
1373 break;
1374 case 8:
1375 insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1376 + ((bFromREX(insn->rexPrefix) << 3)
1377 | insn->opcodeModifier));
1378 break;
1379 }
1380
1381 return 0;
1382 }
1383
1384 /*
1385 * readImmediate - Consumes an immediate operand from an instruction, given the
1386 * desired operand size.
1387 *
1388 * @param insn - The instruction whose operand is to be read.
1389 * @param size - The width (in bytes) of the operand.
1390 * @return - 0 if the immediate was successfully consumed; nonzero
1391 * otherwise.
1392 */
readImmediate(struct InternalInstruction * insn,uint8_t size)1393 static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1394 uint8_t imm8;
1395 uint16_t imm16;
1396 uint32_t imm32;
1397 uint64_t imm64;
1398
1399 dbgprintf(insn, "readImmediate()");
1400
1401 if (insn->numImmediatesConsumed == 2) {
1402 debug("Already consumed two immediates");
1403 return -1;
1404 }
1405
1406 if (size == 0)
1407 size = insn->immediateSize;
1408 else
1409 insn->immediateSize = size;
1410
1411 switch (size) {
1412 case 1:
1413 if (consumeByte(insn, &imm8))
1414 return -1;
1415 insn->immediates[insn->numImmediatesConsumed] = imm8;
1416 break;
1417 case 2:
1418 if (consumeUInt16(insn, &imm16))
1419 return -1;
1420 insn->immediates[insn->numImmediatesConsumed] = imm16;
1421 break;
1422 case 4:
1423 if (consumeUInt32(insn, &imm32))
1424 return -1;
1425 insn->immediates[insn->numImmediatesConsumed] = imm32;
1426 break;
1427 case 8:
1428 if (consumeUInt64(insn, &imm64))
1429 return -1;
1430 insn->immediates[insn->numImmediatesConsumed] = imm64;
1431 break;
1432 }
1433
1434 insn->numImmediatesConsumed++;
1435
1436 return 0;
1437 }
1438
1439 /*
1440 * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1441 *
1442 * @param insn - The instruction whose operand is to be read.
1443 * @return - 0 if the vvvv was successfully consumed; nonzero
1444 * otherwise.
1445 */
readVVVV(struct InternalInstruction * insn)1446 static int readVVVV(struct InternalInstruction* insn) {
1447 dbgprintf(insn, "readVVVV()");
1448
1449 if (insn->vexSize == 3)
1450 insn->vvvv = vvvvFromVEX3of3(insn->vexPrefix[2]);
1451 else if (insn->vexSize == 2)
1452 insn->vvvv = vvvvFromVEX2of2(insn->vexPrefix[1]);
1453 else
1454 return -1;
1455
1456 if (insn->mode != MODE_64BIT)
1457 insn->vvvv &= 0x7;
1458
1459 return 0;
1460 }
1461
1462 /*
1463 * readOperands - Consults the specifier for an instruction and consumes all
1464 * operands for that instruction, interpreting them as it goes.
1465 *
1466 * @param insn - The instruction whose operands are to be read and interpreted.
1467 * @return - 0 if all operands could be read; nonzero otherwise.
1468 */
readOperands(struct InternalInstruction * insn)1469 static int readOperands(struct InternalInstruction* insn) {
1470 int index;
1471 int hasVVVV, needVVVV;
1472
1473 dbgprintf(insn, "readOperands()");
1474
1475 /* If non-zero vvvv specified, need to make sure one of the operands
1476 uses it. */
1477 hasVVVV = !readVVVV(insn);
1478 needVVVV = hasVVVV && (insn->vvvv != 0);
1479
1480 for (index = 0; index < X86_MAX_OPERANDS; ++index) {
1481 switch (insn->spec->operands[index].encoding) {
1482 case ENCODING_NONE:
1483 break;
1484 case ENCODING_REG:
1485 case ENCODING_RM:
1486 if (readModRM(insn))
1487 return -1;
1488 if (fixupReg(insn, &insn->spec->operands[index]))
1489 return -1;
1490 break;
1491 case ENCODING_CB:
1492 case ENCODING_CW:
1493 case ENCODING_CD:
1494 case ENCODING_CP:
1495 case ENCODING_CO:
1496 case ENCODING_CT:
1497 dbgprintf(insn, "We currently don't hande code-offset encodings");
1498 return -1;
1499 case ENCODING_IB:
1500 if (readImmediate(insn, 1))
1501 return -1;
1502 if (insn->spec->operands[index].type == TYPE_IMM3 &&
1503 insn->immediates[insn->numImmediatesConsumed - 1] > 7)
1504 return -1;
1505 break;
1506 case ENCODING_IW:
1507 if (readImmediate(insn, 2))
1508 return -1;
1509 break;
1510 case ENCODING_ID:
1511 if (readImmediate(insn, 4))
1512 return -1;
1513 break;
1514 case ENCODING_IO:
1515 if (readImmediate(insn, 8))
1516 return -1;
1517 break;
1518 case ENCODING_Iv:
1519 if (readImmediate(insn, insn->immediateSize))
1520 return -1;
1521 break;
1522 case ENCODING_Ia:
1523 if (readImmediate(insn, insn->addressSize))
1524 return -1;
1525 break;
1526 case ENCODING_RB:
1527 if (readOpcodeRegister(insn, 1))
1528 return -1;
1529 break;
1530 case ENCODING_RW:
1531 if (readOpcodeRegister(insn, 2))
1532 return -1;
1533 break;
1534 case ENCODING_RD:
1535 if (readOpcodeRegister(insn, 4))
1536 return -1;
1537 break;
1538 case ENCODING_RO:
1539 if (readOpcodeRegister(insn, 8))
1540 return -1;
1541 break;
1542 case ENCODING_Rv:
1543 if (readOpcodeRegister(insn, 0))
1544 return -1;
1545 break;
1546 case ENCODING_I:
1547 if (readOpcodeModifier(insn))
1548 return -1;
1549 break;
1550 case ENCODING_VVVV:
1551 needVVVV = 0; /* Mark that we have found a VVVV operand. */
1552 if (!hasVVVV)
1553 return -1;
1554 if (fixupReg(insn, &insn->spec->operands[index]))
1555 return -1;
1556 break;
1557 case ENCODING_DUP:
1558 break;
1559 default:
1560 dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1561 return -1;
1562 }
1563 }
1564
1565 /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1566 if (needVVVV) return -1;
1567
1568 return 0;
1569 }
1570
1571 /*
1572 * decodeInstruction - Reads and interprets a full instruction provided by the
1573 * user.
1574 *
1575 * @param insn - A pointer to the instruction to be populated. Must be
1576 * pre-allocated.
1577 * @param reader - The function to be used to read the instruction's bytes.
1578 * @param readerArg - A generic argument to be passed to the reader to store
1579 * any internal state.
1580 * @param logger - If non-NULL, the function to be used to write log messages
1581 * and warnings.
1582 * @param loggerArg - A generic argument to be passed to the logger to store
1583 * any internal state.
1584 * @param startLoc - The address (in the reader's address space) of the first
1585 * byte in the instruction.
1586 * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1587 * decode the instruction in.
1588 * @return - 0 if the instruction's memory could be read; nonzero if
1589 * not.
1590 */
decodeInstruction(struct InternalInstruction * insn,byteReader_t reader,void * readerArg,dlog_t logger,void * loggerArg,uint64_t startLoc,DisassemblerMode mode)1591 int decodeInstruction(struct InternalInstruction* insn,
1592 byteReader_t reader,
1593 void* readerArg,
1594 dlog_t logger,
1595 void* loggerArg,
1596 uint64_t startLoc,
1597 DisassemblerMode mode) {
1598 memset(insn, 0, sizeof(struct InternalInstruction));
1599
1600 insn->reader = reader;
1601 insn->readerArg = readerArg;
1602 insn->dlog = logger;
1603 insn->dlogArg = loggerArg;
1604 insn->startLocation = startLoc;
1605 insn->readerCursor = startLoc;
1606 insn->mode = mode;
1607 insn->numImmediatesConsumed = 0;
1608
1609 if (readPrefixes(insn) ||
1610 readOpcode(insn) ||
1611 getID(insn) ||
1612 insn->instructionID == 0 ||
1613 readOperands(insn))
1614 return -1;
1615
1616 insn->length = insn->readerCursor - insn->startLocation;
1617
1618 dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1619 startLoc, insn->readerCursor, insn->length);
1620
1621 if (insn->length > 15)
1622 dbgprintf(insn, "Instruction exceeds 15-byte limit");
1623
1624 return 0;
1625 }
1626