1;; X's live range extends beyond the shift, so the register allocator 2;; cannot coalesce it with Y. Because of this, a copy needs to be 3;; emitted before the shift to save the register value before it is 4;; clobbered. However, this copy is not needed if the register 5;; allocator turns the shift into an LEA. This also occurs for ADD. 6 7; Check that the shift gets turned into an LEA. 8; RUN: llc < %s -mtriple=x86_64-apple-darwin | FileCheck %s 9 10@G = external global i32 11 12define i32 @test1(i32 %X) nounwind { 13; CHECK: test1: 14; CHECK-NOT: mov 15; CHECK: leal 1(%rdi) 16 %Z = add i32 %X, 1 17 volatile store i32 %Z, i32* @G 18 ret i32 %X 19} 20 21; rdar://8977508 22; The second add should not be transformed to leal nor should it be 23; commutted (which would require inserting a copy). 24define i32 @test2(i32 inreg %a, i32 inreg %b, i32 %c, i32 %d) nounwind { 25entry: 26; CHECK: test2: 27; CHECK: leal 28; CHECK-NOT: leal 29; CHECK-NOT: mov 30; CHECK-NEXT: addl 31; CHECK-NEXT: ret 32 %add = add i32 %b, %a 33 %add3 = add i32 %add, %c 34 %add5 = add i32 %add3, %d 35 ret i32 %add5 36} 37 38; rdar://9002648 39define i64 @test3(i64 %x) nounwind readnone ssp { 40entry: 41; CHECK: test3: 42; CHECK: leaq (%rdi,%rdi), %rax 43; CHECK-NOT: addq 44; CHECK-NEXT: ret 45 %0 = shl i64 %x, 1 46 ret i64 %0 47} 48