1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Instruction class for the VMCore library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Instruction.h"
15 #include "llvm/Type.h"
16 #include "llvm/Instructions.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Module.h"
19 #include "llvm/Support/CallSite.h"
20 #include "llvm/Support/LeakDetector.h"
21 using namespace llvm;
22
Instruction(Type * ty,unsigned it,Use * Ops,unsigned NumOps,Instruction * InsertBefore)23 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
24 Instruction *InsertBefore)
25 : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
26 // Make sure that we get added to a basicblock
27 LeakDetector::addGarbageObject(this);
28
29 // If requested, insert this instruction into a basic block...
30 if (InsertBefore) {
31 assert(InsertBefore->getParent() &&
32 "Instruction to insert before is not in a basic block!");
33 InsertBefore->getParent()->getInstList().insert(InsertBefore, this);
34 }
35 }
36
Instruction(Type * ty,unsigned it,Use * Ops,unsigned NumOps,BasicBlock * InsertAtEnd)37 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
38 BasicBlock *InsertAtEnd)
39 : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
40 // Make sure that we get added to a basicblock
41 LeakDetector::addGarbageObject(this);
42
43 // append this instruction into the basic block
44 assert(InsertAtEnd && "Basic block to append to may not be NULL!");
45 InsertAtEnd->getInstList().push_back(this);
46 }
47
48
49 // Out of line virtual method, so the vtable, etc has a home.
~Instruction()50 Instruction::~Instruction() {
51 assert(Parent == 0 && "Instruction still linked in the program!");
52 if (hasMetadataHashEntry())
53 clearMetadataHashEntries();
54 }
55
56
setParent(BasicBlock * P)57 void Instruction::setParent(BasicBlock *P) {
58 if (getParent()) {
59 if (!P) LeakDetector::addGarbageObject(this);
60 } else {
61 if (P) LeakDetector::removeGarbageObject(this);
62 }
63
64 Parent = P;
65 }
66
removeFromParent()67 void Instruction::removeFromParent() {
68 getParent()->getInstList().remove(this);
69 }
70
eraseFromParent()71 void Instruction::eraseFromParent() {
72 getParent()->getInstList().erase(this);
73 }
74
75 /// insertBefore - Insert an unlinked instructions into a basic block
76 /// immediately before the specified instruction.
insertBefore(Instruction * InsertPos)77 void Instruction::insertBefore(Instruction *InsertPos) {
78 InsertPos->getParent()->getInstList().insert(InsertPos, this);
79 }
80
81 /// insertAfter - Insert an unlinked instructions into a basic block
82 /// immediately after the specified instruction.
insertAfter(Instruction * InsertPos)83 void Instruction::insertAfter(Instruction *InsertPos) {
84 InsertPos->getParent()->getInstList().insertAfter(InsertPos, this);
85 }
86
87 /// moveBefore - Unlink this instruction from its current basic block and
88 /// insert it into the basic block that MovePos lives in, right before
89 /// MovePos.
moveBefore(Instruction * MovePos)90 void Instruction::moveBefore(Instruction *MovePos) {
91 MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(),
92 this);
93 }
94
95
getOpcodeName(unsigned OpCode)96 const char *Instruction::getOpcodeName(unsigned OpCode) {
97 switch (OpCode) {
98 // Terminators
99 case Ret: return "ret";
100 case Br: return "br";
101 case Switch: return "switch";
102 case IndirectBr: return "indirectbr";
103 case Invoke: return "invoke";
104 case Resume: return "resume";
105 case Unwind: return "unwind";
106 case Unreachable: return "unreachable";
107
108 // Standard binary operators...
109 case Add: return "add";
110 case FAdd: return "fadd";
111 case Sub: return "sub";
112 case FSub: return "fsub";
113 case Mul: return "mul";
114 case FMul: return "fmul";
115 case UDiv: return "udiv";
116 case SDiv: return "sdiv";
117 case FDiv: return "fdiv";
118 case URem: return "urem";
119 case SRem: return "srem";
120 case FRem: return "frem";
121
122 // Logical operators...
123 case And: return "and";
124 case Or : return "or";
125 case Xor: return "xor";
126
127 // Memory instructions...
128 case Alloca: return "alloca";
129 case Load: return "load";
130 case Store: return "store";
131 case AtomicCmpXchg: return "cmpxchg";
132 case AtomicRMW: return "atomicrmw";
133 case Fence: return "fence";
134 case GetElementPtr: return "getelementptr";
135
136 // Convert instructions...
137 case Trunc: return "trunc";
138 case ZExt: return "zext";
139 case SExt: return "sext";
140 case FPTrunc: return "fptrunc";
141 case FPExt: return "fpext";
142 case FPToUI: return "fptoui";
143 case FPToSI: return "fptosi";
144 case UIToFP: return "uitofp";
145 case SIToFP: return "sitofp";
146 case IntToPtr: return "inttoptr";
147 case PtrToInt: return "ptrtoint";
148 case BitCast: return "bitcast";
149
150 // Other instructions...
151 case ICmp: return "icmp";
152 case FCmp: return "fcmp";
153 case PHI: return "phi";
154 case Select: return "select";
155 case Call: return "call";
156 case Shl: return "shl";
157 case LShr: return "lshr";
158 case AShr: return "ashr";
159 case VAArg: return "va_arg";
160 case ExtractElement: return "extractelement";
161 case InsertElement: return "insertelement";
162 case ShuffleVector: return "shufflevector";
163 case ExtractValue: return "extractvalue";
164 case InsertValue: return "insertvalue";
165 case LandingPad: return "landingpad";
166
167 default: return "<Invalid operator> ";
168 }
169
170 return 0;
171 }
172
173 /// isIdenticalTo - Return true if the specified instruction is exactly
174 /// identical to the current one. This means that all operands match and any
175 /// extra information (e.g. load is volatile) agree.
isIdenticalTo(const Instruction * I) const176 bool Instruction::isIdenticalTo(const Instruction *I) const {
177 return isIdenticalToWhenDefined(I) &&
178 SubclassOptionalData == I->SubclassOptionalData;
179 }
180
181 /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
182 /// ignores the SubclassOptionalData flags, which specify conditions
183 /// under which the instruction's result is undefined.
isIdenticalToWhenDefined(const Instruction * I) const184 bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
185 if (getOpcode() != I->getOpcode() ||
186 getNumOperands() != I->getNumOperands() ||
187 getType() != I->getType())
188 return false;
189
190 // We have two instructions of identical opcode and #operands. Check to see
191 // if all operands are the same.
192 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
193 if (getOperand(i) != I->getOperand(i))
194 return false;
195
196 // Check special state that is a part of some instructions.
197 if (const LoadInst *LI = dyn_cast<LoadInst>(this))
198 return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
199 LI->getAlignment() == cast<LoadInst>(I)->getAlignment() &&
200 LI->getOrdering() == cast<LoadInst>(I)->getOrdering() &&
201 LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope();
202 if (const StoreInst *SI = dyn_cast<StoreInst>(this))
203 return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
204 SI->getAlignment() == cast<StoreInst>(I)->getAlignment() &&
205 SI->getOrdering() == cast<StoreInst>(I)->getOrdering() &&
206 SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope();
207 if (const CmpInst *CI = dyn_cast<CmpInst>(this))
208 return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
209 if (const CallInst *CI = dyn_cast<CallInst>(this))
210 return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
211 CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
212 CI->getAttributes() == cast<CallInst>(I)->getAttributes();
213 if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
214 return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
215 CI->getAttributes() == cast<InvokeInst>(I)->getAttributes();
216 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
217 return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
218 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
219 return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
220 if (const FenceInst *FI = dyn_cast<FenceInst>(this))
221 return FI->getOrdering() == cast<FenceInst>(FI)->getOrdering() &&
222 FI->getSynchScope() == cast<FenceInst>(FI)->getSynchScope();
223 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this))
224 return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() &&
225 CXI->getOrdering() == cast<AtomicCmpXchgInst>(I)->getOrdering() &&
226 CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope();
227 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this))
228 return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() &&
229 RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() &&
230 RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() &&
231 RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope();
232
233 return true;
234 }
235
236 // isSameOperationAs
237 // This should be kept in sync with isEquivalentOperation in
238 // lib/Transforms/IPO/MergeFunctions.cpp.
isSameOperationAs(const Instruction * I) const239 bool Instruction::isSameOperationAs(const Instruction *I) const {
240 if (getOpcode() != I->getOpcode() ||
241 getNumOperands() != I->getNumOperands() ||
242 getType() != I->getType())
243 return false;
244
245 // We have two instructions of identical opcode and #operands. Check to see
246 // if all operands are the same type
247 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
248 if (getOperand(i)->getType() != I->getOperand(i)->getType())
249 return false;
250
251 // Check special state that is a part of some instructions.
252 if (const LoadInst *LI = dyn_cast<LoadInst>(this))
253 return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
254 LI->getAlignment() == cast<LoadInst>(I)->getAlignment() &&
255 LI->getOrdering() == cast<LoadInst>(I)->getOrdering() &&
256 LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope();
257 if (const StoreInst *SI = dyn_cast<StoreInst>(this))
258 return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
259 SI->getAlignment() == cast<StoreInst>(I)->getAlignment() &&
260 SI->getOrdering() == cast<StoreInst>(I)->getOrdering() &&
261 SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope();
262 if (const CmpInst *CI = dyn_cast<CmpInst>(this))
263 return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
264 if (const CallInst *CI = dyn_cast<CallInst>(this))
265 return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
266 CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
267 CI->getAttributes() == cast<CallInst>(I)->getAttributes();
268 if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
269 return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
270 CI->getAttributes() ==
271 cast<InvokeInst>(I)->getAttributes();
272 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
273 return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
274 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
275 return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
276 if (const FenceInst *FI = dyn_cast<FenceInst>(this))
277 return FI->getOrdering() == cast<FenceInst>(I)->getOrdering() &&
278 FI->getSynchScope() == cast<FenceInst>(I)->getSynchScope();
279 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this))
280 return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() &&
281 CXI->getOrdering() == cast<AtomicCmpXchgInst>(I)->getOrdering() &&
282 CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope();
283 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this))
284 return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() &&
285 RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() &&
286 RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() &&
287 RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope();
288
289 return true;
290 }
291
292 /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
293 /// specified block. Note that PHI nodes are considered to evaluate their
294 /// operands in the corresponding predecessor block.
isUsedOutsideOfBlock(const BasicBlock * BB) const295 bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
296 for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
297 // PHI nodes uses values in the corresponding predecessor block. For other
298 // instructions, just check to see whether the parent of the use matches up.
299 const User *U = *UI;
300 const PHINode *PN = dyn_cast<PHINode>(U);
301 if (PN == 0) {
302 if (cast<Instruction>(U)->getParent() != BB)
303 return true;
304 continue;
305 }
306
307 if (PN->getIncomingBlock(UI) != BB)
308 return true;
309 }
310 return false;
311 }
312
313 /// mayReadFromMemory - Return true if this instruction may read memory.
314 ///
mayReadFromMemory() const315 bool Instruction::mayReadFromMemory() const {
316 switch (getOpcode()) {
317 default: return false;
318 case Instruction::VAArg:
319 case Instruction::Load:
320 case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
321 case Instruction::AtomicCmpXchg:
322 case Instruction::AtomicRMW:
323 return true;
324 case Instruction::Call:
325 return !cast<CallInst>(this)->doesNotAccessMemory();
326 case Instruction::Invoke:
327 return !cast<InvokeInst>(this)->doesNotAccessMemory();
328 case Instruction::Store:
329 return !cast<StoreInst>(this)->isUnordered();
330 }
331 }
332
333 /// mayWriteToMemory - Return true if this instruction may modify memory.
334 ///
mayWriteToMemory() const335 bool Instruction::mayWriteToMemory() const {
336 switch (getOpcode()) {
337 default: return false;
338 case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
339 case Instruction::Store:
340 case Instruction::VAArg:
341 case Instruction::AtomicCmpXchg:
342 case Instruction::AtomicRMW:
343 return true;
344 case Instruction::Call:
345 return !cast<CallInst>(this)->onlyReadsMemory();
346 case Instruction::Invoke:
347 return !cast<InvokeInst>(this)->onlyReadsMemory();
348 case Instruction::Load:
349 return !cast<LoadInst>(this)->isUnordered();
350 }
351 }
352
353 /// mayThrow - Return true if this instruction may throw an exception.
354 ///
mayThrow() const355 bool Instruction::mayThrow() const {
356 if (const CallInst *CI = dyn_cast<CallInst>(this))
357 return !CI->doesNotThrow();
358 return isa<ResumeInst>(this);
359 }
360
361 /// isAssociative - Return true if the instruction is associative:
362 ///
363 /// Associative operators satisfy: x op (y op z) === (x op y) op z
364 ///
365 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
366 ///
isAssociative(unsigned Opcode)367 bool Instruction::isAssociative(unsigned Opcode) {
368 return Opcode == And || Opcode == Or || Opcode == Xor ||
369 Opcode == Add || Opcode == Mul;
370 }
371
372 /// isCommutative - Return true if the instruction is commutative:
373 ///
374 /// Commutative operators satisfy: (x op y) === (y op x)
375 ///
376 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
377 /// applied to any type.
378 ///
isCommutative(unsigned op)379 bool Instruction::isCommutative(unsigned op) {
380 switch (op) {
381 case Add:
382 case FAdd:
383 case Mul:
384 case FMul:
385 case And:
386 case Or:
387 case Xor:
388 return true;
389 default:
390 return false;
391 }
392 }
393
isSafeToSpeculativelyExecute() const394 bool Instruction::isSafeToSpeculativelyExecute() const {
395 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
396 if (Constant *C = dyn_cast<Constant>(getOperand(i)))
397 if (C->canTrap())
398 return false;
399
400 switch (getOpcode()) {
401 default:
402 return true;
403 case UDiv:
404 case URem: {
405 // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
406 ConstantInt *Op = dyn_cast<ConstantInt>(getOperand(1));
407 return Op && !Op->isNullValue();
408 }
409 case SDiv:
410 case SRem: {
411 // x / y is undefined if y == 0, and might be undefined if y == -1,
412 // but calcuations like x / 3 are safe.
413 ConstantInt *Op = dyn_cast<ConstantInt>(getOperand(1));
414 return Op && !Op->isNullValue() && !Op->isAllOnesValue();
415 }
416 case Load: {
417 const LoadInst *LI = cast<LoadInst>(this);
418 if (!LI->isUnordered())
419 return false;
420 return LI->getPointerOperand()->isDereferenceablePointer();
421 }
422 case Call:
423 return false; // The called function could have undefined behavior or
424 // side-effects.
425 // FIXME: We should special-case some intrinsics (bswap,
426 // overflow-checking arithmetic, etc.)
427 case VAArg:
428 case Alloca:
429 case Invoke:
430 case PHI:
431 case Store:
432 case Ret:
433 case Br:
434 case IndirectBr:
435 case Switch:
436 case Unwind:
437 case Unreachable:
438 case Fence:
439 case LandingPad:
440 case AtomicRMW:
441 case AtomicCmpXchg:
442 case Resume:
443 return false; // Misc instructions which have effects
444 }
445 }
446
clone() const447 Instruction *Instruction::clone() const {
448 Instruction *New = clone_impl();
449 New->SubclassOptionalData = SubclassOptionalData;
450 if (!hasMetadata())
451 return New;
452
453 // Otherwise, enumerate and copy over metadata from the old instruction to the
454 // new one.
455 SmallVector<std::pair<unsigned, MDNode*>, 4> TheMDs;
456 getAllMetadataOtherThanDebugLoc(TheMDs);
457 for (unsigned i = 0, e = TheMDs.size(); i != e; ++i)
458 New->setMetadata(TheMDs[i].first, TheMDs[i].second);
459
460 New->setDebugLoc(getDebugLoc());
461 return New;
462 }
463