1 //===- InstCombine.h - Main InstCombine pass definition -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #ifndef INSTCOMBINE_INSTCOMBINE_H
11 #define INSTCOMBINE_INSTCOMBINE_H
12
13 #include "InstCombineWorklist.h"
14 #include "llvm/IntrinsicInst.h"
15 #include "llvm/Operator.h"
16 #include "llvm/Pass.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/Support/IRBuilder.h"
19 #include "llvm/Support/InstVisitor.h"
20 #include "llvm/Support/TargetFolder.h"
21
22 namespace llvm {
23 class CallSite;
24 class TargetData;
25 class DbgDeclareInst;
26 class MemIntrinsic;
27 class MemSetInst;
28
29 /// SelectPatternFlavor - We can match a variety of different patterns for
30 /// select operations.
31 enum SelectPatternFlavor {
32 SPF_UNKNOWN = 0,
33 SPF_SMIN, SPF_UMIN,
34 SPF_SMAX, SPF_UMAX
35 //SPF_ABS - TODO.
36 };
37
38 /// getComplexity: Assign a complexity or rank value to LLVM Values...
39 /// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
getComplexity(Value * V)40 static inline unsigned getComplexity(Value *V) {
41 if (isa<Instruction>(V)) {
42 if (BinaryOperator::isNeg(V) ||
43 BinaryOperator::isFNeg(V) ||
44 BinaryOperator::isNot(V))
45 return 3;
46 return 4;
47 }
48 if (isa<Argument>(V)) return 3;
49 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
50 }
51
52
53 /// InstCombineIRInserter - This is an IRBuilder insertion helper that works
54 /// just like the normal insertion helper, but also adds any new instructions
55 /// to the instcombine worklist.
56 class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
57 : public IRBuilderDefaultInserter<true> {
58 InstCombineWorklist &Worklist;
59 public:
InstCombineIRInserter(InstCombineWorklist & WL)60 InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
61
InsertHelper(Instruction * I,const Twine & Name,BasicBlock * BB,BasicBlock::iterator InsertPt)62 void InsertHelper(Instruction *I, const Twine &Name,
63 BasicBlock *BB, BasicBlock::iterator InsertPt) const {
64 IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
65 Worklist.Add(I);
66 }
67 };
68
69 /// InstCombiner - The -instcombine pass.
70 class LLVM_LIBRARY_VISIBILITY InstCombiner
71 : public FunctionPass,
72 public InstVisitor<InstCombiner, Instruction*> {
73 TargetData *TD;
74 bool MadeIRChange;
75 public:
76 /// Worklist - All of the instructions that need to be simplified.
77 InstCombineWorklist Worklist;
78
79 /// Builder - This is an IRBuilder that automatically inserts new
80 /// instructions into the worklist when they are created.
81 typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
82 BuilderTy *Builder;
83
84 static char ID; // Pass identification, replacement for typeid
InstCombiner()85 InstCombiner() : FunctionPass(ID), TD(0), Builder(0) {
86 initializeInstCombinerPass(*PassRegistry::getPassRegistry());
87 }
88
89 public:
90 virtual bool runOnFunction(Function &F);
91
92 bool DoOneIteration(Function &F, unsigned ItNum);
93
94 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
95
getTargetData()96 TargetData *getTargetData() const { return TD; }
97
98 // Visitation implementation - Implement instruction combining for different
99 // instruction types. The semantics are as follows:
100 // Return Value:
101 // null - No change was made
102 // I - Change was made, I is still valid, I may be dead though
103 // otherwise - Change was made, replace I with returned instruction
104 //
105 Instruction *visitAdd(BinaryOperator &I);
106 Instruction *visitFAdd(BinaryOperator &I);
107 Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
108 Instruction *visitSub(BinaryOperator &I);
109 Instruction *visitFSub(BinaryOperator &I);
110 Instruction *visitMul(BinaryOperator &I);
111 Instruction *visitFMul(BinaryOperator &I);
112 Instruction *visitURem(BinaryOperator &I);
113 Instruction *visitSRem(BinaryOperator &I);
114 Instruction *visitFRem(BinaryOperator &I);
115 bool SimplifyDivRemOfSelect(BinaryOperator &I);
116 Instruction *commonRemTransforms(BinaryOperator &I);
117 Instruction *commonIRemTransforms(BinaryOperator &I);
118 Instruction *commonDivTransforms(BinaryOperator &I);
119 Instruction *commonIDivTransforms(BinaryOperator &I);
120 Instruction *visitUDiv(BinaryOperator &I);
121 Instruction *visitSDiv(BinaryOperator &I);
122 Instruction *visitFDiv(BinaryOperator &I);
123 Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
124 Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
125 Instruction *visitAnd(BinaryOperator &I);
126 Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS);
127 Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
128 Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
129 Value *A, Value *B, Value *C);
130 Instruction *visitOr (BinaryOperator &I);
131 Instruction *visitXor(BinaryOperator &I);
132 Instruction *visitShl(BinaryOperator &I);
133 Instruction *visitAShr(BinaryOperator &I);
134 Instruction *visitLShr(BinaryOperator &I);
135 Instruction *commonShiftTransforms(BinaryOperator &I);
136 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
137 Constant *RHSC);
138 Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
139 GlobalVariable *GV, CmpInst &ICI,
140 ConstantInt *AndCst = 0);
141 Instruction *visitFCmpInst(FCmpInst &I);
142 Instruction *visitICmpInst(ICmpInst &I);
143 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
144 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
145 Instruction *LHS,
146 ConstantInt *RHS);
147 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
148 ConstantInt *DivRHS);
149 Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
150 ConstantInt *DivRHS);
151 Instruction *FoldICmpAddOpCst(ICmpInst &ICI, Value *X, ConstantInt *CI,
152 ICmpInst::Predicate Pred, Value *TheAdd);
153 Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
154 ICmpInst::Predicate Cond, Instruction &I);
155 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
156 BinaryOperator &I);
157 Instruction *commonCastTransforms(CastInst &CI);
158 Instruction *commonPointerCastTransforms(CastInst &CI);
159 Instruction *visitTrunc(TruncInst &CI);
160 Instruction *visitZExt(ZExtInst &CI);
161 Instruction *visitSExt(SExtInst &CI);
162 Instruction *visitFPTrunc(FPTruncInst &CI);
163 Instruction *visitFPExt(CastInst &CI);
164 Instruction *visitFPToUI(FPToUIInst &FI);
165 Instruction *visitFPToSI(FPToSIInst &FI);
166 Instruction *visitUIToFP(CastInst &CI);
167 Instruction *visitSIToFP(CastInst &CI);
168 Instruction *visitPtrToInt(PtrToIntInst &CI);
169 Instruction *visitIntToPtr(IntToPtrInst &CI);
170 Instruction *visitBitCast(BitCastInst &CI);
171 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
172 Instruction *FI);
173 Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*);
174 Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
175 Value *A, Value *B, Instruction &Outer,
176 SelectPatternFlavor SPF2, Value *C);
177 Instruction *visitSelectInst(SelectInst &SI);
178 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
179 Instruction *visitCallInst(CallInst &CI);
180 Instruction *visitInvokeInst(InvokeInst &II);
181
182 Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
183 Instruction *visitPHINode(PHINode &PN);
184 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
185 Instruction *visitAllocaInst(AllocaInst &AI);
186 Instruction *visitMalloc(Instruction &FI);
187 Instruction *visitFree(CallInst &FI);
188 Instruction *visitLoadInst(LoadInst &LI);
189 Instruction *visitStoreInst(StoreInst &SI);
190 Instruction *visitBranchInst(BranchInst &BI);
191 Instruction *visitSwitchInst(SwitchInst &SI);
192 Instruction *visitInsertElementInst(InsertElementInst &IE);
193 Instruction *visitExtractElementInst(ExtractElementInst &EI);
194 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
195 Instruction *visitExtractValueInst(ExtractValueInst &EV);
196 Instruction *visitLandingPadInst(LandingPadInst &LI);
197
198 // visitInstruction - Specify what to return for unhandled instructions...
visitInstruction(Instruction & I)199 Instruction *visitInstruction(Instruction &I) { return 0; }
200
201 private:
202 bool ShouldChangeType(Type *From, Type *To) const;
203 Value *dyn_castNegVal(Value *V) const;
204 Value *dyn_castFNegVal(Value *V) const;
205 Type *FindElementAtOffset(Type *Ty, int64_t Offset,
206 SmallVectorImpl<Value*> &NewIndices);
207 Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
208
209 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
210 /// results in any code being generated and is interesting to optimize out. If
211 /// the cast can be eliminated by some other simple transformation, we prefer
212 /// to do the simplification first.
213 bool ShouldOptimizeCast(Instruction::CastOps opcode,const Value *V,
214 Type *Ty);
215
216 Instruction *visitCallSite(CallSite CS);
217 Instruction *tryOptimizeCall(CallInst *CI, const TargetData *TD);
218 bool transformConstExprCastCall(CallSite CS);
219 Instruction *transformCallThroughTrampoline(CallSite CS,
220 IntrinsicInst *Tramp);
221 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
222 bool DoXform = true);
223 Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
224 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
225 Value *EmitGEPOffset(User *GEP);
226
227 public:
228 // InsertNewInstBefore - insert an instruction New before instruction Old
229 // in the program. Add the new instruction to the worklist.
230 //
InsertNewInstBefore(Instruction * New,Instruction & Old)231 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
232 assert(New && New->getParent() == 0 &&
233 "New instruction already inserted into a basic block!");
234 BasicBlock *BB = Old.getParent();
235 BB->getInstList().insert(&Old, New); // Insert inst
236 Worklist.Add(New);
237 return New;
238 }
239
240 // InsertNewInstWith - same as InsertNewInstBefore, but also sets the
241 // debug loc.
242 //
InsertNewInstWith(Instruction * New,Instruction & Old)243 Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
244 New->setDebugLoc(Old.getDebugLoc());
245 return InsertNewInstBefore(New, Old);
246 }
247
248 // ReplaceInstUsesWith - This method is to be used when an instruction is
249 // found to be dead, replacable with another preexisting expression. Here
250 // we add all uses of I to the worklist, replace all uses of I with the new
251 // value, then return I, so that the inst combiner will know that I was
252 // modified.
253 //
ReplaceInstUsesWith(Instruction & I,Value * V)254 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
255 Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
256
257 // If we are replacing the instruction with itself, this must be in a
258 // segment of unreachable code, so just clobber the instruction.
259 if (&I == V)
260 V = UndefValue::get(I.getType());
261
262 DEBUG(errs() << "IC: Replacing " << I << "\n"
263 " with " << *V << '\n');
264
265 I.replaceAllUsesWith(V);
266 return &I;
267 }
268
269 // EraseInstFromFunction - When dealing with an instruction that has side
270 // effects or produces a void value, we can't rely on DCE to delete the
271 // instruction. Instead, visit methods should return the value returned by
272 // this function.
EraseInstFromFunction(Instruction & I)273 Instruction *EraseInstFromFunction(Instruction &I) {
274 DEBUG(errs() << "IC: ERASE " << I << '\n');
275
276 assert(I.use_empty() && "Cannot erase instruction that is used!");
277 // Make sure that we reprocess all operands now that we reduced their
278 // use counts.
279 if (I.getNumOperands() < 8) {
280 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
281 if (Instruction *Op = dyn_cast<Instruction>(*i))
282 Worklist.Add(Op);
283 }
284 Worklist.Remove(&I);
285 I.eraseFromParent();
286 MadeIRChange = true;
287 return 0; // Don't do anything with FI
288 }
289
290 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
291 APInt &KnownOne, unsigned Depth = 0) const {
292 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
293 }
294
295 bool MaskedValueIsZero(Value *V, const APInt &Mask,
296 unsigned Depth = 0) const {
297 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
298 }
299 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
300 return llvm::ComputeNumSignBits(Op, TD, Depth);
301 }
302
303 private:
304
305 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
306 /// operators which are associative or commutative.
307 bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
308
309 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
310 /// which some other binary operation distributes over either by factorizing
311 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
312 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
313 /// a win). Returns the simplified value, or null if it didn't simplify.
314 Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
315
316 /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
317 /// based on the demanded bits.
318 Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
319 APInt& KnownZero, APInt& KnownOne,
320 unsigned Depth);
321 bool SimplifyDemandedBits(Use &U, APInt DemandedMask,
322 APInt& KnownZero, APInt& KnownOne,
323 unsigned Depth=0);
324
325 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
326 /// SimplifyDemandedBits knows about. See if the instruction has any
327 /// properties that allow us to simplify its operands.
328 bool SimplifyDemandedInstructionBits(Instruction &Inst);
329
330 Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
331 APInt& UndefElts, unsigned Depth = 0);
332
333 // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
334 // which has a PHI node as operand #0, see if we can fold the instruction
335 // into the PHI (which is only possible if all operands to the PHI are
336 // constants).
337 //
338 Instruction *FoldOpIntoPhi(Instruction &I);
339
340 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
341 // operator and they all are only used by the PHI, PHI together their
342 // inputs, and do the operation once, to the result of the PHI.
343 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
344 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
345 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
346 Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
347
348
349 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
350 ConstantInt *AndRHS, BinaryOperator &TheAnd);
351
352 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
353 bool isSub, Instruction &I);
354 Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
355 bool isSigned, bool Inside);
356 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
357 Instruction *MatchBSwap(BinaryOperator &I);
358 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
359 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
360 Instruction *SimplifyMemSet(MemSetInst *MI);
361
362
363 Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
364 };
365
366
367
368 } // end namespace llvm.
369
370 #endif
371