1 /*
2 * Copyright (c) 2008 Stefan Hajnoczi <stefanha@gmail.com>
3 * Copyright (c) 2008 Pantelis Koukousoulas <pktoss@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation; either version 2 of the
8 * License, or any later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 *
19 * This driver is a port of the b44 linux driver version 1.01
20 *
21 * Copyright (c) 2002 David S. Miller <davem@redhat.com>
22 * Copyright (c) Pekka Pietikainen <pp@ee.oulu.fi>
23 * Copyright (C) 2006 Broadcom Corporation.
24 *
25 * Some ssb bits copied from version 2.0 of the b44 driver
26 * Copyright (c) Michael Buesch
27 *
28 * Copyright (c) a lot of people too. Please respect their work.
29 */
30
31 FILE_LICENCE ( GPL2_OR_LATER );
32
33 #include <errno.h>
34 #include <assert.h>
35 #include <stdio.h>
36 #include <unistd.h>
37 #include <byteswap.h>
38 #include <gpxe/io.h>
39 #include <mii.h>
40 #include <gpxe/iobuf.h>
41 #include <gpxe/malloc.h>
42 #include <gpxe/pci.h>
43 #include <gpxe/netdevice.h>
44 #include <gpxe/ethernet.h>
45 #include <gpxe/if_ether.h>
46 #include <gpxe/memmap.h>
47 #include "b44.h"
48
49
ring_next(int index)50 static inline int ring_next(int index)
51 {
52 /* B44_RING_SIZE is a power of 2 :) */
53 return (index + 1) & (B44_RING_SIZE - 1);
54 }
55
56
57 /* Memory-mapped I/O wrappers */
58
br32(const struct b44_private * bp,u32 reg)59 static inline u32 br32(const struct b44_private *bp, u32 reg)
60 {
61 return readl(bp->regs + reg);
62 }
63
64
bw32(const struct b44_private * bp,u32 reg,u32 val)65 static inline void bw32(const struct b44_private *bp, u32 reg, u32 val)
66 {
67 writel(val, bp->regs + reg);
68 }
69
70
bflush(const struct b44_private * bp,u32 reg,u32 timeout)71 static inline void bflush(const struct b44_private *bp, u32 reg, u32 timeout)
72 {
73 readl(bp->regs + reg);
74 udelay(timeout);
75 }
76
77
78 #define VIRT_TO_B44(addr) ( virt_to_bus(addr) + SB_PCI_DMA )
79
80
81 /**
82 * Return non-zero if the installed RAM is within
83 * the limit given and zero if it is outside.
84 * Hopefully will be removed soon.
85 */
phys_ram_within_limit(u64 limit)86 int phys_ram_within_limit(u64 limit)
87 {
88 struct memory_map memmap;
89 struct memory_region *highest = NULL;
90 get_memmap(&memmap);
91
92 highest = &memmap.regions[memmap.count - 1];
93
94 return (highest->end < limit);
95 }
96
97
98 /**
99 * Ring cells waiting to be processed are between 'tx_cur' and 'pending'
100 * indexes in the ring.
101 */
pending_tx_index(struct b44_private * bp)102 static u32 pending_tx_index(struct b44_private *bp)
103 {
104 u32 pending = br32(bp, B44_DMATX_STAT);
105 pending &= DMATX_STAT_CDMASK;
106
107 pending /= sizeof(struct dma_desc);
108 return pending & (B44_RING_SIZE - 1);
109 }
110
111
112 /**
113 * Ring cells waiting to be processed are between 'rx_cur' and 'pending'
114 * indexes in the ring.
115 */
pending_rx_index(struct b44_private * bp)116 static u32 pending_rx_index(struct b44_private *bp)
117 {
118 u32 pending = br32(bp, B44_DMARX_STAT);
119 pending &= DMARX_STAT_CDMASK;
120
121 pending /= sizeof(struct dma_desc);
122 return pending & (B44_RING_SIZE - 1);
123 }
124
125
126 /**
127 * Wait until the given bit is set/cleared.
128 */
b44_wait_bit(struct b44_private * bp,unsigned long reg,u32 bit,unsigned long timeout,const int clear)129 static int b44_wait_bit(struct b44_private *bp, unsigned long reg, u32 bit,
130 unsigned long timeout, const int clear)
131 {
132 unsigned long i;
133
134 for (i = 0; i < timeout; i++) {
135 u32 val = br32(bp, reg);
136
137 if (clear && !(val & bit))
138 break;
139
140 if (!clear && (val & bit))
141 break;
142
143 udelay(10);
144 }
145 if (i == timeout) {
146 return -ENODEV;
147 }
148 return 0;
149 }
150
151
152 /*
153 * Sonics Silicon Backplane support. SSB is a mini-bus interconnecting
154 * so-called IP Cores. One of those cores implements the Fast Ethernet
155 * functionality and another one the PCI engine.
156 *
157 * You need to switch to the core you want to talk to before actually
158 * sending commands.
159 *
160 * See: http://bcm-v4.sipsolutions.net/Backplane for (reverse-engineered)
161 * specs.
162 */
163
ssb_get_core_rev(struct b44_private * bp)164 static inline u32 ssb_get_core_rev(struct b44_private *bp)
165 {
166 return (br32(bp, B44_SBIDHIGH) & SBIDHIGH_RC_MASK);
167 }
168
169
ssb_is_core_up(struct b44_private * bp)170 static inline int ssb_is_core_up(struct b44_private *bp)
171 {
172 return ((br32(bp, B44_SBTMSLOW) & (SSB_CORE_DOWN | SBTMSLOW_CLOCK))
173 == SBTMSLOW_CLOCK);
174 }
175
176
ssb_pci_setup(struct b44_private * bp,u32 cores)177 static u32 ssb_pci_setup(struct b44_private *bp, u32 cores)
178 {
179 u32 bar_orig, pci_rev, val;
180
181 pci_read_config_dword(bp->pci, SSB_BAR0_WIN, &bar_orig);
182 pci_write_config_dword(bp->pci, SSB_BAR0_WIN,
183 BCM4400_PCI_CORE_ADDR);
184 pci_rev = ssb_get_core_rev(bp);
185
186 val = br32(bp, B44_SBINTVEC);
187 val |= cores;
188 bw32(bp, B44_SBINTVEC, val);
189
190 val = br32(bp, SSB_PCI_TRANS_2);
191 val |= SSB_PCI_PREF | SSB_PCI_BURST;
192 bw32(bp, SSB_PCI_TRANS_2, val);
193
194 pci_write_config_dword(bp->pci, SSB_BAR0_WIN, bar_orig);
195
196 return pci_rev;
197 }
198
199
ssb_core_disable(struct b44_private * bp)200 static void ssb_core_disable(struct b44_private *bp)
201 {
202 if (br32(bp, B44_SBTMSLOW) & SBTMSLOW_RESET)
203 return;
204
205 bw32(bp, B44_SBTMSLOW, (SBTMSLOW_REJECT | SBTMSLOW_CLOCK));
206 b44_wait_bit(bp, B44_SBTMSLOW, SBTMSLOW_REJECT, 100000, 0);
207 b44_wait_bit(bp, B44_SBTMSHIGH, SBTMSHIGH_BUSY, 100000, 1);
208
209 bw32(bp, B44_SBTMSLOW, (SBTMSLOW_FGC | SBTMSLOW_CLOCK |
210 SSB_CORE_DOWN));
211 bflush(bp, B44_SBTMSLOW, 1);
212
213 bw32(bp, B44_SBTMSLOW, SSB_CORE_DOWN);
214 bflush(bp, B44_SBTMSLOW, 1);
215 }
216
217
ssb_core_reset(struct b44_private * bp)218 static void ssb_core_reset(struct b44_private *bp)
219 {
220 u32 val;
221 const u32 mask = (SBTMSLOW_CLOCK | SBTMSLOW_FGC | SBTMSLOW_RESET);
222
223 ssb_core_disable(bp);
224
225 bw32(bp, B44_SBTMSLOW, mask);
226 bflush(bp, B44_SBTMSLOW, 1);
227
228 /* Clear SERR if set, this is a hw bug workaround. */
229 if (br32(bp, B44_SBTMSHIGH) & SBTMSHIGH_SERR)
230 bw32(bp, B44_SBTMSHIGH, 0);
231
232 val = br32(bp, B44_SBIMSTATE);
233 if (val & (SBIMSTATE_BAD)) {
234 bw32(bp, B44_SBIMSTATE, val & ~SBIMSTATE_BAD);
235 }
236
237 bw32(bp, B44_SBTMSLOW, (SBTMSLOW_CLOCK | SBTMSLOW_FGC));
238 bflush(bp, B44_SBTMSLOW, 1);
239
240 bw32(bp, B44_SBTMSLOW, (SBTMSLOW_CLOCK));
241 bflush(bp, B44_SBTMSLOW, 1);
242 }
243
244
245 /*
246 * Driver helper functions
247 */
248
249 /*
250 * Chip reset provides power to the b44 MAC & PCI cores, which
251 * is necessary for MAC register access. We only do a partial
252 * reset in case of transmit/receive errors (ISTAT_ERRORS) to
253 * avoid the chip being hung for an unnecessary long time in
254 * this case.
255 *
256 * Called-by: b44_close, b44_halt, b44_inithw(b44_open), b44_probe
257 */
b44_chip_reset(struct b44_private * bp,int reset_kind)258 static void b44_chip_reset(struct b44_private *bp, int reset_kind)
259 {
260 if (ssb_is_core_up(bp)) {
261 bw32(bp, B44_RCV_LAZY, 0);
262
263 bw32(bp, B44_ENET_CTRL, ENET_CTRL_DISABLE);
264
265 b44_wait_bit(bp, B44_ENET_CTRL, ENET_CTRL_DISABLE, 200, 1);
266
267 bw32(bp, B44_DMATX_CTRL, 0);
268
269 bp->tx_dirty = bp->tx_cur = 0;
270
271 if (br32(bp, B44_DMARX_STAT) & DMARX_STAT_EMASK)
272 b44_wait_bit(bp, B44_DMARX_STAT, DMARX_STAT_SIDLE,
273 100, 0);
274
275 bw32(bp, B44_DMARX_CTRL, 0);
276
277 bp->rx_cur = 0;
278 } else {
279 ssb_pci_setup(bp, SBINTVEC_ENET0);
280 }
281
282 ssb_core_reset(bp);
283
284 /* Don't enable PHY if we are only doing a partial reset. */
285 if (reset_kind == B44_CHIP_RESET_PARTIAL)
286 return;
287
288 /* Make PHY accessible. */
289 bw32(bp, B44_MDIO_CTRL,
290 (MDIO_CTRL_PREAMBLE | (0x0d & MDIO_CTRL_MAXF_MASK)));
291 bflush(bp, B44_MDIO_CTRL, 1);
292
293 /* Enable internal or external PHY */
294 if (!(br32(bp, B44_DEVCTRL) & DEVCTRL_IPP)) {
295 bw32(bp, B44_ENET_CTRL, ENET_CTRL_EPSEL);
296 bflush(bp, B44_ENET_CTRL, 1);
297 } else {
298 u32 val = br32(bp, B44_DEVCTRL);
299 if (val & DEVCTRL_EPR) {
300 bw32(bp, B44_DEVCTRL, (val & ~DEVCTRL_EPR));
301 bflush(bp, B44_DEVCTRL, 100);
302 }
303 }
304 }
305
306
307 /**
308 * called by b44_poll in the error path
309 */
b44_halt(struct b44_private * bp)310 static void b44_halt(struct b44_private *bp)
311 {
312 /* disable ints */
313 bw32(bp, B44_IMASK, 0);
314 bflush(bp, B44_IMASK, 1);
315
316 DBG("b44: powering down PHY\n");
317 bw32(bp, B44_MAC_CTRL, MAC_CTRL_PHY_PDOWN);
318
319 /*
320 * Now reset the chip, but without enabling
321 * the MAC&PHY part of it.
322 * This has to be done _after_ we shut down the PHY
323 */
324 b44_chip_reset(bp, B44_CHIP_RESET_PARTIAL);
325 }
326
327
328
329 /*
330 * Called at device open time to get the chip ready for
331 * packet processing.
332 *
333 * Called-by: b44_open
334 */
b44_init_hw(struct b44_private * bp,int reset_kind)335 static void b44_init_hw(struct b44_private *bp, int reset_kind)
336 {
337 u32 val;
338 #define CTRL_MASK (DMARX_CTRL_ENABLE | (RX_PKT_OFFSET << DMARX_CTRL_ROSHIFT))
339
340 b44_chip_reset(bp, B44_CHIP_RESET_FULL);
341 if (reset_kind == B44_FULL_RESET) {
342 b44_phy_reset(bp);
343 }
344
345 /* Enable CRC32, set proper LED modes and power on PHY */
346 bw32(bp, B44_MAC_CTRL, MAC_CTRL_CRC32_ENAB | MAC_CTRL_PHY_LEDCTRL);
347 bw32(bp, B44_RCV_LAZY, (1 << RCV_LAZY_FC_SHIFT));
348
349 /* This sets the MAC address too. */
350 b44_set_rx_mode(bp->netdev);
351
352 /* MTU + eth header + possible VLAN tag + struct rx_header */
353 bw32(bp, B44_RXMAXLEN, B44_MAX_MTU + ETH_HLEN + 8 + RX_HEADER_LEN);
354 bw32(bp, B44_TXMAXLEN, B44_MAX_MTU + ETH_HLEN + 8 + RX_HEADER_LEN);
355
356 bw32(bp, B44_TX_HIWMARK, TX_HIWMARK_DEFLT);
357 if (reset_kind == B44_PARTIAL_RESET) {
358 bw32(bp, B44_DMARX_CTRL, CTRL_MASK);
359 } else {
360 bw32(bp, B44_DMATX_CTRL, DMATX_CTRL_ENABLE);
361 bw32(bp, B44_DMATX_ADDR, VIRT_TO_B44(bp->tx));
362
363 bw32(bp, B44_DMARX_CTRL, CTRL_MASK);
364 bw32(bp, B44_DMARX_ADDR, VIRT_TO_B44(bp->rx));
365 bw32(bp, B44_DMARX_PTR, B44_RX_RING_LEN_BYTES);
366
367 bw32(bp, B44_MIB_CTRL, MIB_CTRL_CLR_ON_READ);
368 }
369
370 val = br32(bp, B44_ENET_CTRL);
371 bw32(bp, B44_ENET_CTRL, (val | ENET_CTRL_ENABLE));
372 #undef CTRL_MASK
373 }
374
375
376 /*** Management of ring descriptors ***/
377
378
b44_populate_rx_descriptor(struct b44_private * bp,u32 idx)379 static void b44_populate_rx_descriptor(struct b44_private *bp, u32 idx)
380 {
381 struct rx_header *rh;
382 u32 ctrl, addr;
383
384 rh = bp->rx_iobuf[idx]->data;
385 rh->len = 0;
386 rh->flags = 0;
387 ctrl = DESC_CTRL_LEN & (RX_PKT_BUF_SZ - RX_PKT_OFFSET);
388 if (idx == B44_RING_LAST) {
389 ctrl |= DESC_CTRL_EOT;
390 }
391 addr = VIRT_TO_B44(bp->rx_iobuf[idx]->data);
392
393 bp->rx[idx].ctrl = cpu_to_le32(ctrl);
394 bp->rx[idx].addr = cpu_to_le32(addr);
395 bw32(bp, B44_DMARX_PTR, idx * sizeof(struct dma_desc));
396 }
397
398
399 /*
400 * Refill RX ring descriptors with buffers. This is needed
401 * because during rx we are passing ownership of descriptor
402 * buffers to the network stack.
403 */
b44_rx_refill(struct b44_private * bp,u32 pending)404 static void b44_rx_refill(struct b44_private *bp, u32 pending)
405 {
406 u32 i;
407
408 // skip pending
409 for (i = pending + 1; i != bp->rx_cur; i = ring_next(i)) {
410 if (bp->rx_iobuf[i] != NULL)
411 continue;
412
413 bp->rx_iobuf[i] = alloc_iob(RX_PKT_BUF_SZ);
414 if (!bp->rx_iobuf[i]) {
415 DBG("Refill rx ring failed!!\n");
416 break;
417 }
418
419 b44_populate_rx_descriptor(bp, i);
420 }
421 }
422
423
b44_free_rx_ring(struct b44_private * bp)424 static void b44_free_rx_ring(struct b44_private *bp)
425 {
426 u32 i;
427
428 if (bp->rx) {
429 for (i = 0; i < B44_RING_SIZE; i++) {
430 free_iob(bp->rx_iobuf[i]);
431 bp->rx_iobuf[i] = NULL;
432 }
433 free_dma(bp->rx, B44_RX_RING_LEN_BYTES);
434 bp->rx = NULL;
435 }
436 }
437
438
b44_init_rx_ring(struct b44_private * bp)439 static int b44_init_rx_ring(struct b44_private *bp)
440 {
441 b44_free_rx_ring(bp);
442
443 bp->rx = malloc_dma(B44_RX_RING_LEN_BYTES, B44_DMA_ALIGNMENT);
444 if (!bp->rx)
445 return -ENOMEM;
446
447 memset(bp->rx_iobuf, 0, sizeof(bp->rx_iobuf));
448
449 bp->rx_iobuf[0] = alloc_iob(RX_PKT_BUF_SZ);
450 b44_populate_rx_descriptor(bp, 0);
451 b44_rx_refill(bp, 0);
452
453 DBG("Init RX rings: rx=0x%08lx\n", VIRT_TO_B44(bp->rx));
454 return 0;
455 }
456
457
b44_free_tx_ring(struct b44_private * bp)458 static void b44_free_tx_ring(struct b44_private *bp)
459 {
460 if (bp->tx) {
461 free_dma(bp->tx, B44_TX_RING_LEN_BYTES);
462 bp->tx = NULL;
463 }
464 }
465
466
b44_init_tx_ring(struct b44_private * bp)467 static int b44_init_tx_ring(struct b44_private *bp)
468 {
469 b44_free_tx_ring(bp);
470
471 bp->tx = malloc_dma(B44_TX_RING_LEN_BYTES, B44_DMA_ALIGNMENT);
472 if (!bp->tx)
473 return -ENOMEM;
474
475 memset(bp->tx, 0, B44_TX_RING_LEN_BYTES);
476 memset(bp->tx_iobuf, 0, sizeof(bp->tx_iobuf));
477
478 DBG("Init TX rings: tx=0x%08lx\n", VIRT_TO_B44(bp->tx));
479 return 0;
480 }
481
482
483 /*** Interaction with the PHY ***/
484
485
b44_phy_read(struct b44_private * bp,int reg,u32 * val)486 static int b44_phy_read(struct b44_private *bp, int reg, u32 * val)
487 {
488 int err;
489
490 u32 arg1 = (MDIO_OP_READ << MDIO_DATA_OP_SHIFT);
491 u32 arg2 = (bp->phy_addr << MDIO_DATA_PMD_SHIFT);
492 u32 arg3 = (reg << MDIO_DATA_RA_SHIFT);
493 u32 arg4 = (MDIO_TA_VALID << MDIO_DATA_TA_SHIFT);
494 u32 argv = arg1 | arg2 | arg3 | arg4;
495
496 bw32(bp, B44_EMAC_ISTAT, EMAC_INT_MII);
497 bw32(bp, B44_MDIO_DATA, (MDIO_DATA_SB_START | argv));
498 err = b44_wait_bit(bp, B44_EMAC_ISTAT, EMAC_INT_MII, 100, 0);
499 *val = br32(bp, B44_MDIO_DATA) & MDIO_DATA_DATA;
500
501 return err;
502 }
503
504
b44_phy_write(struct b44_private * bp,int reg,u32 val)505 static int b44_phy_write(struct b44_private *bp, int reg, u32 val)
506 {
507 u32 arg1 = (MDIO_OP_WRITE << MDIO_DATA_OP_SHIFT);
508 u32 arg2 = (bp->phy_addr << MDIO_DATA_PMD_SHIFT);
509 u32 arg3 = (reg << MDIO_DATA_RA_SHIFT);
510 u32 arg4 = (MDIO_TA_VALID << MDIO_DATA_TA_SHIFT);
511 u32 arg5 = (val & MDIO_DATA_DATA);
512 u32 argv = arg1 | arg2 | arg3 | arg4 | arg5;
513
514
515 bw32(bp, B44_EMAC_ISTAT, EMAC_INT_MII);
516 bw32(bp, B44_MDIO_DATA, (MDIO_DATA_SB_START | argv));
517 return b44_wait_bit(bp, B44_EMAC_ISTAT, EMAC_INT_MII, 100, 0);
518 }
519
520
b44_phy_reset(struct b44_private * bp)521 static int b44_phy_reset(struct b44_private *bp)
522 {
523 u32 val;
524 int err;
525
526 err = b44_phy_write(bp, MII_BMCR, BMCR_RESET);
527 if (err)
528 return err;
529
530 udelay(100);
531 err = b44_phy_read(bp, MII_BMCR, &val);
532 if (!err) {
533 if (val & BMCR_RESET) {
534 return -ENODEV;
535 }
536 }
537
538 return 0;
539 }
540
541
542 /*
543 * The BCM44xx CAM (Content Addressable Memory) stores the MAC
544 * and PHY address.
545 */
b44_cam_write(struct b44_private * bp,unsigned char * data,int index)546 static void b44_cam_write(struct b44_private *bp, unsigned char *data,
547 int index)
548 {
549 u32 val;
550
551 val = ((u32) data[2]) << 24;
552 val |= ((u32) data[3]) << 16;
553 val |= ((u32) data[4]) << 8;
554 val |= ((u32) data[5]) << 0;
555 bw32(bp, B44_CAM_DATA_LO, val);
556
557
558 val = (CAM_DATA_HI_VALID |
559 (((u32) data[0]) << 8) | (((u32) data[1]) << 0));
560
561 bw32(bp, B44_CAM_DATA_HI, val);
562
563 val = CAM_CTRL_WRITE | (index << CAM_CTRL_INDEX_SHIFT);
564 bw32(bp, B44_CAM_CTRL, val);
565
566 b44_wait_bit(bp, B44_CAM_CTRL, CAM_CTRL_BUSY, 100, 1);
567 }
568
569
b44_set_mac_addr(struct b44_private * bp)570 static void b44_set_mac_addr(struct b44_private *bp)
571 {
572 u32 val;
573 bw32(bp, B44_CAM_CTRL, 0);
574 b44_cam_write(bp, bp->netdev->ll_addr, 0);
575 val = br32(bp, B44_CAM_CTRL);
576 bw32(bp, B44_CAM_CTRL, val | CAM_CTRL_ENABLE);
577 }
578
579
580 /* Read 128-bytes of EEPROM. */
b44_read_eeprom(struct b44_private * bp,u8 * data)581 static void b44_read_eeprom(struct b44_private *bp, u8 * data)
582 {
583 long i;
584 u16 *ptr = (u16 *) data;
585
586 for (i = 0; i < 128; i += 2)
587 ptr[i / 2] = cpu_to_le16(readw(bp->regs + 4096 + i));
588 }
589
590
b44_load_mac_and_phy_addr(struct b44_private * bp)591 static void b44_load_mac_and_phy_addr(struct b44_private *bp)
592 {
593 u8 eeprom[128];
594
595 /* Load MAC address, note byteswapping */
596 b44_read_eeprom(bp, &eeprom[0]);
597 bp->netdev->hw_addr[0] = eeprom[79];
598 bp->netdev->hw_addr[1] = eeprom[78];
599 bp->netdev->hw_addr[2] = eeprom[81];
600 bp->netdev->hw_addr[3] = eeprom[80];
601 bp->netdev->hw_addr[4] = eeprom[83];
602 bp->netdev->hw_addr[5] = eeprom[82];
603
604 /* Load PHY address */
605 bp->phy_addr = eeprom[90] & 0x1f;
606 }
607
608
b44_set_rx_mode(struct net_device * netdev)609 static void b44_set_rx_mode(struct net_device *netdev)
610 {
611 struct b44_private *bp = netdev_priv(netdev);
612 unsigned char zero[6] = { 0, 0, 0, 0, 0, 0 };
613 u32 val;
614 int i;
615
616 val = br32(bp, B44_RXCONFIG);
617 val &= ~RXCONFIG_PROMISC;
618 val |= RXCONFIG_ALLMULTI;
619
620 b44_set_mac_addr(bp);
621
622 for (i = 1; i < 64; i++)
623 b44_cam_write(bp, zero, i);
624
625 bw32(bp, B44_RXCONFIG, val);
626 val = br32(bp, B44_CAM_CTRL);
627 bw32(bp, B44_CAM_CTRL, val | CAM_CTRL_ENABLE);
628 }
629
630
631 /*** Implementation of gPXE driver callbacks ***/
632
633 /**
634 * Probe device
635 *
636 * @v pci PCI device
637 * @v id Matching entry in ID table
638 * @ret rc Return status code
639 */
b44_probe(struct pci_device * pci,const struct pci_device_id * id)640 static int b44_probe(struct pci_device *pci, const struct pci_device_id *id)
641 {
642 struct net_device *netdev;
643 struct b44_private *bp;
644 int rc;
645
646 /*
647 * Bail out if more than 1GB of physical RAM is installed.
648 * This limitation will be removed later when dma mapping
649 * is merged into mainline.
650 */
651 if (!phys_ram_within_limit(B44_30BIT_DMA_MASK)) {
652 DBG("Sorry, this version of the driver does not\n"
653 "support systems with more than 1GB of RAM.\n");
654 return -ENOMEM;
655 }
656
657 /* Set up netdev */
658 netdev = alloc_etherdev(sizeof(*bp));
659 if (!netdev)
660 return -ENOMEM;
661
662 netdev_init(netdev, &b44_operations);
663 pci_set_drvdata(pci, netdev);
664 netdev->dev = &pci->dev;
665
666 /* Set up private data */
667 bp = netdev_priv(netdev);
668 memset(bp, 0, sizeof(*bp));
669 bp->netdev = netdev;
670 bp->pci = pci;
671
672 /* Map device registers */
673 bp->regs = ioremap(pci->membase, B44_REGS_SIZE);
674 if (!bp->regs) {
675 netdev_put(netdev);
676 return -ENOMEM;
677 }
678
679 /* Enable PCI bus mastering */
680 adjust_pci_device(pci);
681
682 b44_load_mac_and_phy_addr(bp);
683
684 /* Link management currently not implemented */
685 netdev_link_up(netdev);
686
687 rc = register_netdev(netdev);
688 if (rc != 0) {
689 iounmap(bp->regs);
690 netdev_put(netdev);
691 return rc;
692 }
693
694 b44_chip_reset(bp, B44_CHIP_RESET_FULL);
695
696 DBG("b44 %s (%04x:%04x) regs=%p MAC=%s\n", id->name, id->vendor,
697 id->device, bp->regs, eth_ntoa(netdev->ll_addr));
698
699 return 0;
700 }
701
702
703 /**
704 * Remove device
705 *
706 * @v pci PCI device
707 */
b44_remove(struct pci_device * pci)708 static void b44_remove(struct pci_device *pci)
709 {
710 struct net_device *netdev = pci_get_drvdata(pci);
711 struct b44_private *bp = netdev_priv(netdev);
712
713 ssb_core_disable(bp);
714 unregister_netdev(netdev);
715 iounmap(bp->regs);
716 netdev_nullify(netdev);
717 netdev_put(netdev);
718 }
719
720
721 /** Enable or disable interrupts
722 *
723 * @v netdev Network device
724 * @v enable Interrupts should be enabled
725 */
b44_irq(struct net_device * netdev,int enable)726 static void b44_irq(struct net_device *netdev, int enable)
727 {
728 struct b44_private *bp = netdev_priv(netdev);
729
730 /* Interrupt mask specifies which events generate interrupts */
731 bw32(bp, B44_IMASK, enable ? IMASK_DEF : IMASK_DISABLE);
732 }
733
734
735 /** Open network device
736 *
737 * @v netdev Network device
738 * @ret rc Return status code
739 */
b44_open(struct net_device * netdev)740 static int b44_open(struct net_device *netdev)
741 {
742 struct b44_private *bp = netdev_priv(netdev);
743 int rc;
744
745 rc = b44_init_tx_ring(bp);
746 if (rc != 0)
747 return rc;
748
749 rc = b44_init_rx_ring(bp);
750 if (rc != 0)
751 return rc;
752
753 b44_init_hw(bp, B44_FULL_RESET);
754
755 /* Disable interrupts */
756 b44_irq(netdev, 0);
757
758 return 0;
759 }
760
761
762 /** Close network device
763 *
764 * @v netdev Network device
765 */
b44_close(struct net_device * netdev)766 static void b44_close(struct net_device *netdev)
767 {
768 struct b44_private *bp = netdev_priv(netdev);
769
770 b44_chip_reset(bp, B44_FULL_RESET);
771 b44_free_tx_ring(bp);
772 b44_free_rx_ring(bp);
773 }
774
775
776 /** Transmit packet
777 *
778 * @v netdev Network device
779 * @v iobuf I/O buffer
780 * @ret rc Return status code
781 */
b44_transmit(struct net_device * netdev,struct io_buffer * iobuf)782 static int b44_transmit(struct net_device *netdev, struct io_buffer *iobuf)
783 {
784 struct b44_private *bp = netdev_priv(netdev);
785 u32 cur = bp->tx_cur;
786 u32 ctrl;
787
788 /* Check for TX ring overflow */
789 if (bp->tx[cur].ctrl) {
790 DBG("tx overflow\n");
791 return -ENOBUFS;
792 }
793
794 /* Will call netdev_tx_complete() on the iobuf later */
795 bp->tx_iobuf[cur] = iobuf;
796
797 /* Set up TX descriptor */
798 ctrl = (iob_len(iobuf) & DESC_CTRL_LEN) |
799 DESC_CTRL_IOC | DESC_CTRL_SOF | DESC_CTRL_EOF;
800
801 if (cur == B44_RING_LAST)
802 ctrl |= DESC_CTRL_EOT;
803
804 bp->tx[cur].ctrl = cpu_to_le32(ctrl);
805 bp->tx[cur].addr = cpu_to_le32(VIRT_TO_B44(iobuf->data));
806
807 /* Update next available descriptor index */
808 cur = ring_next(cur);
809 bp->tx_cur = cur;
810 wmb();
811
812 /* Tell card that a new TX descriptor is ready */
813 bw32(bp, B44_DMATX_PTR, cur * sizeof(struct dma_desc));
814 return 0;
815 }
816
817
818 /** Recycles sent TX descriptors and notifies network stack
819 *
820 * @v bp Driver state
821 */
b44_tx_complete(struct b44_private * bp)822 static void b44_tx_complete(struct b44_private *bp)
823 {
824 u32 cur, i;
825
826 cur = pending_tx_index(bp);
827
828 for (i = bp->tx_dirty; i != cur; i = ring_next(i)) {
829 /* Free finished frame */
830 netdev_tx_complete(bp->netdev, bp->tx_iobuf[i]);
831 bp->tx_iobuf[i] = NULL;
832
833 /* Clear TX descriptor */
834 bp->tx[i].ctrl = 0;
835 bp->tx[i].addr = 0;
836 }
837 bp->tx_dirty = cur;
838 }
839
840
b44_process_rx_packets(struct b44_private * bp)841 static void b44_process_rx_packets(struct b44_private *bp)
842 {
843 struct io_buffer *iob; /* received data */
844 struct rx_header *rh;
845 u32 pending, i;
846 u16 len;
847
848 pending = pending_rx_index(bp);
849
850 for (i = bp->rx_cur; i != pending; i = ring_next(i)) {
851 iob = bp->rx_iobuf[i];
852 if (iob == NULL)
853 break;
854
855 rh = iob->data;
856 len = le16_to_cpu(rh->len);
857
858 /*
859 * Guard against incompletely written RX descriptors.
860 * Without this, things can get really slow!
861 */
862 if (len == 0)
863 break;
864
865 /* Discard CRC that is generated by the card */
866 len -= 4;
867
868 /* Check for invalid packets and errors */
869 if (len > RX_PKT_BUF_SZ - RX_PKT_OFFSET ||
870 (rh->flags & cpu_to_le16(RX_FLAG_ERRORS))) {
871 DBG("rx error len=%d flags=%04x\n", len,
872 cpu_to_le16(rh->flags));
873 rh->len = 0;
874 rh->flags = 0;
875 netdev_rx_err(bp->netdev, iob, -EINVAL);
876 continue;
877 }
878
879 /* Clear RX descriptor */
880 rh->len = 0;
881 rh->flags = 0;
882 bp->rx_iobuf[i] = NULL;
883
884 /* Hand off the IO buffer to the network stack */
885 iob_reserve(iob, RX_PKT_OFFSET);
886 iob_put(iob, len);
887 netdev_rx(bp->netdev, iob);
888 }
889 bp->rx_cur = i;
890 b44_rx_refill(bp, pending_rx_index(bp));
891 }
892
893
894 /** Poll for completed and received packets
895 *
896 * @v netdev Network device
897 */
b44_poll(struct net_device * netdev)898 static void b44_poll(struct net_device *netdev)
899 {
900 struct b44_private *bp = netdev_priv(netdev);
901 u32 istat;
902
903 /* Interrupt status */
904 istat = br32(bp, B44_ISTAT);
905 istat &= IMASK_DEF; /* only the events we care about */
906
907 if (!istat)
908 return;
909 if (istat & ISTAT_TX)
910 b44_tx_complete(bp);
911 if (istat & ISTAT_RX)
912 b44_process_rx_packets(bp);
913 if (istat & ISTAT_ERRORS) {
914 DBG("b44 error istat=0x%08x\n", istat);
915
916 /* Reset B44 core partially to avoid long waits */
917 b44_irq(bp->netdev, 0);
918 b44_halt(bp);
919 b44_init_tx_ring(bp);
920 b44_init_rx_ring(bp);
921 b44_init_hw(bp, B44_FULL_RESET_SKIP_PHY);
922 }
923
924 /* Acknowledge interrupt */
925 bw32(bp, B44_ISTAT, 0);
926 bflush(bp, B44_ISTAT, 1);
927 }
928
929
930 static struct net_device_operations b44_operations = {
931 .open = b44_open,
932 .close = b44_close,
933 .transmit = b44_transmit,
934 .poll = b44_poll,
935 .irq = b44_irq,
936 };
937
938
939 static struct pci_device_id b44_nics[] = {
940 PCI_ROM(0x14e4, 0x4401, "BCM4401", "BCM4401", 0),
941 PCI_ROM(0x14e4, 0x170c, "BCM4401-B0", "BCM4401-B0", 0),
942 PCI_ROM(0x14e4, 0x4402, "BCM4401-B1", "BCM4401-B1", 0),
943 };
944
945
946 struct pci_driver b44_driver __pci_driver = {
947 .ids = b44_nics,
948 .id_count = sizeof b44_nics / sizeof b44_nics[0],
949 .probe = b44_probe,
950 .remove = b44_remove,
951 };
952