• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision integer
11 // constant values and provide a variety of arithmetic operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/MathExtras.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include <climits>
26 #include <cmath>
27 #include <cstdlib>
28 #include <cstring>
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "apint"
32 
33 /// A utility function for allocating memory, checking for allocation failures,
34 /// and ensuring the contents are zeroed.
getClearedMemory(unsigned numWords)35 inline static uint64_t* getClearedMemory(unsigned numWords) {
36   uint64_t * result = new uint64_t[numWords];
37   assert(result && "APInt memory allocation fails!");
38   memset(result, 0, numWords * sizeof(uint64_t));
39   return result;
40 }
41 
42 /// A utility function for allocating memory and checking for allocation
43 /// failure.  The content is not zeroed.
getMemory(unsigned numWords)44 inline static uint64_t* getMemory(unsigned numWords) {
45   uint64_t * result = new uint64_t[numWords];
46   assert(result && "APInt memory allocation fails!");
47   return result;
48 }
49 
50 /// A utility function that converts a character to a digit.
getDigit(char cdigit,uint8_t radix)51 inline static unsigned getDigit(char cdigit, uint8_t radix) {
52   unsigned r;
53 
54   if (radix == 16 || radix == 36) {
55     r = cdigit - '0';
56     if (r <= 9)
57       return r;
58 
59     r = cdigit - 'A';
60     if (r <= radix - 11U)
61       return r + 10;
62 
63     r = cdigit - 'a';
64     if (r <= radix - 11U)
65       return r + 10;
66 
67     radix = 10;
68   }
69 
70   r = cdigit - '0';
71   if (r < radix)
72     return r;
73 
74   return -1U;
75 }
76 
77 
initSlowCase(uint64_t val,bool isSigned)78 void APInt::initSlowCase(uint64_t val, bool isSigned) {
79   pVal = getClearedMemory(getNumWords());
80   pVal[0] = val;
81   if (isSigned && int64_t(val) < 0)
82     for (unsigned i = 1; i < getNumWords(); ++i)
83       pVal[i] = -1ULL;
84 }
85 
initSlowCase(const APInt & that)86 void APInt::initSlowCase(const APInt& that) {
87   pVal = getMemory(getNumWords());
88   memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
89 }
90 
initFromArray(ArrayRef<uint64_t> bigVal)91 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
92   assert(BitWidth && "Bitwidth too small");
93   assert(bigVal.data() && "Null pointer detected!");
94   if (isSingleWord())
95     VAL = bigVal[0];
96   else {
97     // Get memory, cleared to 0
98     pVal = getClearedMemory(getNumWords());
99     // Calculate the number of words to copy
100     unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
101     // Copy the words from bigVal to pVal
102     memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE);
103   }
104   // Make sure unused high bits are cleared
105   clearUnusedBits();
106 }
107 
APInt(unsigned numBits,ArrayRef<uint64_t> bigVal)108 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
109   : BitWidth(numBits), VAL(0) {
110   initFromArray(bigVal);
111 }
112 
APInt(unsigned numBits,unsigned numWords,const uint64_t bigVal[])113 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
114   : BitWidth(numBits), VAL(0) {
115   initFromArray(makeArrayRef(bigVal, numWords));
116 }
117 
APInt(unsigned numbits,StringRef Str,uint8_t radix)118 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
119   : BitWidth(numbits), VAL(0) {
120   assert(BitWidth && "Bitwidth too small");
121   fromString(numbits, Str, radix);
122 }
123 
AssignSlowCase(const APInt & RHS)124 APInt& APInt::AssignSlowCase(const APInt& RHS) {
125   // Don't do anything for X = X
126   if (this == &RHS)
127     return *this;
128 
129   if (BitWidth == RHS.getBitWidth()) {
130     // assume same bit-width single-word case is already handled
131     assert(!isSingleWord());
132     memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
133     return *this;
134   }
135 
136   if (isSingleWord()) {
137     // assume case where both are single words is already handled
138     assert(!RHS.isSingleWord());
139     VAL = 0;
140     pVal = getMemory(RHS.getNumWords());
141     memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
142   } else if (getNumWords() == RHS.getNumWords())
143     memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
144   else if (RHS.isSingleWord()) {
145     delete [] pVal;
146     VAL = RHS.VAL;
147   } else {
148     delete [] pVal;
149     pVal = getMemory(RHS.getNumWords());
150     memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
151   }
152   BitWidth = RHS.BitWidth;
153   return clearUnusedBits();
154 }
155 
operator =(uint64_t RHS)156 APInt& APInt::operator=(uint64_t RHS) {
157   if (isSingleWord())
158     VAL = RHS;
159   else {
160     pVal[0] = RHS;
161     memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
162   }
163   return clearUnusedBits();
164 }
165 
166 /// This method 'profiles' an APInt for use with FoldingSet.
Profile(FoldingSetNodeID & ID) const167 void APInt::Profile(FoldingSetNodeID& ID) const {
168   ID.AddInteger(BitWidth);
169 
170   if (isSingleWord()) {
171     ID.AddInteger(VAL);
172     return;
173   }
174 
175   unsigned NumWords = getNumWords();
176   for (unsigned i = 0; i < NumWords; ++i)
177     ID.AddInteger(pVal[i]);
178 }
179 
180 /// This function adds a single "digit" integer, y, to the multiple
181 /// "digit" integer array,  x[]. x[] is modified to reflect the addition and
182 /// 1 is returned if there is a carry out, otherwise 0 is returned.
183 /// @returns the carry of the addition.
add_1(uint64_t dest[],uint64_t x[],unsigned len,uint64_t y)184 static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
185   for (unsigned i = 0; i < len; ++i) {
186     dest[i] = y + x[i];
187     if (dest[i] < y)
188       y = 1; // Carry one to next digit.
189     else {
190       y = 0; // No need to carry so exit early
191       break;
192     }
193   }
194   return y;
195 }
196 
197 /// @brief Prefix increment operator. Increments the APInt by one.
operator ++()198 APInt& APInt::operator++() {
199   if (isSingleWord())
200     ++VAL;
201   else
202     add_1(pVal, pVal, getNumWords(), 1);
203   return clearUnusedBits();
204 }
205 
206 /// This function subtracts a single "digit" (64-bit word), y, from
207 /// the multi-digit integer array, x[], propagating the borrowed 1 value until
208 /// no further borrowing is neeeded or it runs out of "digits" in x.  The result
209 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
210 /// In other words, if y > x then this function returns 1, otherwise 0.
211 /// @returns the borrow out of the subtraction
sub_1(uint64_t x[],unsigned len,uint64_t y)212 static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
213   for (unsigned i = 0; i < len; ++i) {
214     uint64_t X = x[i];
215     x[i] -= y;
216     if (y > X)
217       y = 1;  // We have to "borrow 1" from next "digit"
218     else {
219       y = 0;  // No need to borrow
220       break;  // Remaining digits are unchanged so exit early
221     }
222   }
223   return bool(y);
224 }
225 
226 /// @brief Prefix decrement operator. Decrements the APInt by one.
operator --()227 APInt& APInt::operator--() {
228   if (isSingleWord())
229     --VAL;
230   else
231     sub_1(pVal, getNumWords(), 1);
232   return clearUnusedBits();
233 }
234 
235 /// This function adds the integer array x to the integer array Y and
236 /// places the result in dest.
237 /// @returns the carry out from the addition
238 /// @brief General addition of 64-bit integer arrays
add(uint64_t * dest,const uint64_t * x,const uint64_t * y,unsigned len)239 static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
240                 unsigned len) {
241   bool carry = false;
242   for (unsigned i = 0; i< len; ++i) {
243     uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
244     dest[i] = x[i] + y[i] + carry;
245     carry = dest[i] < limit || (carry && dest[i] == limit);
246   }
247   return carry;
248 }
249 
250 /// Adds the RHS APint to this APInt.
251 /// @returns this, after addition of RHS.
252 /// @brief Addition assignment operator.
operator +=(const APInt & RHS)253 APInt& APInt::operator+=(const APInt& RHS) {
254   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
255   if (isSingleWord())
256     VAL += RHS.VAL;
257   else {
258     add(pVal, pVal, RHS.pVal, getNumWords());
259   }
260   return clearUnusedBits();
261 }
262 
operator +=(uint64_t RHS)263 APInt& APInt::operator+=(uint64_t RHS) {
264   if (isSingleWord())
265     VAL += RHS;
266   else
267     add_1(pVal, pVal, getNumWords(), RHS);
268   return clearUnusedBits();
269 }
270 
271 /// Subtracts the integer array y from the integer array x
272 /// @returns returns the borrow out.
273 /// @brief Generalized subtraction of 64-bit integer arrays.
sub(uint64_t * dest,const uint64_t * x,const uint64_t * y,unsigned len)274 static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
275                 unsigned len) {
276   bool borrow = false;
277   for (unsigned i = 0; i < len; ++i) {
278     uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
279     borrow = y[i] > x_tmp || (borrow && x[i] == 0);
280     dest[i] = x_tmp - y[i];
281   }
282   return borrow;
283 }
284 
285 /// Subtracts the RHS APInt from this APInt
286 /// @returns this, after subtraction
287 /// @brief Subtraction assignment operator.
operator -=(const APInt & RHS)288 APInt& APInt::operator-=(const APInt& RHS) {
289   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
290   if (isSingleWord())
291     VAL -= RHS.VAL;
292   else
293     sub(pVal, pVal, RHS.pVal, getNumWords());
294   return clearUnusedBits();
295 }
296 
operator -=(uint64_t RHS)297 APInt& APInt::operator-=(uint64_t RHS) {
298   if (isSingleWord())
299     VAL -= RHS;
300   else
301     sub_1(pVal, getNumWords(), RHS);
302   return clearUnusedBits();
303 }
304 
305 /// Multiplies an integer array, x, by a uint64_t integer and places the result
306 /// into dest.
307 /// @returns the carry out of the multiplication.
308 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
mul_1(uint64_t dest[],uint64_t x[],unsigned len,uint64_t y)309 static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
310   // Split y into high 32-bit part (hy)  and low 32-bit part (ly)
311   uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
312   uint64_t carry = 0;
313 
314   // For each digit of x.
315   for (unsigned i = 0; i < len; ++i) {
316     // Split x into high and low words
317     uint64_t lx = x[i] & 0xffffffffULL;
318     uint64_t hx = x[i] >> 32;
319     // hasCarry - A flag to indicate if there is a carry to the next digit.
320     // hasCarry == 0, no carry
321     // hasCarry == 1, has carry
322     // hasCarry == 2, no carry and the calculation result == 0.
323     uint8_t hasCarry = 0;
324     dest[i] = carry + lx * ly;
325     // Determine if the add above introduces carry.
326     hasCarry = (dest[i] < carry) ? 1 : 0;
327     carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
328     // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
329     // (2^32 - 1) + 2^32 = 2^64.
330     hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
331 
332     carry += (lx * hy) & 0xffffffffULL;
333     dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
334     carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
335             (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
336   }
337   return carry;
338 }
339 
340 /// Multiplies integer array x by integer array y and stores the result into
341 /// the integer array dest. Note that dest's size must be >= xlen + ylen.
342 /// @brief Generalized multiplicate of integer arrays.
mul(uint64_t dest[],uint64_t x[],unsigned xlen,uint64_t y[],unsigned ylen)343 static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
344                 unsigned ylen) {
345   dest[xlen] = mul_1(dest, x, xlen, y[0]);
346   for (unsigned i = 1; i < ylen; ++i) {
347     uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
348     uint64_t carry = 0, lx = 0, hx = 0;
349     for (unsigned j = 0; j < xlen; ++j) {
350       lx = x[j] & 0xffffffffULL;
351       hx = x[j] >> 32;
352       // hasCarry - A flag to indicate if has carry.
353       // hasCarry == 0, no carry
354       // hasCarry == 1, has carry
355       // hasCarry == 2, no carry and the calculation result == 0.
356       uint8_t hasCarry = 0;
357       uint64_t resul = carry + lx * ly;
358       hasCarry = (resul < carry) ? 1 : 0;
359       carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
360       hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
361 
362       carry += (lx * hy) & 0xffffffffULL;
363       resul = (carry << 32) | (resul & 0xffffffffULL);
364       dest[i+j] += resul;
365       carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
366               (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
367               ((lx * hy) >> 32) + hx * hy;
368     }
369     dest[i+xlen] = carry;
370   }
371 }
372 
operator *=(const APInt & RHS)373 APInt& APInt::operator*=(const APInt& RHS) {
374   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
375   if (isSingleWord()) {
376     VAL *= RHS.VAL;
377     clearUnusedBits();
378     return *this;
379   }
380 
381   // Get some bit facts about LHS and check for zero
382   unsigned lhsBits = getActiveBits();
383   unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
384   if (!lhsWords)
385     // 0 * X ===> 0
386     return *this;
387 
388   // Get some bit facts about RHS and check for zero
389   unsigned rhsBits = RHS.getActiveBits();
390   unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
391   if (!rhsWords) {
392     // X * 0 ===> 0
393     clearAllBits();
394     return *this;
395   }
396 
397   // Allocate space for the result
398   unsigned destWords = rhsWords + lhsWords;
399   uint64_t *dest = getMemory(destWords);
400 
401   // Perform the long multiply
402   mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
403 
404   // Copy result back into *this
405   clearAllBits();
406   unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
407   memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
408   clearUnusedBits();
409 
410   // delete dest array and return
411   delete[] dest;
412   return *this;
413 }
414 
operator &=(const APInt & RHS)415 APInt& APInt::operator&=(const APInt& RHS) {
416   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
417   if (isSingleWord()) {
418     VAL &= RHS.VAL;
419     return *this;
420   }
421   unsigned numWords = getNumWords();
422   for (unsigned i = 0; i < numWords; ++i)
423     pVal[i] &= RHS.pVal[i];
424   return *this;
425 }
426 
operator |=(const APInt & RHS)427 APInt& APInt::operator|=(const APInt& RHS) {
428   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
429   if (isSingleWord()) {
430     VAL |= RHS.VAL;
431     return *this;
432   }
433   unsigned numWords = getNumWords();
434   for (unsigned i = 0; i < numWords; ++i)
435     pVal[i] |= RHS.pVal[i];
436   return *this;
437 }
438 
operator ^=(const APInt & RHS)439 APInt& APInt::operator^=(const APInt& RHS) {
440   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
441   if (isSingleWord()) {
442     VAL ^= RHS.VAL;
443     this->clearUnusedBits();
444     return *this;
445   }
446   unsigned numWords = getNumWords();
447   for (unsigned i = 0; i < numWords; ++i)
448     pVal[i] ^= RHS.pVal[i];
449   return clearUnusedBits();
450 }
451 
AndSlowCase(const APInt & RHS) const452 APInt APInt::AndSlowCase(const APInt& RHS) const {
453   unsigned numWords = getNumWords();
454   uint64_t* val = getMemory(numWords);
455   for (unsigned i = 0; i < numWords; ++i)
456     val[i] = pVal[i] & RHS.pVal[i];
457   return APInt(val, getBitWidth());
458 }
459 
OrSlowCase(const APInt & RHS) const460 APInt APInt::OrSlowCase(const APInt& RHS) const {
461   unsigned numWords = getNumWords();
462   uint64_t *val = getMemory(numWords);
463   for (unsigned i = 0; i < numWords; ++i)
464     val[i] = pVal[i] | RHS.pVal[i];
465   return APInt(val, getBitWidth());
466 }
467 
XorSlowCase(const APInt & RHS) const468 APInt APInt::XorSlowCase(const APInt& RHS) const {
469   unsigned numWords = getNumWords();
470   uint64_t *val = getMemory(numWords);
471   for (unsigned i = 0; i < numWords; ++i)
472     val[i] = pVal[i] ^ RHS.pVal[i];
473 
474   APInt Result(val, getBitWidth());
475   // 0^0==1 so clear the high bits in case they got set.
476   Result.clearUnusedBits();
477   return Result;
478 }
479 
operator *(const APInt & RHS) const480 APInt APInt::operator*(const APInt& RHS) const {
481   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
482   if (isSingleWord())
483     return APInt(BitWidth, VAL * RHS.VAL);
484   APInt Result(*this);
485   Result *= RHS;
486   return Result;
487 }
488 
EqualSlowCase(const APInt & RHS) const489 bool APInt::EqualSlowCase(const APInt& RHS) const {
490   return std::equal(pVal, pVal + getNumWords(), RHS.pVal);
491 }
492 
EqualSlowCase(uint64_t Val) const493 bool APInt::EqualSlowCase(uint64_t Val) const {
494   unsigned n = getActiveBits();
495   if (n <= APINT_BITS_PER_WORD)
496     return pVal[0] == Val;
497   else
498     return false;
499 }
500 
ult(const APInt & RHS) const501 bool APInt::ult(const APInt& RHS) const {
502   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
503   if (isSingleWord())
504     return VAL < RHS.VAL;
505 
506   // Get active bit length of both operands
507   unsigned n1 = getActiveBits();
508   unsigned n2 = RHS.getActiveBits();
509 
510   // If magnitude of LHS is less than RHS, return true.
511   if (n1 < n2)
512     return true;
513 
514   // If magnitude of RHS is greather than LHS, return false.
515   if (n2 < n1)
516     return false;
517 
518   // If they bot fit in a word, just compare the low order word
519   if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
520     return pVal[0] < RHS.pVal[0];
521 
522   // Otherwise, compare all words
523   unsigned topWord = whichWord(std::max(n1,n2)-1);
524   for (int i = topWord; i >= 0; --i) {
525     if (pVal[i] > RHS.pVal[i])
526       return false;
527     if (pVal[i] < RHS.pVal[i])
528       return true;
529   }
530   return false;
531 }
532 
slt(const APInt & RHS) const533 bool APInt::slt(const APInt& RHS) const {
534   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
535   if (isSingleWord()) {
536     int64_t lhsSext = SignExtend64(VAL, BitWidth);
537     int64_t rhsSext = SignExtend64(RHS.VAL, BitWidth);
538     return lhsSext < rhsSext;
539   }
540 
541   bool lhsNeg = isNegative();
542   bool rhsNeg = RHS.isNegative();
543 
544   // If the sign bits don't match, then (LHS < RHS) if LHS is negative
545   if (lhsNeg != rhsNeg)
546     return lhsNeg;
547 
548   // Otherwise we can just use an unsigned comparision, because even negative
549   // numbers compare correctly this way if both have the same signed-ness.
550   return ult(RHS);
551 }
552 
setBit(unsigned bitPosition)553 void APInt::setBit(unsigned bitPosition) {
554   if (isSingleWord())
555     VAL |= maskBit(bitPosition);
556   else
557     pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
558 }
559 
560 /// Set the given bit to 0 whose position is given as "bitPosition".
561 /// @brief Set a given bit to 0.
clearBit(unsigned bitPosition)562 void APInt::clearBit(unsigned bitPosition) {
563   if (isSingleWord())
564     VAL &= ~maskBit(bitPosition);
565   else
566     pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
567 }
568 
569 /// @brief Toggle every bit to its opposite value.
570 
571 /// Toggle a given bit to its opposite value whose position is given
572 /// as "bitPosition".
573 /// @brief Toggles a given bit to its opposite value.
flipBit(unsigned bitPosition)574 void APInt::flipBit(unsigned bitPosition) {
575   assert(bitPosition < BitWidth && "Out of the bit-width range!");
576   if ((*this)[bitPosition]) clearBit(bitPosition);
577   else setBit(bitPosition);
578 }
579 
getBitsNeeded(StringRef str,uint8_t radix)580 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
581   assert(!str.empty() && "Invalid string length");
582   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
583           radix == 36) &&
584          "Radix should be 2, 8, 10, 16, or 36!");
585 
586   size_t slen = str.size();
587 
588   // Each computation below needs to know if it's negative.
589   StringRef::iterator p = str.begin();
590   unsigned isNegative = *p == '-';
591   if (*p == '-' || *p == '+') {
592     p++;
593     slen--;
594     assert(slen && "String is only a sign, needs a value.");
595   }
596 
597   // For radixes of power-of-two values, the bits required is accurately and
598   // easily computed
599   if (radix == 2)
600     return slen + isNegative;
601   if (radix == 8)
602     return slen * 3 + isNegative;
603   if (radix == 16)
604     return slen * 4 + isNegative;
605 
606   // FIXME: base 36
607 
608   // This is grossly inefficient but accurate. We could probably do something
609   // with a computation of roughly slen*64/20 and then adjust by the value of
610   // the first few digits. But, I'm not sure how accurate that could be.
611 
612   // Compute a sufficient number of bits that is always large enough but might
613   // be too large. This avoids the assertion in the constructor. This
614   // calculation doesn't work appropriately for the numbers 0-9, so just use 4
615   // bits in that case.
616   unsigned sufficient
617     = radix == 10? (slen == 1 ? 4 : slen * 64/18)
618                  : (slen == 1 ? 7 : slen * 16/3);
619 
620   // Convert to the actual binary value.
621   APInt tmp(sufficient, StringRef(p, slen), radix);
622 
623   // Compute how many bits are required. If the log is infinite, assume we need
624   // just bit.
625   unsigned log = tmp.logBase2();
626   if (log == (unsigned)-1) {
627     return isNegative + 1;
628   } else {
629     return isNegative + log + 1;
630   }
631 }
632 
hash_value(const APInt & Arg)633 hash_code llvm::hash_value(const APInt &Arg) {
634   if (Arg.isSingleWord())
635     return hash_combine(Arg.VAL);
636 
637   return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords());
638 }
639 
isSplat(unsigned SplatSizeInBits) const640 bool APInt::isSplat(unsigned SplatSizeInBits) const {
641   assert(getBitWidth() % SplatSizeInBits == 0 &&
642          "SplatSizeInBits must divide width!");
643   // We can check that all parts of an integer are equal by making use of a
644   // little trick: rotate and check if it's still the same value.
645   return *this == rotl(SplatSizeInBits);
646 }
647 
648 /// This function returns the high "numBits" bits of this APInt.
getHiBits(unsigned numBits) const649 APInt APInt::getHiBits(unsigned numBits) const {
650   return APIntOps::lshr(*this, BitWidth - numBits);
651 }
652 
653 /// This function returns the low "numBits" bits of this APInt.
getLoBits(unsigned numBits) const654 APInt APInt::getLoBits(unsigned numBits) const {
655   return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
656                         BitWidth - numBits);
657 }
658 
countLeadingZerosSlowCase() const659 unsigned APInt::countLeadingZerosSlowCase() const {
660   unsigned Count = 0;
661   for (int i = getNumWords()-1; i >= 0; --i) {
662     integerPart V = pVal[i];
663     if (V == 0)
664       Count += APINT_BITS_PER_WORD;
665     else {
666       Count += llvm::countLeadingZeros(V);
667       break;
668     }
669   }
670   // Adjust for unused bits in the most significant word (they are zero).
671   unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
672   Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
673   return Count;
674 }
675 
countLeadingOnes() const676 unsigned APInt::countLeadingOnes() const {
677   if (isSingleWord())
678     return llvm::countLeadingOnes(VAL << (APINT_BITS_PER_WORD - BitWidth));
679 
680   unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
681   unsigned shift;
682   if (!highWordBits) {
683     highWordBits = APINT_BITS_PER_WORD;
684     shift = 0;
685   } else {
686     shift = APINT_BITS_PER_WORD - highWordBits;
687   }
688   int i = getNumWords() - 1;
689   unsigned Count = llvm::countLeadingOnes(pVal[i] << shift);
690   if (Count == highWordBits) {
691     for (i--; i >= 0; --i) {
692       if (pVal[i] == -1ULL)
693         Count += APINT_BITS_PER_WORD;
694       else {
695         Count += llvm::countLeadingOnes(pVal[i]);
696         break;
697       }
698     }
699   }
700   return Count;
701 }
702 
countTrailingZeros() const703 unsigned APInt::countTrailingZeros() const {
704   if (isSingleWord())
705     return std::min(unsigned(llvm::countTrailingZeros(VAL)), BitWidth);
706   unsigned Count = 0;
707   unsigned i = 0;
708   for (; i < getNumWords() && pVal[i] == 0; ++i)
709     Count += APINT_BITS_PER_WORD;
710   if (i < getNumWords())
711     Count += llvm::countTrailingZeros(pVal[i]);
712   return std::min(Count, BitWidth);
713 }
714 
countTrailingOnesSlowCase() const715 unsigned APInt::countTrailingOnesSlowCase() const {
716   unsigned Count = 0;
717   unsigned i = 0;
718   for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
719     Count += APINT_BITS_PER_WORD;
720   if (i < getNumWords())
721     Count += llvm::countTrailingOnes(pVal[i]);
722   return std::min(Count, BitWidth);
723 }
724 
countPopulationSlowCase() const725 unsigned APInt::countPopulationSlowCase() const {
726   unsigned Count = 0;
727   for (unsigned i = 0; i < getNumWords(); ++i)
728     Count += llvm::countPopulation(pVal[i]);
729   return Count;
730 }
731 
732 /// Perform a logical right-shift from Src to Dst, which must be equal or
733 /// non-overlapping, of Words words, by Shift, which must be less than 64.
lshrNear(uint64_t * Dst,uint64_t * Src,unsigned Words,unsigned Shift)734 static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words,
735                      unsigned Shift) {
736   uint64_t Carry = 0;
737   for (int I = Words - 1; I >= 0; --I) {
738     uint64_t Tmp = Src[I];
739     Dst[I] = (Tmp >> Shift) | Carry;
740     Carry = Tmp << (64 - Shift);
741   }
742 }
743 
byteSwap() const744 APInt APInt::byteSwap() const {
745   assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
746   if (BitWidth == 16)
747     return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
748   if (BitWidth == 32)
749     return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
750   if (BitWidth == 48) {
751     unsigned Tmp1 = unsigned(VAL >> 16);
752     Tmp1 = ByteSwap_32(Tmp1);
753     uint16_t Tmp2 = uint16_t(VAL);
754     Tmp2 = ByteSwap_16(Tmp2);
755     return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
756   }
757   if (BitWidth == 64)
758     return APInt(BitWidth, ByteSwap_64(VAL));
759 
760   APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
761   for (unsigned I = 0, N = getNumWords(); I != N; ++I)
762     Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]);
763   if (Result.BitWidth != BitWidth) {
764     lshrNear(Result.pVal, Result.pVal, getNumWords(),
765              Result.BitWidth - BitWidth);
766     Result.BitWidth = BitWidth;
767   }
768   return Result;
769 }
770 
reverseBits() const771 APInt APInt::reverseBits() const {
772   switch (BitWidth) {
773   case 64:
774     return APInt(BitWidth, llvm::reverseBits<uint64_t>(VAL));
775   case 32:
776     return APInt(BitWidth, llvm::reverseBits<uint32_t>(VAL));
777   case 16:
778     return APInt(BitWidth, llvm::reverseBits<uint16_t>(VAL));
779   case 8:
780     return APInt(BitWidth, llvm::reverseBits<uint8_t>(VAL));
781   default:
782     break;
783   }
784 
785   APInt Val(*this);
786   APInt Reversed(*this);
787   int S = BitWidth - 1;
788 
789   const APInt One(BitWidth, 1);
790 
791   for ((Val = Val.lshr(1)); Val != 0; (Val = Val.lshr(1))) {
792     Reversed <<= 1;
793     Reversed |= (Val & One);
794     --S;
795   }
796 
797   Reversed <<= S;
798   return Reversed;
799 }
800 
GreatestCommonDivisor(const APInt & API1,const APInt & API2)801 APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
802                                             const APInt& API2) {
803   APInt A = API1, B = API2;
804   while (!!B) {
805     APInt T = B;
806     B = APIntOps::urem(A, B);
807     A = T;
808   }
809   return A;
810 }
811 
RoundDoubleToAPInt(double Double,unsigned width)812 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
813   union {
814     double D;
815     uint64_t I;
816   } T;
817   T.D = Double;
818 
819   // Get the sign bit from the highest order bit
820   bool isNeg = T.I >> 63;
821 
822   // Get the 11-bit exponent and adjust for the 1023 bit bias
823   int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
824 
825   // If the exponent is negative, the value is < 0 so just return 0.
826   if (exp < 0)
827     return APInt(width, 0u);
828 
829   // Extract the mantissa by clearing the top 12 bits (sign + exponent).
830   uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
831 
832   // If the exponent doesn't shift all bits out of the mantissa
833   if (exp < 52)
834     return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
835                     APInt(width, mantissa >> (52 - exp));
836 
837   // If the client didn't provide enough bits for us to shift the mantissa into
838   // then the result is undefined, just return 0
839   if (width <= exp - 52)
840     return APInt(width, 0);
841 
842   // Otherwise, we have to shift the mantissa bits up to the right location
843   APInt Tmp(width, mantissa);
844   Tmp = Tmp.shl((unsigned)exp - 52);
845   return isNeg ? -Tmp : Tmp;
846 }
847 
848 /// This function converts this APInt to a double.
849 /// The layout for double is as following (IEEE Standard 754):
850 ///  --------------------------------------
851 /// |  Sign    Exponent    Fraction    Bias |
852 /// |-------------------------------------- |
853 /// |  1[63]   11[62-52]   52[51-00]   1023 |
854 ///  --------------------------------------
roundToDouble(bool isSigned) const855 double APInt::roundToDouble(bool isSigned) const {
856 
857   // Handle the simple case where the value is contained in one uint64_t.
858   // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
859   if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
860     if (isSigned) {
861       int64_t sext = SignExtend64(getWord(0), BitWidth);
862       return double(sext);
863     } else
864       return double(getWord(0));
865   }
866 
867   // Determine if the value is negative.
868   bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
869 
870   // Construct the absolute value if we're negative.
871   APInt Tmp(isNeg ? -(*this) : (*this));
872 
873   // Figure out how many bits we're using.
874   unsigned n = Tmp.getActiveBits();
875 
876   // The exponent (without bias normalization) is just the number of bits
877   // we are using. Note that the sign bit is gone since we constructed the
878   // absolute value.
879   uint64_t exp = n;
880 
881   // Return infinity for exponent overflow
882   if (exp > 1023) {
883     if (!isSigned || !isNeg)
884       return std::numeric_limits<double>::infinity();
885     else
886       return -std::numeric_limits<double>::infinity();
887   }
888   exp += 1023; // Increment for 1023 bias
889 
890   // Number of bits in mantissa is 52. To obtain the mantissa value, we must
891   // extract the high 52 bits from the correct words in pVal.
892   uint64_t mantissa;
893   unsigned hiWord = whichWord(n-1);
894   if (hiWord == 0) {
895     mantissa = Tmp.pVal[0];
896     if (n > 52)
897       mantissa >>= n - 52; // shift down, we want the top 52 bits.
898   } else {
899     assert(hiWord > 0 && "huh?");
900     uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
901     uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
902     mantissa = hibits | lobits;
903   }
904 
905   // The leading bit of mantissa is implicit, so get rid of it.
906   uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
907   union {
908     double D;
909     uint64_t I;
910   } T;
911   T.I = sign | (exp << 52) | mantissa;
912   return T.D;
913 }
914 
915 // Truncate to new width.
trunc(unsigned width) const916 APInt APInt::trunc(unsigned width) const {
917   assert(width < BitWidth && "Invalid APInt Truncate request");
918   assert(width && "Can't truncate to 0 bits");
919 
920   if (width <= APINT_BITS_PER_WORD)
921     return APInt(width, getRawData()[0]);
922 
923   APInt Result(getMemory(getNumWords(width)), width);
924 
925   // Copy full words.
926   unsigned i;
927   for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
928     Result.pVal[i] = pVal[i];
929 
930   // Truncate and copy any partial word.
931   unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
932   if (bits != 0)
933     Result.pVal[i] = pVal[i] << bits >> bits;
934 
935   return Result;
936 }
937 
938 // Sign extend to a new width.
sext(unsigned width) const939 APInt APInt::sext(unsigned width) const {
940   assert(width > BitWidth && "Invalid APInt SignExtend request");
941 
942   if (width <= APINT_BITS_PER_WORD) {
943     uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth);
944     val = (int64_t)val >> (width - BitWidth);
945     return APInt(width, val >> (APINT_BITS_PER_WORD - width));
946   }
947 
948   APInt Result(getMemory(getNumWords(width)), width);
949 
950   // Copy full words.
951   unsigned i;
952   uint64_t word = 0;
953   for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) {
954     word = getRawData()[i];
955     Result.pVal[i] = word;
956   }
957 
958   // Read and sign-extend any partial word.
959   unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD;
960   if (bits != 0)
961     word = (int64_t)getRawData()[i] << bits >> bits;
962   else
963     word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
964 
965   // Write remaining full words.
966   for (; i != width / APINT_BITS_PER_WORD; i++) {
967     Result.pVal[i] = word;
968     word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
969   }
970 
971   // Write any partial word.
972   bits = (0 - width) % APINT_BITS_PER_WORD;
973   if (bits != 0)
974     Result.pVal[i] = word << bits >> bits;
975 
976   return Result;
977 }
978 
979 //  Zero extend to a new width.
zext(unsigned width) const980 APInt APInt::zext(unsigned width) const {
981   assert(width > BitWidth && "Invalid APInt ZeroExtend request");
982 
983   if (width <= APINT_BITS_PER_WORD)
984     return APInt(width, VAL);
985 
986   APInt Result(getMemory(getNumWords(width)), width);
987 
988   // Copy words.
989   unsigned i;
990   for (i = 0; i != getNumWords(); i++)
991     Result.pVal[i] = getRawData()[i];
992 
993   // Zero remaining words.
994   memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE);
995 
996   return Result;
997 }
998 
zextOrTrunc(unsigned width) const999 APInt APInt::zextOrTrunc(unsigned width) const {
1000   if (BitWidth < width)
1001     return zext(width);
1002   if (BitWidth > width)
1003     return trunc(width);
1004   return *this;
1005 }
1006 
sextOrTrunc(unsigned width) const1007 APInt APInt::sextOrTrunc(unsigned width) const {
1008   if (BitWidth < width)
1009     return sext(width);
1010   if (BitWidth > width)
1011     return trunc(width);
1012   return *this;
1013 }
1014 
zextOrSelf(unsigned width) const1015 APInt APInt::zextOrSelf(unsigned width) const {
1016   if (BitWidth < width)
1017     return zext(width);
1018   return *this;
1019 }
1020 
sextOrSelf(unsigned width) const1021 APInt APInt::sextOrSelf(unsigned width) const {
1022   if (BitWidth < width)
1023     return sext(width);
1024   return *this;
1025 }
1026 
1027 /// Arithmetic right-shift this APInt by shiftAmt.
1028 /// @brief Arithmetic right-shift function.
ashr(const APInt & shiftAmt) const1029 APInt APInt::ashr(const APInt &shiftAmt) const {
1030   return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1031 }
1032 
1033 /// Arithmetic right-shift this APInt by shiftAmt.
1034 /// @brief Arithmetic right-shift function.
ashr(unsigned shiftAmt) const1035 APInt APInt::ashr(unsigned shiftAmt) const {
1036   assert(shiftAmt <= BitWidth && "Invalid shift amount");
1037   // Handle a degenerate case
1038   if (shiftAmt == 0)
1039     return *this;
1040 
1041   // Handle single word shifts with built-in ashr
1042   if (isSingleWord()) {
1043     if (shiftAmt == BitWidth)
1044       return APInt(BitWidth, 0); // undefined
1045     return APInt(BitWidth, SignExtend64(VAL, BitWidth) >> shiftAmt);
1046   }
1047 
1048   // If all the bits were shifted out, the result is, technically, undefined.
1049   // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1050   // issues in the algorithm below.
1051   if (shiftAmt == BitWidth) {
1052     if (isNegative())
1053       return APInt(BitWidth, -1ULL, true);
1054     else
1055       return APInt(BitWidth, 0);
1056   }
1057 
1058   // Create some space for the result.
1059   uint64_t * val = new uint64_t[getNumWords()];
1060 
1061   // Compute some values needed by the following shift algorithms
1062   unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1063   unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1064   unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1065   unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
1066   if (bitsInWord == 0)
1067     bitsInWord = APINT_BITS_PER_WORD;
1068 
1069   // If we are shifting whole words, just move whole words
1070   if (wordShift == 0) {
1071     // Move the words containing significant bits
1072     for (unsigned i = 0; i <= breakWord; ++i)
1073       val[i] = pVal[i+offset]; // move whole word
1074 
1075     // Adjust the top significant word for sign bit fill, if negative
1076     if (isNegative())
1077       if (bitsInWord < APINT_BITS_PER_WORD)
1078         val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1079   } else {
1080     // Shift the low order words
1081     for (unsigned i = 0; i < breakWord; ++i) {
1082       // This combines the shifted corresponding word with the low bits from
1083       // the next word (shifted into this word's high bits).
1084       val[i] = (pVal[i+offset] >> wordShift) |
1085                (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1086     }
1087 
1088     // Shift the break word. In this case there are no bits from the next word
1089     // to include in this word.
1090     val[breakWord] = pVal[breakWord+offset] >> wordShift;
1091 
1092     // Deal with sign extension in the break word, and possibly the word before
1093     // it.
1094     if (isNegative()) {
1095       if (wordShift > bitsInWord) {
1096         if (breakWord > 0)
1097           val[breakWord-1] |=
1098             ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1099         val[breakWord] |= ~0ULL;
1100       } else
1101         val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1102     }
1103   }
1104 
1105   // Remaining words are 0 or -1, just assign them.
1106   uint64_t fillValue = (isNegative() ? -1ULL : 0);
1107   for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1108     val[i] = fillValue;
1109   APInt Result(val, BitWidth);
1110   Result.clearUnusedBits();
1111   return Result;
1112 }
1113 
1114 /// Logical right-shift this APInt by shiftAmt.
1115 /// @brief Logical right-shift function.
lshr(const APInt & shiftAmt) const1116 APInt APInt::lshr(const APInt &shiftAmt) const {
1117   return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1118 }
1119 
1120 /// Logical right-shift this APInt by shiftAmt.
1121 /// @brief Logical right-shift function.
lshr(unsigned shiftAmt) const1122 APInt APInt::lshr(unsigned shiftAmt) const {
1123   if (isSingleWord()) {
1124     if (shiftAmt >= BitWidth)
1125       return APInt(BitWidth, 0);
1126     else
1127       return APInt(BitWidth, this->VAL >> shiftAmt);
1128   }
1129 
1130   // If all the bits were shifted out, the result is 0. This avoids issues
1131   // with shifting by the size of the integer type, which produces undefined
1132   // results. We define these "undefined results" to always be 0.
1133   if (shiftAmt >= BitWidth)
1134     return APInt(BitWidth, 0);
1135 
1136   // If none of the bits are shifted out, the result is *this. This avoids
1137   // issues with shifting by the size of the integer type, which produces
1138   // undefined results in the code below. This is also an optimization.
1139   if (shiftAmt == 0)
1140     return *this;
1141 
1142   // Create some space for the result.
1143   uint64_t * val = new uint64_t[getNumWords()];
1144 
1145   // If we are shifting less than a word, compute the shift with a simple carry
1146   if (shiftAmt < APINT_BITS_PER_WORD) {
1147     lshrNear(val, pVal, getNumWords(), shiftAmt);
1148     APInt Result(val, BitWidth);
1149     Result.clearUnusedBits();
1150     return Result;
1151   }
1152 
1153   // Compute some values needed by the remaining shift algorithms
1154   unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1155   unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1156 
1157   // If we are shifting whole words, just move whole words
1158   if (wordShift == 0) {
1159     for (unsigned i = 0; i < getNumWords() - offset; ++i)
1160       val[i] = pVal[i+offset];
1161     for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
1162       val[i] = 0;
1163     APInt Result(val, BitWidth);
1164     Result.clearUnusedBits();
1165     return Result;
1166   }
1167 
1168   // Shift the low order words
1169   unsigned breakWord = getNumWords() - offset -1;
1170   for (unsigned i = 0; i < breakWord; ++i)
1171     val[i] = (pVal[i+offset] >> wordShift) |
1172              (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1173   // Shift the break word.
1174   val[breakWord] = pVal[breakWord+offset] >> wordShift;
1175 
1176   // Remaining words are 0
1177   for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1178     val[i] = 0;
1179   APInt Result(val, BitWidth);
1180   Result.clearUnusedBits();
1181   return Result;
1182 }
1183 
1184 /// Left-shift this APInt by shiftAmt.
1185 /// @brief Left-shift function.
shl(const APInt & shiftAmt) const1186 APInt APInt::shl(const APInt &shiftAmt) const {
1187   // It's undefined behavior in C to shift by BitWidth or greater.
1188   return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
1189 }
1190 
shlSlowCase(unsigned shiftAmt) const1191 APInt APInt::shlSlowCase(unsigned shiftAmt) const {
1192   // If all the bits were shifted out, the result is 0. This avoids issues
1193   // with shifting by the size of the integer type, which produces undefined
1194   // results. We define these "undefined results" to always be 0.
1195   if (shiftAmt == BitWidth)
1196     return APInt(BitWidth, 0);
1197 
1198   // If none of the bits are shifted out, the result is *this. This avoids a
1199   // lshr by the words size in the loop below which can produce incorrect
1200   // results. It also avoids the expensive computation below for a common case.
1201   if (shiftAmt == 0)
1202     return *this;
1203 
1204   // Create some space for the result.
1205   uint64_t * val = new uint64_t[getNumWords()];
1206 
1207   // If we are shifting less than a word, do it the easy way
1208   if (shiftAmt < APINT_BITS_PER_WORD) {
1209     uint64_t carry = 0;
1210     for (unsigned i = 0; i < getNumWords(); i++) {
1211       val[i] = pVal[i] << shiftAmt | carry;
1212       carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1213     }
1214     APInt Result(val, BitWidth);
1215     Result.clearUnusedBits();
1216     return Result;
1217   }
1218 
1219   // Compute some values needed by the remaining shift algorithms
1220   unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1221   unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1222 
1223   // If we are shifting whole words, just move whole words
1224   if (wordShift == 0) {
1225     for (unsigned i = 0; i < offset; i++)
1226       val[i] = 0;
1227     for (unsigned i = offset; i < getNumWords(); i++)
1228       val[i] = pVal[i-offset];
1229     APInt Result(val, BitWidth);
1230     Result.clearUnusedBits();
1231     return Result;
1232   }
1233 
1234   // Copy whole words from this to Result.
1235   unsigned i = getNumWords() - 1;
1236   for (; i > offset; --i)
1237     val[i] = pVal[i-offset] << wordShift |
1238              pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1239   val[offset] = pVal[0] << wordShift;
1240   for (i = 0; i < offset; ++i)
1241     val[i] = 0;
1242   APInt Result(val, BitWidth);
1243   Result.clearUnusedBits();
1244   return Result;
1245 }
1246 
rotl(const APInt & rotateAmt) const1247 APInt APInt::rotl(const APInt &rotateAmt) const {
1248   return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
1249 }
1250 
rotl(unsigned rotateAmt) const1251 APInt APInt::rotl(unsigned rotateAmt) const {
1252   rotateAmt %= BitWidth;
1253   if (rotateAmt == 0)
1254     return *this;
1255   return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1256 }
1257 
rotr(const APInt & rotateAmt) const1258 APInt APInt::rotr(const APInt &rotateAmt) const {
1259   return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
1260 }
1261 
rotr(unsigned rotateAmt) const1262 APInt APInt::rotr(unsigned rotateAmt) const {
1263   rotateAmt %= BitWidth;
1264   if (rotateAmt == 0)
1265     return *this;
1266   return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1267 }
1268 
1269 // Square Root - this method computes and returns the square root of "this".
1270 // Three mechanisms are used for computation. For small values (<= 5 bits),
1271 // a table lookup is done. This gets some performance for common cases. For
1272 // values using less than 52 bits, the value is converted to double and then
1273 // the libc sqrt function is called. The result is rounded and then converted
1274 // back to a uint64_t which is then used to construct the result. Finally,
1275 // the Babylonian method for computing square roots is used.
sqrt() const1276 APInt APInt::sqrt() const {
1277 
1278   // Determine the magnitude of the value.
1279   unsigned magnitude = getActiveBits();
1280 
1281   // Use a fast table for some small values. This also gets rid of some
1282   // rounding errors in libc sqrt for small values.
1283   if (magnitude <= 5) {
1284     static const uint8_t results[32] = {
1285       /*     0 */ 0,
1286       /*  1- 2 */ 1, 1,
1287       /*  3- 6 */ 2, 2, 2, 2,
1288       /*  7-12 */ 3, 3, 3, 3, 3, 3,
1289       /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1290       /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1291       /*    31 */ 6
1292     };
1293     return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1294   }
1295 
1296   // If the magnitude of the value fits in less than 52 bits (the precision of
1297   // an IEEE double precision floating point value), then we can use the
1298   // libc sqrt function which will probably use a hardware sqrt computation.
1299   // This should be faster than the algorithm below.
1300   if (magnitude < 52) {
1301     return APInt(BitWidth,
1302                  uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1303   }
1304 
1305   // Okay, all the short cuts are exhausted. We must compute it. The following
1306   // is a classical Babylonian method for computing the square root. This code
1307   // was adapted to APInt from a wikipedia article on such computations.
1308   // See http://www.wikipedia.org/ and go to the page named
1309   // Calculate_an_integer_square_root.
1310   unsigned nbits = BitWidth, i = 4;
1311   APInt testy(BitWidth, 16);
1312   APInt x_old(BitWidth, 1);
1313   APInt x_new(BitWidth, 0);
1314   APInt two(BitWidth, 2);
1315 
1316   // Select a good starting value using binary logarithms.
1317   for (;; i += 2, testy = testy.shl(2))
1318     if (i >= nbits || this->ule(testy)) {
1319       x_old = x_old.shl(i / 2);
1320       break;
1321     }
1322 
1323   // Use the Babylonian method to arrive at the integer square root:
1324   for (;;) {
1325     x_new = (this->udiv(x_old) + x_old).udiv(two);
1326     if (x_old.ule(x_new))
1327       break;
1328     x_old = x_new;
1329   }
1330 
1331   // Make sure we return the closest approximation
1332   // NOTE: The rounding calculation below is correct. It will produce an
1333   // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1334   // determined to be a rounding issue with pari/gp as it begins to use a
1335   // floating point representation after 192 bits. There are no discrepancies
1336   // between this algorithm and pari/gp for bit widths < 192 bits.
1337   APInt square(x_old * x_old);
1338   APInt nextSquare((x_old + 1) * (x_old +1));
1339   if (this->ult(square))
1340     return x_old;
1341   assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1342   APInt midpoint((nextSquare - square).udiv(two));
1343   APInt offset(*this - square);
1344   if (offset.ult(midpoint))
1345     return x_old;
1346   return x_old + 1;
1347 }
1348 
1349 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1350 /// iterative extended Euclidean algorithm is used to solve for this value,
1351 /// however we simplify it to speed up calculating only the inverse, and take
1352 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1353 /// (potentially large) APInts around.
multiplicativeInverse(const APInt & modulo) const1354 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1355   assert(ult(modulo) && "This APInt must be smaller than the modulo");
1356 
1357   // Using the properties listed at the following web page (accessed 06/21/08):
1358   //   http://www.numbertheory.org/php/euclid.html
1359   // (especially the properties numbered 3, 4 and 9) it can be proved that
1360   // BitWidth bits suffice for all the computations in the algorithm implemented
1361   // below. More precisely, this number of bits suffice if the multiplicative
1362   // inverse exists, but may not suffice for the general extended Euclidean
1363   // algorithm.
1364 
1365   APInt r[2] = { modulo, *this };
1366   APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1367   APInt q(BitWidth, 0);
1368 
1369   unsigned i;
1370   for (i = 0; r[i^1] != 0; i ^= 1) {
1371     // An overview of the math without the confusing bit-flipping:
1372     // q = r[i-2] / r[i-1]
1373     // r[i] = r[i-2] % r[i-1]
1374     // t[i] = t[i-2] - t[i-1] * q
1375     udivrem(r[i], r[i^1], q, r[i]);
1376     t[i] -= t[i^1] * q;
1377   }
1378 
1379   // If this APInt and the modulo are not coprime, there is no multiplicative
1380   // inverse, so return 0. We check this by looking at the next-to-last
1381   // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1382   // algorithm.
1383   if (r[i] != 1)
1384     return APInt(BitWidth, 0);
1385 
1386   // The next-to-last t is the multiplicative inverse.  However, we are
1387   // interested in a positive inverse. Calcuate a positive one from a negative
1388   // one if necessary. A simple addition of the modulo suffices because
1389   // abs(t[i]) is known to be less than *this/2 (see the link above).
1390   return t[i].isNegative() ? t[i] + modulo : t[i];
1391 }
1392 
1393 /// Calculate the magic numbers required to implement a signed integer division
1394 /// by a constant as a sequence of multiplies, adds and shifts.  Requires that
1395 /// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
1396 /// Warren, Jr., chapter 10.
magic() const1397 APInt::ms APInt::magic() const {
1398   const APInt& d = *this;
1399   unsigned p;
1400   APInt ad, anc, delta, q1, r1, q2, r2, t;
1401   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1402   struct ms mag;
1403 
1404   ad = d.abs();
1405   t = signedMin + (d.lshr(d.getBitWidth() - 1));
1406   anc = t - 1 - t.urem(ad);   // absolute value of nc
1407   p = d.getBitWidth() - 1;    // initialize p
1408   q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc)
1409   r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc))
1410   q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d)
1411   r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d))
1412   do {
1413     p = p + 1;
1414     q1 = q1<<1;          // update q1 = 2p/abs(nc)
1415     r1 = r1<<1;          // update r1 = rem(2p/abs(nc))
1416     if (r1.uge(anc)) {  // must be unsigned comparison
1417       q1 = q1 + 1;
1418       r1 = r1 - anc;
1419     }
1420     q2 = q2<<1;          // update q2 = 2p/abs(d)
1421     r2 = r2<<1;          // update r2 = rem(2p/abs(d))
1422     if (r2.uge(ad)) {   // must be unsigned comparison
1423       q2 = q2 + 1;
1424       r2 = r2 - ad;
1425     }
1426     delta = ad - r2;
1427   } while (q1.ult(delta) || (q1 == delta && r1 == 0));
1428 
1429   mag.m = q2 + 1;
1430   if (d.isNegative()) mag.m = -mag.m;   // resulting magic number
1431   mag.s = p - d.getBitWidth();          // resulting shift
1432   return mag;
1433 }
1434 
1435 /// Calculate the magic numbers required to implement an unsigned integer
1436 /// division by a constant as a sequence of multiplies, adds and shifts.
1437 /// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
1438 /// S. Warren, Jr., chapter 10.
1439 /// LeadingZeros can be used to simplify the calculation if the upper bits
1440 /// of the divided value are known zero.
magicu(unsigned LeadingZeros) const1441 APInt::mu APInt::magicu(unsigned LeadingZeros) const {
1442   const APInt& d = *this;
1443   unsigned p;
1444   APInt nc, delta, q1, r1, q2, r2;
1445   struct mu magu;
1446   magu.a = 0;               // initialize "add" indicator
1447   APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
1448   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1449   APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1450 
1451   nc = allOnes - (allOnes - d).urem(d);
1452   p = d.getBitWidth() - 1;  // initialize p
1453   q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
1454   r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc)
1455   q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
1456   r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d)
1457   do {
1458     p = p + 1;
1459     if (r1.uge(nc - r1)) {
1460       q1 = q1 + q1 + 1;  // update q1
1461       r1 = r1 + r1 - nc; // update r1
1462     }
1463     else {
1464       q1 = q1+q1; // update q1
1465       r1 = r1+r1; // update r1
1466     }
1467     if ((r2 + 1).uge(d - r2)) {
1468       if (q2.uge(signedMax)) magu.a = 1;
1469       q2 = q2+q2 + 1;     // update q2
1470       r2 = r2+r2 + 1 - d; // update r2
1471     }
1472     else {
1473       if (q2.uge(signedMin)) magu.a = 1;
1474       q2 = q2+q2;     // update q2
1475       r2 = r2+r2 + 1; // update r2
1476     }
1477     delta = d - 1 - r2;
1478   } while (p < d.getBitWidth()*2 &&
1479            (q1.ult(delta) || (q1 == delta && r1 == 0)));
1480   magu.m = q2 + 1; // resulting magic number
1481   magu.s = p - d.getBitWidth();  // resulting shift
1482   return magu;
1483 }
1484 
1485 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1486 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1487 /// variables here have the same names as in the algorithm. Comments explain
1488 /// the algorithm and any deviation from it.
KnuthDiv(unsigned * u,unsigned * v,unsigned * q,unsigned * r,unsigned m,unsigned n)1489 static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1490                      unsigned m, unsigned n) {
1491   assert(u && "Must provide dividend");
1492   assert(v && "Must provide divisor");
1493   assert(q && "Must provide quotient");
1494   assert(u != v && u != q && v != q && "Must use different memory");
1495   assert(n>1 && "n must be > 1");
1496 
1497   // b denotes the base of the number system. In our case b is 2^32.
1498   const uint64_t b = uint64_t(1) << 32;
1499 
1500   DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1501   DEBUG(dbgs() << "KnuthDiv: original:");
1502   DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1503   DEBUG(dbgs() << " by");
1504   DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1505   DEBUG(dbgs() << '\n');
1506   // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1507   // u and v by d. Note that we have taken Knuth's advice here to use a power
1508   // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1509   // 2 allows us to shift instead of multiply and it is easy to determine the
1510   // shift amount from the leading zeros.  We are basically normalizing the u
1511   // and v so that its high bits are shifted to the top of v's range without
1512   // overflow. Note that this can require an extra word in u so that u must
1513   // be of length m+n+1.
1514   unsigned shift = countLeadingZeros(v[n-1]);
1515   unsigned v_carry = 0;
1516   unsigned u_carry = 0;
1517   if (shift) {
1518     for (unsigned i = 0; i < m+n; ++i) {
1519       unsigned u_tmp = u[i] >> (32 - shift);
1520       u[i] = (u[i] << shift) | u_carry;
1521       u_carry = u_tmp;
1522     }
1523     for (unsigned i = 0; i < n; ++i) {
1524       unsigned v_tmp = v[i] >> (32 - shift);
1525       v[i] = (v[i] << shift) | v_carry;
1526       v_carry = v_tmp;
1527     }
1528   }
1529   u[m+n] = u_carry;
1530 
1531   DEBUG(dbgs() << "KnuthDiv:   normal:");
1532   DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1533   DEBUG(dbgs() << " by");
1534   DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1535   DEBUG(dbgs() << '\n');
1536 
1537   // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1538   int j = m;
1539   do {
1540     DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1541     // D3. [Calculate q'.].
1542     //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1543     //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1544     // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1545     // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1546     // on v[n-2] determines at high speed most of the cases in which the trial
1547     // value qp is one too large, and it eliminates all cases where qp is two
1548     // too large.
1549     uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1550     DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1551     uint64_t qp = dividend / v[n-1];
1552     uint64_t rp = dividend % v[n-1];
1553     if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1554       qp--;
1555       rp += v[n-1];
1556       if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1557         qp--;
1558     }
1559     DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1560 
1561     // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1562     // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1563     // consists of a simple multiplication by a one-place number, combined with
1564     // a subtraction.
1565     // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1566     // this step is actually negative, (u[j+n]...u[j]) should be left as the
1567     // true value plus b**(n+1), namely as the b's complement of
1568     // the true value, and a "borrow" to the left should be remembered.
1569     int64_t borrow = 0;
1570     for (unsigned i = 0; i < n; ++i) {
1571       uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1572       int64_t subres = int64_t(u[j+i]) - borrow - (unsigned)p;
1573       u[j+i] = (unsigned)subres;
1574       borrow = (p >> 32) - (subres >> 32);
1575       DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i]
1576                    << ", borrow = " << borrow << '\n');
1577     }
1578     bool isNeg = u[j+n] < borrow;
1579     u[j+n] -= (unsigned)borrow;
1580 
1581     DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1582     DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1583     DEBUG(dbgs() << '\n');
1584 
1585     // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1586     // negative, go to step D6; otherwise go on to step D7.
1587     q[j] = (unsigned)qp;
1588     if (isNeg) {
1589       // D6. [Add back]. The probability that this step is necessary is very
1590       // small, on the order of only 2/b. Make sure that test data accounts for
1591       // this possibility. Decrease q[j] by 1
1592       q[j]--;
1593       // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1594       // A carry will occur to the left of u[j+n], and it should be ignored
1595       // since it cancels with the borrow that occurred in D4.
1596       bool carry = false;
1597       for (unsigned i = 0; i < n; i++) {
1598         unsigned limit = std::min(u[j+i],v[i]);
1599         u[j+i] += v[i] + carry;
1600         carry = u[j+i] < limit || (carry && u[j+i] == limit);
1601       }
1602       u[j+n] += carry;
1603     }
1604     DEBUG(dbgs() << "KnuthDiv: after correction:");
1605     DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1606     DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1607 
1608   // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1609   } while (--j >= 0);
1610 
1611   DEBUG(dbgs() << "KnuthDiv: quotient:");
1612   DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1613   DEBUG(dbgs() << '\n');
1614 
1615   // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1616   // remainder may be obtained by dividing u[...] by d. If r is non-null we
1617   // compute the remainder (urem uses this).
1618   if (r) {
1619     // The value d is expressed by the "shift" value above since we avoided
1620     // multiplication by d by using a shift left. So, all we have to do is
1621     // shift right here. In order to mak
1622     if (shift) {
1623       unsigned carry = 0;
1624       DEBUG(dbgs() << "KnuthDiv: remainder:");
1625       for (int i = n-1; i >= 0; i--) {
1626         r[i] = (u[i] >> shift) | carry;
1627         carry = u[i] << (32 - shift);
1628         DEBUG(dbgs() << " " << r[i]);
1629       }
1630     } else {
1631       for (int i = n-1; i >= 0; i--) {
1632         r[i] = u[i];
1633         DEBUG(dbgs() << " " << r[i]);
1634       }
1635     }
1636     DEBUG(dbgs() << '\n');
1637   }
1638   DEBUG(dbgs() << '\n');
1639 }
1640 
divide(const APInt & LHS,unsigned lhsWords,const APInt & RHS,unsigned rhsWords,APInt * Quotient,APInt * Remainder)1641 void APInt::divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS,
1642                    unsigned rhsWords, APInt *Quotient, APInt *Remainder) {
1643   assert(lhsWords >= rhsWords && "Fractional result");
1644 
1645   // First, compose the values into an array of 32-bit words instead of
1646   // 64-bit words. This is a necessity of both the "short division" algorithm
1647   // and the Knuth "classical algorithm" which requires there to be native
1648   // operations for +, -, and * on an m bit value with an m*2 bit result. We
1649   // can't use 64-bit operands here because we don't have native results of
1650   // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1651   // work on large-endian machines.
1652   uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
1653   unsigned n = rhsWords * 2;
1654   unsigned m = (lhsWords * 2) - n;
1655 
1656   // Allocate space for the temporary values we need either on the stack, if
1657   // it will fit, or on the heap if it won't.
1658   unsigned SPACE[128];
1659   unsigned *U = nullptr;
1660   unsigned *V = nullptr;
1661   unsigned *Q = nullptr;
1662   unsigned *R = nullptr;
1663   if ((Remainder?4:3)*n+2*m+1 <= 128) {
1664     U = &SPACE[0];
1665     V = &SPACE[m+n+1];
1666     Q = &SPACE[(m+n+1) + n];
1667     if (Remainder)
1668       R = &SPACE[(m+n+1) + n + (m+n)];
1669   } else {
1670     U = new unsigned[m + n + 1];
1671     V = new unsigned[n];
1672     Q = new unsigned[m+n];
1673     if (Remainder)
1674       R = new unsigned[n];
1675   }
1676 
1677   // Initialize the dividend
1678   memset(U, 0, (m+n+1)*sizeof(unsigned));
1679   for (unsigned i = 0; i < lhsWords; ++i) {
1680     uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1681     U[i * 2] = (unsigned)(tmp & mask);
1682     U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1683   }
1684   U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1685 
1686   // Initialize the divisor
1687   memset(V, 0, (n)*sizeof(unsigned));
1688   for (unsigned i = 0; i < rhsWords; ++i) {
1689     uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1690     V[i * 2] = (unsigned)(tmp & mask);
1691     V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1692   }
1693 
1694   // initialize the quotient and remainder
1695   memset(Q, 0, (m+n) * sizeof(unsigned));
1696   if (Remainder)
1697     memset(R, 0, n * sizeof(unsigned));
1698 
1699   // Now, adjust m and n for the Knuth division. n is the number of words in
1700   // the divisor. m is the number of words by which the dividend exceeds the
1701   // divisor (i.e. m+n is the length of the dividend). These sizes must not
1702   // contain any zero words or the Knuth algorithm fails.
1703   for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1704     n--;
1705     m++;
1706   }
1707   for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1708     m--;
1709 
1710   // If we're left with only a single word for the divisor, Knuth doesn't work
1711   // so we implement the short division algorithm here. This is much simpler
1712   // and faster because we are certain that we can divide a 64-bit quantity
1713   // by a 32-bit quantity at hardware speed and short division is simply a
1714   // series of such operations. This is just like doing short division but we
1715   // are using base 2^32 instead of base 10.
1716   assert(n != 0 && "Divide by zero?");
1717   if (n == 1) {
1718     unsigned divisor = V[0];
1719     unsigned remainder = 0;
1720     for (int i = m+n-1; i >= 0; i--) {
1721       uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1722       if (partial_dividend == 0) {
1723         Q[i] = 0;
1724         remainder = 0;
1725       } else if (partial_dividend < divisor) {
1726         Q[i] = 0;
1727         remainder = (unsigned)partial_dividend;
1728       } else if (partial_dividend == divisor) {
1729         Q[i] = 1;
1730         remainder = 0;
1731       } else {
1732         Q[i] = (unsigned)(partial_dividend / divisor);
1733         remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
1734       }
1735     }
1736     if (R)
1737       R[0] = remainder;
1738   } else {
1739     // Now we're ready to invoke the Knuth classical divide algorithm. In this
1740     // case n > 1.
1741     KnuthDiv(U, V, Q, R, m, n);
1742   }
1743 
1744   // If the caller wants the quotient
1745   if (Quotient) {
1746     // Set up the Quotient value's memory.
1747     if (Quotient->BitWidth != LHS.BitWidth) {
1748       if (Quotient->isSingleWord())
1749         Quotient->VAL = 0;
1750       else
1751         delete [] Quotient->pVal;
1752       Quotient->BitWidth = LHS.BitWidth;
1753       if (!Quotient->isSingleWord())
1754         Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1755     } else
1756       Quotient->clearAllBits();
1757 
1758     // The quotient is in Q. Reconstitute the quotient into Quotient's low
1759     // order words.
1760     // This case is currently dead as all users of divide() handle trivial cases
1761     // earlier.
1762     if (lhsWords == 1) {
1763       uint64_t tmp =
1764         uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1765       if (Quotient->isSingleWord())
1766         Quotient->VAL = tmp;
1767       else
1768         Quotient->pVal[0] = tmp;
1769     } else {
1770       assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1771       for (unsigned i = 0; i < lhsWords; ++i)
1772         Quotient->pVal[i] =
1773           uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1774     }
1775   }
1776 
1777   // If the caller wants the remainder
1778   if (Remainder) {
1779     // Set up the Remainder value's memory.
1780     if (Remainder->BitWidth != RHS.BitWidth) {
1781       if (Remainder->isSingleWord())
1782         Remainder->VAL = 0;
1783       else
1784         delete [] Remainder->pVal;
1785       Remainder->BitWidth = RHS.BitWidth;
1786       if (!Remainder->isSingleWord())
1787         Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1788     } else
1789       Remainder->clearAllBits();
1790 
1791     // The remainder is in R. Reconstitute the remainder into Remainder's low
1792     // order words.
1793     if (rhsWords == 1) {
1794       uint64_t tmp =
1795         uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1796       if (Remainder->isSingleWord())
1797         Remainder->VAL = tmp;
1798       else
1799         Remainder->pVal[0] = tmp;
1800     } else {
1801       assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1802       for (unsigned i = 0; i < rhsWords; ++i)
1803         Remainder->pVal[i] =
1804           uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1805     }
1806   }
1807 
1808   // Clean up the memory we allocated.
1809   if (U != &SPACE[0]) {
1810     delete [] U;
1811     delete [] V;
1812     delete [] Q;
1813     delete [] R;
1814   }
1815 }
1816 
udiv(const APInt & RHS) const1817 APInt APInt::udiv(const APInt& RHS) const {
1818   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1819 
1820   // First, deal with the easy case
1821   if (isSingleWord()) {
1822     assert(RHS.VAL != 0 && "Divide by zero?");
1823     return APInt(BitWidth, VAL / RHS.VAL);
1824   }
1825 
1826   // Get some facts about the LHS and RHS number of bits and words
1827   unsigned rhsBits = RHS.getActiveBits();
1828   unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1829   assert(rhsWords && "Divided by zero???");
1830   unsigned lhsBits = this->getActiveBits();
1831   unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1832 
1833   // Deal with some degenerate cases
1834   if (!lhsWords)
1835     // 0 / X ===> 0
1836     return APInt(BitWidth, 0);
1837   else if (lhsWords < rhsWords || this->ult(RHS)) {
1838     // X / Y ===> 0, iff X < Y
1839     return APInt(BitWidth, 0);
1840   } else if (*this == RHS) {
1841     // X / X ===> 1
1842     return APInt(BitWidth, 1);
1843   } else if (lhsWords == 1 && rhsWords == 1) {
1844     // All high words are zero, just use native divide
1845     return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1846   }
1847 
1848   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1849   APInt Quotient(1,0); // to hold result.
1850   divide(*this, lhsWords, RHS, rhsWords, &Quotient, nullptr);
1851   return Quotient;
1852 }
1853 
sdiv(const APInt & RHS) const1854 APInt APInt::sdiv(const APInt &RHS) const {
1855   if (isNegative()) {
1856     if (RHS.isNegative())
1857       return (-(*this)).udiv(-RHS);
1858     return -((-(*this)).udiv(RHS));
1859   }
1860   if (RHS.isNegative())
1861     return -(this->udiv(-RHS));
1862   return this->udiv(RHS);
1863 }
1864 
urem(const APInt & RHS) const1865 APInt APInt::urem(const APInt& RHS) const {
1866   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1867   if (isSingleWord()) {
1868     assert(RHS.VAL != 0 && "Remainder by zero?");
1869     return APInt(BitWidth, VAL % RHS.VAL);
1870   }
1871 
1872   // Get some facts about the LHS
1873   unsigned lhsBits = getActiveBits();
1874   unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1875 
1876   // Get some facts about the RHS
1877   unsigned rhsBits = RHS.getActiveBits();
1878   unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1879   assert(rhsWords && "Performing remainder operation by zero ???");
1880 
1881   // Check the degenerate cases
1882   if (lhsWords == 0) {
1883     // 0 % Y ===> 0
1884     return APInt(BitWidth, 0);
1885   } else if (lhsWords < rhsWords || this->ult(RHS)) {
1886     // X % Y ===> X, iff X < Y
1887     return *this;
1888   } else if (*this == RHS) {
1889     // X % X == 0;
1890     return APInt(BitWidth, 0);
1891   } else if (lhsWords == 1) {
1892     // All high words are zero, just use native remainder
1893     return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1894   }
1895 
1896   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1897   APInt Remainder(1,0);
1898   divide(*this, lhsWords, RHS, rhsWords, nullptr, &Remainder);
1899   return Remainder;
1900 }
1901 
srem(const APInt & RHS) const1902 APInt APInt::srem(const APInt &RHS) const {
1903   if (isNegative()) {
1904     if (RHS.isNegative())
1905       return -((-(*this)).urem(-RHS));
1906     return -((-(*this)).urem(RHS));
1907   }
1908   if (RHS.isNegative())
1909     return this->urem(-RHS);
1910   return this->urem(RHS);
1911 }
1912 
udivrem(const APInt & LHS,const APInt & RHS,APInt & Quotient,APInt & Remainder)1913 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1914                     APInt &Quotient, APInt &Remainder) {
1915   assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1916 
1917   // First, deal with the easy case
1918   if (LHS.isSingleWord()) {
1919     assert(RHS.VAL != 0 && "Divide by zero?");
1920     uint64_t QuotVal = LHS.VAL / RHS.VAL;
1921     uint64_t RemVal = LHS.VAL % RHS.VAL;
1922     Quotient = APInt(LHS.BitWidth, QuotVal);
1923     Remainder = APInt(LHS.BitWidth, RemVal);
1924     return;
1925   }
1926 
1927   // Get some size facts about the dividend and divisor
1928   unsigned lhsBits  = LHS.getActiveBits();
1929   unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1930   unsigned rhsBits  = RHS.getActiveBits();
1931   unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1932 
1933   // Check the degenerate cases
1934   if (lhsWords == 0) {
1935     Quotient = 0;                // 0 / Y ===> 0
1936     Remainder = 0;               // 0 % Y ===> 0
1937     return;
1938   }
1939 
1940   if (lhsWords < rhsWords || LHS.ult(RHS)) {
1941     Remainder = LHS;            // X % Y ===> X, iff X < Y
1942     Quotient = 0;               // X / Y ===> 0, iff X < Y
1943     return;
1944   }
1945 
1946   if (LHS == RHS) {
1947     Quotient  = 1;              // X / X ===> 1
1948     Remainder = 0;              // X % X ===> 0;
1949     return;
1950   }
1951 
1952   if (lhsWords == 1 && rhsWords == 1) {
1953     // There is only one word to consider so use the native versions.
1954     uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1955     uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1956     Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1957     Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
1958     return;
1959   }
1960 
1961   // Okay, lets do it the long way
1962   divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
1963 }
1964 
sdivrem(const APInt & LHS,const APInt & RHS,APInt & Quotient,APInt & Remainder)1965 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1966                     APInt &Quotient, APInt &Remainder) {
1967   if (LHS.isNegative()) {
1968     if (RHS.isNegative())
1969       APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1970     else {
1971       APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1972       Quotient = -Quotient;
1973     }
1974     Remainder = -Remainder;
1975   } else if (RHS.isNegative()) {
1976     APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1977     Quotient = -Quotient;
1978   } else {
1979     APInt::udivrem(LHS, RHS, Quotient, Remainder);
1980   }
1981 }
1982 
sadd_ov(const APInt & RHS,bool & Overflow) const1983 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1984   APInt Res = *this+RHS;
1985   Overflow = isNonNegative() == RHS.isNonNegative() &&
1986              Res.isNonNegative() != isNonNegative();
1987   return Res;
1988 }
1989 
uadd_ov(const APInt & RHS,bool & Overflow) const1990 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1991   APInt Res = *this+RHS;
1992   Overflow = Res.ult(RHS);
1993   return Res;
1994 }
1995 
ssub_ov(const APInt & RHS,bool & Overflow) const1996 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1997   APInt Res = *this - RHS;
1998   Overflow = isNonNegative() != RHS.isNonNegative() &&
1999              Res.isNonNegative() != isNonNegative();
2000   return Res;
2001 }
2002 
usub_ov(const APInt & RHS,bool & Overflow) const2003 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
2004   APInt Res = *this-RHS;
2005   Overflow = Res.ugt(*this);
2006   return Res;
2007 }
2008 
sdiv_ov(const APInt & RHS,bool & Overflow) const2009 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
2010   // MININT/-1  -->  overflow.
2011   Overflow = isMinSignedValue() && RHS.isAllOnesValue();
2012   return sdiv(RHS);
2013 }
2014 
smul_ov(const APInt & RHS,bool & Overflow) const2015 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
2016   APInt Res = *this * RHS;
2017 
2018   if (*this != 0 && RHS != 0)
2019     Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
2020   else
2021     Overflow = false;
2022   return Res;
2023 }
2024 
umul_ov(const APInt & RHS,bool & Overflow) const2025 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
2026   APInt Res = *this * RHS;
2027 
2028   if (*this != 0 && RHS != 0)
2029     Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS;
2030   else
2031     Overflow = false;
2032   return Res;
2033 }
2034 
sshl_ov(const APInt & ShAmt,bool & Overflow) const2035 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
2036   Overflow = ShAmt.uge(getBitWidth());
2037   if (Overflow)
2038     return APInt(BitWidth, 0);
2039 
2040   if (isNonNegative()) // Don't allow sign change.
2041     Overflow = ShAmt.uge(countLeadingZeros());
2042   else
2043     Overflow = ShAmt.uge(countLeadingOnes());
2044 
2045   return *this << ShAmt;
2046 }
2047 
ushl_ov(const APInt & ShAmt,bool & Overflow) const2048 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2049   Overflow = ShAmt.uge(getBitWidth());
2050   if (Overflow)
2051     return APInt(BitWidth, 0);
2052 
2053   Overflow = ShAmt.ugt(countLeadingZeros());
2054 
2055   return *this << ShAmt;
2056 }
2057 
2058 
2059 
2060 
fromString(unsigned numbits,StringRef str,uint8_t radix)2061 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2062   // Check our assumptions here
2063   assert(!str.empty() && "Invalid string length");
2064   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2065           radix == 36) &&
2066          "Radix should be 2, 8, 10, 16, or 36!");
2067 
2068   StringRef::iterator p = str.begin();
2069   size_t slen = str.size();
2070   bool isNeg = *p == '-';
2071   if (*p == '-' || *p == '+') {
2072     p++;
2073     slen--;
2074     assert(slen && "String is only a sign, needs a value.");
2075   }
2076   assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2077   assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2078   assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2079   assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2080          "Insufficient bit width");
2081 
2082   // Allocate memory
2083   if (!isSingleWord())
2084     pVal = getClearedMemory(getNumWords());
2085 
2086   // Figure out if we can shift instead of multiply
2087   unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2088 
2089   // Set up an APInt for the digit to add outside the loop so we don't
2090   // constantly construct/destruct it.
2091   APInt apdigit(getBitWidth(), 0);
2092   APInt apradix(getBitWidth(), radix);
2093 
2094   // Enter digit traversal loop
2095   for (StringRef::iterator e = str.end(); p != e; ++p) {
2096     unsigned digit = getDigit(*p, radix);
2097     assert(digit < radix && "Invalid character in digit string");
2098 
2099     // Shift or multiply the value by the radix
2100     if (slen > 1) {
2101       if (shift)
2102         *this <<= shift;
2103       else
2104         *this *= apradix;
2105     }
2106 
2107     // Add in the digit we just interpreted
2108     if (apdigit.isSingleWord())
2109       apdigit.VAL = digit;
2110     else
2111       apdigit.pVal[0] = digit;
2112     *this += apdigit;
2113   }
2114   // If its negative, put it in two's complement form
2115   if (isNeg) {
2116     --(*this);
2117     this->flipAllBits();
2118   }
2119 }
2120 
toString(SmallVectorImpl<char> & Str,unsigned Radix,bool Signed,bool formatAsCLiteral) const2121 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2122                      bool Signed, bool formatAsCLiteral) const {
2123   assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2124           Radix == 36) &&
2125          "Radix should be 2, 8, 10, 16, or 36!");
2126 
2127   const char *Prefix = "";
2128   if (formatAsCLiteral) {
2129     switch (Radix) {
2130       case 2:
2131         // Binary literals are a non-standard extension added in gcc 4.3:
2132         // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2133         Prefix = "0b";
2134         break;
2135       case 8:
2136         Prefix = "0";
2137         break;
2138       case 10:
2139         break; // No prefix
2140       case 16:
2141         Prefix = "0x";
2142         break;
2143       default:
2144         llvm_unreachable("Invalid radix!");
2145     }
2146   }
2147 
2148   // First, check for a zero value and just short circuit the logic below.
2149   if (*this == 0) {
2150     while (*Prefix) {
2151       Str.push_back(*Prefix);
2152       ++Prefix;
2153     };
2154     Str.push_back('0');
2155     return;
2156   }
2157 
2158   static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2159 
2160   if (isSingleWord()) {
2161     char Buffer[65];
2162     char *BufPtr = Buffer+65;
2163 
2164     uint64_t N;
2165     if (!Signed) {
2166       N = getZExtValue();
2167     } else {
2168       int64_t I = getSExtValue();
2169       if (I >= 0) {
2170         N = I;
2171       } else {
2172         Str.push_back('-');
2173         N = -(uint64_t)I;
2174       }
2175     }
2176 
2177     while (*Prefix) {
2178       Str.push_back(*Prefix);
2179       ++Prefix;
2180     };
2181 
2182     while (N) {
2183       *--BufPtr = Digits[N % Radix];
2184       N /= Radix;
2185     }
2186     Str.append(BufPtr, Buffer+65);
2187     return;
2188   }
2189 
2190   APInt Tmp(*this);
2191 
2192   if (Signed && isNegative()) {
2193     // They want to print the signed version and it is a negative value
2194     // Flip the bits and add one to turn it into the equivalent positive
2195     // value and put a '-' in the result.
2196     Tmp.flipAllBits();
2197     ++Tmp;
2198     Str.push_back('-');
2199   }
2200 
2201   while (*Prefix) {
2202     Str.push_back(*Prefix);
2203     ++Prefix;
2204   };
2205 
2206   // We insert the digits backward, then reverse them to get the right order.
2207   unsigned StartDig = Str.size();
2208 
2209   // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2210   // because the number of bits per digit (1, 3 and 4 respectively) divides
2211   // equaly.  We just shift until the value is zero.
2212   if (Radix == 2 || Radix == 8 || Radix == 16) {
2213     // Just shift tmp right for each digit width until it becomes zero
2214     unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2215     unsigned MaskAmt = Radix - 1;
2216 
2217     while (Tmp != 0) {
2218       unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2219       Str.push_back(Digits[Digit]);
2220       Tmp = Tmp.lshr(ShiftAmt);
2221     }
2222   } else {
2223     APInt divisor(Radix == 10? 4 : 8, Radix);
2224     while (Tmp != 0) {
2225       APInt APdigit(1, 0);
2226       APInt tmp2(Tmp.getBitWidth(), 0);
2227       divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2228              &APdigit);
2229       unsigned Digit = (unsigned)APdigit.getZExtValue();
2230       assert(Digit < Radix && "divide failed");
2231       Str.push_back(Digits[Digit]);
2232       Tmp = tmp2;
2233     }
2234   }
2235 
2236   // Reverse the digits before returning.
2237   std::reverse(Str.begin()+StartDig, Str.end());
2238 }
2239 
2240 /// Returns the APInt as a std::string. Note that this is an inefficient method.
2241 /// It is better to pass in a SmallVector/SmallString to the methods above.
toString(unsigned Radix=10,bool Signed=true) const2242 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2243   SmallString<40> S;
2244   toString(S, Radix, Signed, /* formatAsCLiteral = */false);
2245   return S.str();
2246 }
2247 
2248 
dump() const2249 LLVM_DUMP_METHOD void APInt::dump() const {
2250   SmallString<40> S, U;
2251   this->toStringUnsigned(U);
2252   this->toStringSigned(S);
2253   dbgs() << "APInt(" << BitWidth << "b, "
2254          << U << "u " << S << "s)";
2255 }
2256 
print(raw_ostream & OS,bool isSigned) const2257 void APInt::print(raw_ostream &OS, bool isSigned) const {
2258   SmallString<40> S;
2259   this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2260   OS << S;
2261 }
2262 
2263 // This implements a variety of operations on a representation of
2264 // arbitrary precision, two's-complement, bignum integer values.
2265 
2266 // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
2267 // and unrestricting assumption.
2268 static_assert(integerPartWidth % 2 == 0, "Part width must be divisible by 2!");
2269 
2270 /* Some handy functions local to this file.  */
2271 namespace {
2272 
2273   /* Returns the integer part with the least significant BITS set.
2274      BITS cannot be zero.  */
2275   static inline integerPart
lowBitMask(unsigned int bits)2276   lowBitMask(unsigned int bits)
2277   {
2278     assert(bits != 0 && bits <= integerPartWidth);
2279 
2280     return ~(integerPart) 0 >> (integerPartWidth - bits);
2281   }
2282 
2283   /* Returns the value of the lower half of PART.  */
2284   static inline integerPart
lowHalf(integerPart part)2285   lowHalf(integerPart part)
2286   {
2287     return part & lowBitMask(integerPartWidth / 2);
2288   }
2289 
2290   /* Returns the value of the upper half of PART.  */
2291   static inline integerPart
highHalf(integerPart part)2292   highHalf(integerPart part)
2293   {
2294     return part >> (integerPartWidth / 2);
2295   }
2296 
2297   /* Returns the bit number of the most significant set bit of a part.
2298      If the input number has no bits set -1U is returned.  */
2299   static unsigned int
partMSB(integerPart value)2300   partMSB(integerPart value)
2301   {
2302     return findLastSet(value, ZB_Max);
2303   }
2304 
2305   /* Returns the bit number of the least significant set bit of a
2306      part.  If the input number has no bits set -1U is returned.  */
2307   static unsigned int
partLSB(integerPart value)2308   partLSB(integerPart value)
2309   {
2310     return findFirstSet(value, ZB_Max);
2311   }
2312 }
2313 
2314 /* Sets the least significant part of a bignum to the input value, and
2315    zeroes out higher parts.  */
2316 void
tcSet(integerPart * dst,integerPart part,unsigned int parts)2317 APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2318 {
2319   unsigned int i;
2320 
2321   assert(parts > 0);
2322 
2323   dst[0] = part;
2324   for (i = 1; i < parts; i++)
2325     dst[i] = 0;
2326 }
2327 
2328 /* Assign one bignum to another.  */
2329 void
tcAssign(integerPart * dst,const integerPart * src,unsigned int parts)2330 APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2331 {
2332   unsigned int i;
2333 
2334   for (i = 0; i < parts; i++)
2335     dst[i] = src[i];
2336 }
2337 
2338 /* Returns true if a bignum is zero, false otherwise.  */
2339 bool
tcIsZero(const integerPart * src,unsigned int parts)2340 APInt::tcIsZero(const integerPart *src, unsigned int parts)
2341 {
2342   unsigned int i;
2343 
2344   for (i = 0; i < parts; i++)
2345     if (src[i])
2346       return false;
2347 
2348   return true;
2349 }
2350 
2351 /* Extract the given bit of a bignum; returns 0 or 1.  */
2352 int
tcExtractBit(const integerPart * parts,unsigned int bit)2353 APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2354 {
2355   return (parts[bit / integerPartWidth] &
2356           ((integerPart) 1 << bit % integerPartWidth)) != 0;
2357 }
2358 
2359 /* Set the given bit of a bignum. */
2360 void
tcSetBit(integerPart * parts,unsigned int bit)2361 APInt::tcSetBit(integerPart *parts, unsigned int bit)
2362 {
2363   parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2364 }
2365 
2366 /* Clears the given bit of a bignum. */
2367 void
tcClearBit(integerPart * parts,unsigned int bit)2368 APInt::tcClearBit(integerPart *parts, unsigned int bit)
2369 {
2370   parts[bit / integerPartWidth] &=
2371     ~((integerPart) 1 << (bit % integerPartWidth));
2372 }
2373 
2374 /* Returns the bit number of the least significant set bit of a
2375    number.  If the input number has no bits set -1U is returned.  */
2376 unsigned int
tcLSB(const integerPart * parts,unsigned int n)2377 APInt::tcLSB(const integerPart *parts, unsigned int n)
2378 {
2379   unsigned int i, lsb;
2380 
2381   for (i = 0; i < n; i++) {
2382       if (parts[i] != 0) {
2383           lsb = partLSB(parts[i]);
2384 
2385           return lsb + i * integerPartWidth;
2386       }
2387   }
2388 
2389   return -1U;
2390 }
2391 
2392 /* Returns the bit number of the most significant set bit of a number.
2393    If the input number has no bits set -1U is returned.  */
2394 unsigned int
tcMSB(const integerPart * parts,unsigned int n)2395 APInt::tcMSB(const integerPart *parts, unsigned int n)
2396 {
2397   unsigned int msb;
2398 
2399   do {
2400     --n;
2401 
2402     if (parts[n] != 0) {
2403       msb = partMSB(parts[n]);
2404 
2405       return msb + n * integerPartWidth;
2406     }
2407   } while (n);
2408 
2409   return -1U;
2410 }
2411 
2412 /* Copy the bit vector of width srcBITS from SRC, starting at bit
2413    srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2414    the least significant bit of DST.  All high bits above srcBITS in
2415    DST are zero-filled.  */
2416 void
tcExtract(integerPart * dst,unsigned int dstCount,const integerPart * src,unsigned int srcBits,unsigned int srcLSB)2417 APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
2418                  unsigned int srcBits, unsigned int srcLSB)
2419 {
2420   unsigned int firstSrcPart, dstParts, shift, n;
2421 
2422   dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2423   assert(dstParts <= dstCount);
2424 
2425   firstSrcPart = srcLSB / integerPartWidth;
2426   tcAssign (dst, src + firstSrcPart, dstParts);
2427 
2428   shift = srcLSB % integerPartWidth;
2429   tcShiftRight (dst, dstParts, shift);
2430 
2431   /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2432      in DST.  If this is less that srcBits, append the rest, else
2433      clear the high bits.  */
2434   n = dstParts * integerPartWidth - shift;
2435   if (n < srcBits) {
2436     integerPart mask = lowBitMask (srcBits - n);
2437     dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2438                           << n % integerPartWidth);
2439   } else if (n > srcBits) {
2440     if (srcBits % integerPartWidth)
2441       dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
2442   }
2443 
2444   /* Clear high parts.  */
2445   while (dstParts < dstCount)
2446     dst[dstParts++] = 0;
2447 }
2448 
2449 /* DST += RHS + C where C is zero or one.  Returns the carry flag.  */
2450 integerPart
tcAdd(integerPart * dst,const integerPart * rhs,integerPart c,unsigned int parts)2451 APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2452              integerPart c, unsigned int parts)
2453 {
2454   unsigned int i;
2455 
2456   assert(c <= 1);
2457 
2458   for (i = 0; i < parts; i++) {
2459     integerPart l;
2460 
2461     l = dst[i];
2462     if (c) {
2463       dst[i] += rhs[i] + 1;
2464       c = (dst[i] <= l);
2465     } else {
2466       dst[i] += rhs[i];
2467       c = (dst[i] < l);
2468     }
2469   }
2470 
2471   return c;
2472 }
2473 
2474 /* DST -= RHS + C where C is zero or one.  Returns the carry flag.  */
2475 integerPart
tcSubtract(integerPart * dst,const integerPart * rhs,integerPart c,unsigned int parts)2476 APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2477                   integerPart c, unsigned int parts)
2478 {
2479   unsigned int i;
2480 
2481   assert(c <= 1);
2482 
2483   for (i = 0; i < parts; i++) {
2484     integerPart l;
2485 
2486     l = dst[i];
2487     if (c) {
2488       dst[i] -= rhs[i] + 1;
2489       c = (dst[i] >= l);
2490     } else {
2491       dst[i] -= rhs[i];
2492       c = (dst[i] > l);
2493     }
2494   }
2495 
2496   return c;
2497 }
2498 
2499 /* Negate a bignum in-place.  */
2500 void
tcNegate(integerPart * dst,unsigned int parts)2501 APInt::tcNegate(integerPart *dst, unsigned int parts)
2502 {
2503   tcComplement(dst, parts);
2504   tcIncrement(dst, parts);
2505 }
2506 
2507 /*  DST += SRC * MULTIPLIER + CARRY   if add is true
2508     DST  = SRC * MULTIPLIER + CARRY   if add is false
2509 
2510     Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
2511     they must start at the same point, i.e. DST == SRC.
2512 
2513     If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2514     returned.  Otherwise DST is filled with the least significant
2515     DSTPARTS parts of the result, and if all of the omitted higher
2516     parts were zero return zero, otherwise overflow occurred and
2517     return one.  */
2518 int
tcMultiplyPart(integerPart * dst,const integerPart * src,integerPart multiplier,integerPart carry,unsigned int srcParts,unsigned int dstParts,bool add)2519 APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2520                       integerPart multiplier, integerPart carry,
2521                       unsigned int srcParts, unsigned int dstParts,
2522                       bool add)
2523 {
2524   unsigned int i, n;
2525 
2526   /* Otherwise our writes of DST kill our later reads of SRC.  */
2527   assert(dst <= src || dst >= src + srcParts);
2528   assert(dstParts <= srcParts + 1);
2529 
2530   /* N loops; minimum of dstParts and srcParts.  */
2531   n = dstParts < srcParts ? dstParts: srcParts;
2532 
2533   for (i = 0; i < n; i++) {
2534     integerPart low, mid, high, srcPart;
2535 
2536       /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2537 
2538          This cannot overflow, because
2539 
2540          (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2541 
2542          which is less than n^2.  */
2543 
2544     srcPart = src[i];
2545 
2546     if (multiplier == 0 || srcPart == 0)        {
2547       low = carry;
2548       high = 0;
2549     } else {
2550       low = lowHalf(srcPart) * lowHalf(multiplier);
2551       high = highHalf(srcPart) * highHalf(multiplier);
2552 
2553       mid = lowHalf(srcPart) * highHalf(multiplier);
2554       high += highHalf(mid);
2555       mid <<= integerPartWidth / 2;
2556       if (low + mid < low)
2557         high++;
2558       low += mid;
2559 
2560       mid = highHalf(srcPart) * lowHalf(multiplier);
2561       high += highHalf(mid);
2562       mid <<= integerPartWidth / 2;
2563       if (low + mid < low)
2564         high++;
2565       low += mid;
2566 
2567       /* Now add carry.  */
2568       if (low + carry < low)
2569         high++;
2570       low += carry;
2571     }
2572 
2573     if (add) {
2574       /* And now DST[i], and store the new low part there.  */
2575       if (low + dst[i] < low)
2576         high++;
2577       dst[i] += low;
2578     } else
2579       dst[i] = low;
2580 
2581     carry = high;
2582   }
2583 
2584   if (i < dstParts) {
2585     /* Full multiplication, there is no overflow.  */
2586     assert(i + 1 == dstParts);
2587     dst[i] = carry;
2588     return 0;
2589   } else {
2590     /* We overflowed if there is carry.  */
2591     if (carry)
2592       return 1;
2593 
2594     /* We would overflow if any significant unwritten parts would be
2595        non-zero.  This is true if any remaining src parts are non-zero
2596        and the multiplier is non-zero.  */
2597     if (multiplier)
2598       for (; i < srcParts; i++)
2599         if (src[i])
2600           return 1;
2601 
2602     /* We fitted in the narrow destination.  */
2603     return 0;
2604   }
2605 }
2606 
2607 /* DST = LHS * RHS, where DST has the same width as the operands and
2608    is filled with the least significant parts of the result.  Returns
2609    one if overflow occurred, otherwise zero.  DST must be disjoint
2610    from both operands.  */
2611 int
tcMultiply(integerPart * dst,const integerPart * lhs,const integerPart * rhs,unsigned int parts)2612 APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2613                   const integerPart *rhs, unsigned int parts)
2614 {
2615   unsigned int i;
2616   int overflow;
2617 
2618   assert(dst != lhs && dst != rhs);
2619 
2620   overflow = 0;
2621   tcSet(dst, 0, parts);
2622 
2623   for (i = 0; i < parts; i++)
2624     overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2625                                parts - i, true);
2626 
2627   return overflow;
2628 }
2629 
2630 /* DST = LHS * RHS, where DST has width the sum of the widths of the
2631    operands.  No overflow occurs.  DST must be disjoint from both
2632    operands.  Returns the number of parts required to hold the
2633    result.  */
2634 unsigned int
tcFullMultiply(integerPart * dst,const integerPart * lhs,const integerPart * rhs,unsigned int lhsParts,unsigned int rhsParts)2635 APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
2636                       const integerPart *rhs, unsigned int lhsParts,
2637                       unsigned int rhsParts)
2638 {
2639   /* Put the narrower number on the LHS for less loops below.  */
2640   if (lhsParts > rhsParts) {
2641     return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2642   } else {
2643     unsigned int n;
2644 
2645     assert(dst != lhs && dst != rhs);
2646 
2647     tcSet(dst, 0, rhsParts);
2648 
2649     for (n = 0; n < lhsParts; n++)
2650       tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
2651 
2652     n = lhsParts + rhsParts;
2653 
2654     return n - (dst[n - 1] == 0);
2655   }
2656 }
2657 
2658 /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2659    Otherwise set LHS to LHS / RHS with the fractional part discarded,
2660    set REMAINDER to the remainder, return zero.  i.e.
2661 
2662    OLD_LHS = RHS * LHS + REMAINDER
2663 
2664    SCRATCH is a bignum of the same size as the operands and result for
2665    use by the routine; its contents need not be initialized and are
2666    destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
2667 */
2668 int
tcDivide(integerPart * lhs,const integerPart * rhs,integerPart * remainder,integerPart * srhs,unsigned int parts)2669 APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2670                 integerPart *remainder, integerPart *srhs,
2671                 unsigned int parts)
2672 {
2673   unsigned int n, shiftCount;
2674   integerPart mask;
2675 
2676   assert(lhs != remainder && lhs != srhs && remainder != srhs);
2677 
2678   shiftCount = tcMSB(rhs, parts) + 1;
2679   if (shiftCount == 0)
2680     return true;
2681 
2682   shiftCount = parts * integerPartWidth - shiftCount;
2683   n = shiftCount / integerPartWidth;
2684   mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2685 
2686   tcAssign(srhs, rhs, parts);
2687   tcShiftLeft(srhs, parts, shiftCount);
2688   tcAssign(remainder, lhs, parts);
2689   tcSet(lhs, 0, parts);
2690 
2691   /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2692      the total.  */
2693   for (;;) {
2694       int compare;
2695 
2696       compare = tcCompare(remainder, srhs, parts);
2697       if (compare >= 0) {
2698         tcSubtract(remainder, srhs, 0, parts);
2699         lhs[n] |= mask;
2700       }
2701 
2702       if (shiftCount == 0)
2703         break;
2704       shiftCount--;
2705       tcShiftRight(srhs, parts, 1);
2706       if ((mask >>= 1) == 0) {
2707         mask = (integerPart) 1 << (integerPartWidth - 1);
2708         n--;
2709       }
2710   }
2711 
2712   return false;
2713 }
2714 
2715 /* Shift a bignum left COUNT bits in-place.  Shifted in bits are zero.
2716    There are no restrictions on COUNT.  */
2717 void
tcShiftLeft(integerPart * dst,unsigned int parts,unsigned int count)2718 APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2719 {
2720   if (count) {
2721     unsigned int jump, shift;
2722 
2723     /* Jump is the inter-part jump; shift is is intra-part shift.  */
2724     jump = count / integerPartWidth;
2725     shift = count % integerPartWidth;
2726 
2727     while (parts > jump) {
2728       integerPart part;
2729 
2730       parts--;
2731 
2732       /* dst[i] comes from the two parts src[i - jump] and, if we have
2733          an intra-part shift, src[i - jump - 1].  */
2734       part = dst[parts - jump];
2735       if (shift) {
2736         part <<= shift;
2737         if (parts >= jump + 1)
2738           part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2739       }
2740 
2741       dst[parts] = part;
2742     }
2743 
2744     while (parts > 0)
2745       dst[--parts] = 0;
2746   }
2747 }
2748 
2749 /* Shift a bignum right COUNT bits in-place.  Shifted in bits are
2750    zero.  There are no restrictions on COUNT.  */
2751 void
tcShiftRight(integerPart * dst,unsigned int parts,unsigned int count)2752 APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2753 {
2754   if (count) {
2755     unsigned int i, jump, shift;
2756 
2757     /* Jump is the inter-part jump; shift is is intra-part shift.  */
2758     jump = count / integerPartWidth;
2759     shift = count % integerPartWidth;
2760 
2761     /* Perform the shift.  This leaves the most significant COUNT bits
2762        of the result at zero.  */
2763     for (i = 0; i < parts; i++) {
2764       integerPart part;
2765 
2766       if (i + jump >= parts) {
2767         part = 0;
2768       } else {
2769         part = dst[i + jump];
2770         if (shift) {
2771           part >>= shift;
2772           if (i + jump + 1 < parts)
2773             part |= dst[i + jump + 1] << (integerPartWidth - shift);
2774         }
2775       }
2776 
2777       dst[i] = part;
2778     }
2779   }
2780 }
2781 
2782 /* Bitwise and of two bignums.  */
2783 void
tcAnd(integerPart * dst,const integerPart * rhs,unsigned int parts)2784 APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2785 {
2786   unsigned int i;
2787 
2788   for (i = 0; i < parts; i++)
2789     dst[i] &= rhs[i];
2790 }
2791 
2792 /* Bitwise inclusive or of two bignums.  */
2793 void
tcOr(integerPart * dst,const integerPart * rhs,unsigned int parts)2794 APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2795 {
2796   unsigned int i;
2797 
2798   for (i = 0; i < parts; i++)
2799     dst[i] |= rhs[i];
2800 }
2801 
2802 /* Bitwise exclusive or of two bignums.  */
2803 void
tcXor(integerPart * dst,const integerPart * rhs,unsigned int parts)2804 APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2805 {
2806   unsigned int i;
2807 
2808   for (i = 0; i < parts; i++)
2809     dst[i] ^= rhs[i];
2810 }
2811 
2812 /* Complement a bignum in-place.  */
2813 void
tcComplement(integerPart * dst,unsigned int parts)2814 APInt::tcComplement(integerPart *dst, unsigned int parts)
2815 {
2816   unsigned int i;
2817 
2818   for (i = 0; i < parts; i++)
2819     dst[i] = ~dst[i];
2820 }
2821 
2822 /* Comparison (unsigned) of two bignums.  */
2823 int
tcCompare(const integerPart * lhs,const integerPart * rhs,unsigned int parts)2824 APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2825                  unsigned int parts)
2826 {
2827   while (parts) {
2828       parts--;
2829       if (lhs[parts] == rhs[parts])
2830         continue;
2831 
2832       if (lhs[parts] > rhs[parts])
2833         return 1;
2834       else
2835         return -1;
2836     }
2837 
2838   return 0;
2839 }
2840 
2841 /* Increment a bignum in-place, return the carry flag.  */
2842 integerPart
tcIncrement(integerPart * dst,unsigned int parts)2843 APInt::tcIncrement(integerPart *dst, unsigned int parts)
2844 {
2845   unsigned int i;
2846 
2847   for (i = 0; i < parts; i++)
2848     if (++dst[i] != 0)
2849       break;
2850 
2851   return i == parts;
2852 }
2853 
2854 /* Decrement a bignum in-place, return the borrow flag.  */
2855 integerPart
tcDecrement(integerPart * dst,unsigned int parts)2856 APInt::tcDecrement(integerPart *dst, unsigned int parts) {
2857   for (unsigned int i = 0; i < parts; i++) {
2858     // If the current word is non-zero, then the decrement has no effect on the
2859     // higher-order words of the integer and no borrow can occur. Exit early.
2860     if (dst[i]--)
2861       return 0;
2862   }
2863   // If every word was zero, then there is a borrow.
2864   return 1;
2865 }
2866 
2867 
2868 /* Set the least significant BITS bits of a bignum, clear the
2869    rest.  */
2870 void
tcSetLeastSignificantBits(integerPart * dst,unsigned int parts,unsigned int bits)2871 APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2872                                  unsigned int bits)
2873 {
2874   unsigned int i;
2875 
2876   i = 0;
2877   while (bits > integerPartWidth) {
2878     dst[i++] = ~(integerPart) 0;
2879     bits -= integerPartWidth;
2880   }
2881 
2882   if (bits)
2883     dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2884 
2885   while (i < parts)
2886     dst[i++] = 0;
2887 }
2888