1 #ifdef ALLMULTI
2 #error multicast support is not yet implemented
3 #endif
4 /**************************************************************************
5 Etherboot - BOOTP/TFTP Bootstrap Program
6 Intel EEPRO/10 NIC driver for Etherboot
7 Adapted from Linux eepro.c from kernel 2.2.17
8
9 This board accepts a 32 pin EEPROM (29C256), however a test with a
10 27C010 shows that this EPROM also works in the socket, but it's not clear
11 how repeatably. The two top address pins appear to be held low, thus
12 the bottom 32kB of the 27C010 is visible in the CPU's address space.
13 To be sure you could put 4 copies of the code in the 27C010, then
14 it doesn't matter whether the extra lines are held low or high, just
15 hopefully not floating as CMOS chips don't like floating inputs.
16
17 Be careful with seating the EPROM as the socket on my board actually
18 has 34 pins, the top row of 2 are not used.
19 ***************************************************************************/
20
21 /*
22
23 timlegge 2005-05-18 remove the relocation changes cards that
24 write directly to the hardware don't need it
25 */
26
27 /*
28 * This program is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU General Public License as
30 * published by the Free Software Foundation; either version 2, or (at
31 * your option) any later version.
32 */
33
34 FILE_LICENCE ( GPL2_OR_LATER );
35
36 #include "etherboot.h"
37 #include <errno.h>
38 #include "nic.h"
39 #include <gpxe/isa.h>
40 #include <gpxe/ethernet.h>
41
42 /* Different 82595 chips */
43 #define LAN595 0
44 #define LAN595TX 1
45 #define LAN595FX 2
46 #define LAN595FX_10ISA 3
47
48 #define SLOW_DOWN inb(0x80);
49
50 /* The station (ethernet) address prefix, used for IDing the board. */
51 #define SA_ADDR0 0x00 /* Etherexpress Pro/10 */
52 #define SA_ADDR1 0xaa
53 #define SA_ADDR2 0x00
54
55 #define GetBit(x,y) ((x & (1<<y))>>y)
56
57 /* EEPROM Word 0: */
58 #define ee_PnP 0 /* Plug 'n Play enable bit */
59 #define ee_Word1 1 /* Word 1? */
60 #define ee_BusWidth 2 /* 8/16 bit */
61 #define ee_FlashAddr 3 /* Flash Address */
62 #define ee_FlashMask 0x7 /* Mask */
63 #define ee_AutoIO 6 /* */
64 #define ee_reserved0 7 /* =0! */
65 #define ee_Flash 8 /* Flash there? */
66 #define ee_AutoNeg 9 /* Auto Negotiation enabled? */
67 #define ee_IO0 10 /* IO Address LSB */
68 #define ee_IO0Mask 0x /*...*/
69 #define ee_IO1 15 /* IO MSB */
70
71 /* EEPROM Word 1: */
72 #define ee_IntSel 0 /* Interrupt */
73 #define ee_IntMask 0x7
74 #define ee_LI 3 /* Link Integrity 0= enabled */
75 #define ee_PC 4 /* Polarity Correction 0= enabled */
76 #define ee_TPE_AUI 5 /* PortSelection 1=TPE */
77 #define ee_Jabber 6 /* Jabber prevention 0= enabled */
78 #define ee_AutoPort 7 /* Auto Port Selection 1= Disabled */
79 #define ee_SMOUT 8 /* SMout Pin Control 0= Input */
80 #define ee_PROM 9 /* Flash EPROM / PROM 0=Flash */
81 #define ee_reserved1 10 /* .. 12 =0! */
82 #define ee_AltReady 13 /* Alternate Ready, 0=normal */
83 #define ee_reserved2 14 /* =0! */
84 #define ee_Duplex 15
85
86 /* Word2,3,4: */
87 #define ee_IA5 0 /*bit start for individual Addr Byte 5 */
88 #define ee_IA4 8 /*bit start for individual Addr Byte 5 */
89 #define ee_IA3 0 /*bit start for individual Addr Byte 5 */
90 #define ee_IA2 8 /*bit start for individual Addr Byte 5 */
91 #define ee_IA1 0 /*bit start for individual Addr Byte 5 */
92 #define ee_IA0 8 /*bit start for individual Addr Byte 5 */
93
94 /* Word 5: */
95 #define ee_BNC_TPE 0 /* 0=TPE */
96 #define ee_BootType 1 /* 00=None, 01=IPX, 10=ODI, 11=NDIS */
97 #define ee_BootTypeMask 0x3
98 #define ee_NumConn 3 /* Number of Connections 0= One or Two */
99 #define ee_FlashSock 4 /* Presence of Flash Socket 0= Present */
100 #define ee_PortTPE 5
101 #define ee_PortBNC 6
102 #define ee_PortAUI 7
103 #define ee_PowerMgt 10 /* 0= disabled */
104 #define ee_CP 13 /* Concurrent Processing */
105 #define ee_CPMask 0x7
106
107 /* Word 6: */
108 #define ee_Stepping 0 /* Stepping info */
109 #define ee_StepMask 0x0F
110 #define ee_BoardID 4 /* Manucaturer Board ID, reserved */
111 #define ee_BoardMask 0x0FFF
112
113 /* Word 7: */
114 #define ee_INT_TO_IRQ 0 /* int to IRQ Mapping = 0x1EB8 for Pro/10+ */
115 #define ee_FX_INT2IRQ 0x1EB8 /* the _only_ mapping allowed for FX chips */
116
117 /*..*/
118 #define ee_SIZE 0x40 /* total EEprom Size */
119 #define ee_Checksum 0xBABA /* initial and final value for adding checksum */
120
121
122 /* Card identification via EEprom: */
123 #define ee_addr_vendor 0x10 /* Word offset for EISA Vendor ID */
124 #define ee_addr_id 0x11 /* Word offset for Card ID */
125 #define ee_addr_SN 0x12 /* Serial Number */
126 #define ee_addr_CRC_8 0x14 /* CRC over last thee Bytes */
127
128
129 #define ee_vendor_intel0 0x25 /* Vendor ID Intel */
130 #define ee_vendor_intel1 0xD4
131 #define ee_id_eepro10p0 0x10 /* ID for eepro/10+ */
132 #define ee_id_eepro10p1 0x31
133
134 /* now this section could be used by both boards: the oldies and the ee10:
135 * ee10 uses tx buffer before of rx buffer and the oldies the inverse.
136 * (aris)
137 */
138 #define RAM_SIZE 0x8000
139
140 #define RCV_HEADER 8
141 #define RCV_DEFAULT_RAM 0x6000
142 #define RCV_RAM rcv_ram
143
144 static unsigned rcv_ram = RCV_DEFAULT_RAM;
145
146 #define XMT_HEADER 8
147 #define XMT_RAM (RAM_SIZE - RCV_RAM)
148
149 #define XMT_START ((rcv_start + RCV_RAM) % RAM_SIZE)
150
151 #define RCV_LOWER_LIMIT (rcv_start >> 8)
152 #define RCV_UPPER_LIMIT (((rcv_start + RCV_RAM) - 2) >> 8)
153 #define XMT_LOWER_LIMIT (XMT_START >> 8)
154 #define XMT_UPPER_LIMIT (((XMT_START + XMT_RAM) - 2) >> 8)
155
156 #define RCV_START_PRO 0x00
157 #define RCV_START_10 XMT_RAM
158 /* by default the old driver */
159 static unsigned rcv_start = RCV_START_PRO;
160
161 #define RCV_DONE 0x0008
162 #define RX_OK 0x2000
163 #define RX_ERROR 0x0d81
164
165 #define TX_DONE_BIT 0x0080
166 #define CHAIN_BIT 0x8000
167 #define XMT_STATUS 0x02
168 #define XMT_CHAIN 0x04
169 #define XMT_COUNT 0x06
170
171 #define BANK0_SELECT 0x00
172 #define BANK1_SELECT 0x40
173 #define BANK2_SELECT 0x80
174
175 /* Bank 0 registers */
176 #define COMMAND_REG 0x00 /* Register 0 */
177 #define MC_SETUP 0x03
178 #define XMT_CMD 0x04
179 #define DIAGNOSE_CMD 0x07
180 #define RCV_ENABLE_CMD 0x08
181 #define RCV_DISABLE_CMD 0x0a
182 #define STOP_RCV_CMD 0x0b
183 #define RESET_CMD 0x0e
184 #define POWER_DOWN_CMD 0x18
185 #define RESUME_XMT_CMD 0x1c
186 #define SEL_RESET_CMD 0x1e
187 #define STATUS_REG 0x01 /* Register 1 */
188 #define RX_INT 0x02
189 #define TX_INT 0x04
190 #define EXEC_STATUS 0x30
191 #define ID_REG 0x02 /* Register 2 */
192 #define R_ROBIN_BITS 0xc0 /* round robin counter */
193 #define ID_REG_MASK 0x2c
194 #define ID_REG_SIG 0x24
195 #define AUTO_ENABLE 0x10
196 #define INT_MASK_REG 0x03 /* Register 3 */
197 #define RX_STOP_MASK 0x01
198 #define RX_MASK 0x02
199 #define TX_MASK 0x04
200 #define EXEC_MASK 0x08
201 #define ALL_MASK 0x0f
202 #define IO_32_BIT 0x10
203 #define RCV_BAR 0x04 /* The following are word (16-bit) registers */
204 #define RCV_STOP 0x06
205
206 #define XMT_BAR_PRO 0x0a
207 #define XMT_BAR_10 0x0b
208 static unsigned xmt_bar = XMT_BAR_PRO;
209
210 #define HOST_ADDRESS_REG 0x0c
211 #define IO_PORT 0x0e
212 #define IO_PORT_32_BIT 0x0c
213
214 /* Bank 1 registers */
215 #define REG1 0x01
216 #define WORD_WIDTH 0x02
217 #define INT_ENABLE 0x80
218 #define INT_NO_REG 0x02
219 #define RCV_LOWER_LIMIT_REG 0x08
220 #define RCV_UPPER_LIMIT_REG 0x09
221
222 #define XMT_LOWER_LIMIT_REG_PRO 0x0a
223 #define XMT_UPPER_LIMIT_REG_PRO 0x0b
224 #define XMT_LOWER_LIMIT_REG_10 0x0b
225 #define XMT_UPPER_LIMIT_REG_10 0x0a
226 static unsigned xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_PRO;
227 static unsigned xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_PRO;
228
229 /* Bank 2 registers */
230 #define XMT_Chain_Int 0x20 /* Interrupt at the end of the transmit chain */
231 #define XMT_Chain_ErrStop 0x40 /* Interrupt at the end of the chain even if there are errors */
232 #define RCV_Discard_BadFrame 0x80 /* Throw bad frames away, and continue to receive others */
233 #define REG2 0x02
234 #define PRMSC_Mode 0x01
235 #define Multi_IA 0x20
236 #define REG3 0x03
237 #define TPE_BIT 0x04
238 #define BNC_BIT 0x20
239 #define REG13 0x0d
240 #define FDX 0x00
241 #define A_N_ENABLE 0x02
242
243 #define I_ADD_REG0 0x04
244 #define I_ADD_REG1 0x05
245 #define I_ADD_REG2 0x06
246 #define I_ADD_REG3 0x07
247 #define I_ADD_REG4 0x08
248 #define I_ADD_REG5 0x09
249
250 #define EEPROM_REG_PRO 0x0a
251 #define EEPROM_REG_10 0x0b
252 static unsigned eeprom_reg = EEPROM_REG_PRO;
253
254 #define EESK 0x01
255 #define EECS 0x02
256 #define EEDI 0x04
257 #define EEDO 0x08
258
259 /* The horrible routine to read a word from the serial EEPROM. */
260 /* IMPORTANT - the 82595 will be set to Bank 0 after the eeprom is read */
261
262 /* The delay between EEPROM clock transitions. */
263 #define eeprom_delay() { udelay(40); }
264 #define EE_READ_CMD (6 << 6)
265
266 /* do a full reset; data sheet asks for 250us delay */
267 #define eepro_full_reset(ioaddr) outb(RESET_CMD, ioaddr); udelay(255);
268
269 /* do a nice reset */
270 #define eepro_sel_reset(ioaddr) \
271 do { \
272 outb ( SEL_RESET_CMD, ioaddr ); \
273 (void) SLOW_DOWN; \
274 (void) SLOW_DOWN; \
275 } while (0)
276
277 /* clear all interrupts */
278 #define eepro_clear_int(ioaddr) outb(ALL_MASK, ioaddr + STATUS_REG)
279
280 /* enable rx */
281 #define eepro_en_rx(ioaddr) outb(RCV_ENABLE_CMD, ioaddr)
282
283 /* disable rx */
284 #define eepro_dis_rx(ioaddr) outb(RCV_DISABLE_CMD, ioaddr)
285
286 /* switch bank */
287 #define eepro_sw2bank0(ioaddr) outb(BANK0_SELECT, ioaddr)
288 #define eepro_sw2bank1(ioaddr) outb(BANK1_SELECT, ioaddr)
289 #define eepro_sw2bank2(ioaddr) outb(BANK2_SELECT, ioaddr)
290
291 static unsigned int rx_start, tx_start;
292 static int tx_last;
293 static unsigned int tx_end;
294 static int eepro = 0;
295 static unsigned int mem_start, mem_end = RCV_DEFAULT_RAM / 1024;
296
297 /**************************************************************************
298 RESET - Reset adapter
299 ***************************************************************************/
eepro_reset(struct nic * nic)300 static void eepro_reset(struct nic *nic)
301 {
302 int temp_reg, i;
303
304 /* put the card in its initial state */
305 eepro_sw2bank2(nic->ioaddr); /* be careful, bank2 now */
306 temp_reg = inb(nic->ioaddr + eeprom_reg);
307 DBG("Stepping %d\n", temp_reg >> 5);
308 if (temp_reg & 0x10) /* check the TurnOff Enable bit */
309 outb(temp_reg & 0xEF, nic->ioaddr + eeprom_reg);
310 for (i = 0; i < ETH_ALEN; i++) /* fill the MAC address */
311 outb(nic->node_addr[i], nic->ioaddr + I_ADD_REG0 + i);
312 temp_reg = inb(nic->ioaddr + REG1);
313 /* setup Transmit Chaining and discard bad RCV frames */
314 outb(temp_reg | XMT_Chain_Int | XMT_Chain_ErrStop
315 | RCV_Discard_BadFrame, nic->ioaddr + REG1);
316 temp_reg = inb(nic->ioaddr + REG2); /* match broadcast */
317 outb(temp_reg | 0x14, nic->ioaddr + REG2);
318 temp_reg = inb(nic->ioaddr + REG3);
319 outb(temp_reg & 0x3F, nic->ioaddr + REG3); /* clear test mode */
320 /* set the receiving mode */
321 eepro_sw2bank1(nic->ioaddr); /* be careful, bank1 now */
322 /* initialise the RCV and XMT upper and lower limits */
323 outb(RCV_LOWER_LIMIT, nic->ioaddr + RCV_LOWER_LIMIT_REG);
324 outb(RCV_UPPER_LIMIT, nic->ioaddr + RCV_UPPER_LIMIT_REG);
325 outb(XMT_LOWER_LIMIT, nic->ioaddr + xmt_lower_limit_reg);
326 outb(XMT_UPPER_LIMIT, nic->ioaddr + xmt_upper_limit_reg);
327 eepro_sw2bank0(nic->ioaddr); /* Switch back to bank 0 */
328 eepro_clear_int(nic->ioaddr);
329 /* Initialise RCV */
330 outw(rx_start = (RCV_LOWER_LIMIT << 8), nic->ioaddr + RCV_BAR);
331 outw(((RCV_UPPER_LIMIT << 8) | 0xFE), nic->ioaddr + RCV_STOP);
332 /* Make sure 1st poll won't find a valid packet header */
333 outw((RCV_LOWER_LIMIT << 8), nic->ioaddr + HOST_ADDRESS_REG);
334 outw(0, nic->ioaddr + IO_PORT);
335 /* Intialise XMT */
336 outw((XMT_LOWER_LIMIT << 8), nic->ioaddr + xmt_bar);
337 eepro_sel_reset(nic->ioaddr);
338 tx_start = tx_end = (unsigned int) (XMT_LOWER_LIMIT << 8);
339 tx_last = 0;
340 eepro_en_rx(nic->ioaddr);
341 }
342
343 /**************************************************************************
344 POLL - Wait for a frame
345 ***************************************************************************/
eepro_poll(struct nic * nic,int retrieve)346 static int eepro_poll(struct nic *nic, int retrieve)
347 {
348 unsigned int rcv_car = rx_start;
349 unsigned int rcv_event, rcv_status, rcv_next_frame, rcv_size;
350
351 /* return true if there's an ethernet packet ready to read */
352 /* nic->packet should contain data on return */
353 /* nic->packetlen should contain length of data */
354 #if 0
355 if ((inb(nic->ioaddr + STATUS_REG) & 0x40) == 0)
356 return (0);
357 outb(0x40, nic->ioaddr + STATUS_REG);
358 #endif
359 outw(rcv_car, nic->ioaddr + HOST_ADDRESS_REG);
360 rcv_event = inw(nic->ioaddr + IO_PORT);
361 if (rcv_event != RCV_DONE)
362 return (0);
363
364 /* FIXME: I'm guessing this might not work with this card, since
365 it looks like once a rcv_event is started it must be completed.
366 maybe there's another way. */
367 if ( ! retrieve ) return 1;
368
369 rcv_status = inw(nic->ioaddr + IO_PORT);
370 rcv_next_frame = inw(nic->ioaddr + IO_PORT);
371 rcv_size = inw(nic->ioaddr + IO_PORT);
372 #if 0
373 printf("%hX %hX %d %hhX\n", rcv_status, rcv_next_frame, rcv_size,
374 inb(nic->ioaddr + STATUS_REG));
375 #endif
376 if ((rcv_status & (RX_OK|RX_ERROR)) != RX_OK) {
377 printf("Receive error %hX\n", rcv_status);
378 return (0);
379 }
380 rcv_size &= 0x3FFF;
381 insw(nic->ioaddr + IO_PORT, nic->packet, ((rcv_size + 3) >> 1));
382 #if 0
383 {
384 int i;
385 for (i = 0; i < 48; i++) {
386 printf("%hhX", nic->packet[i]);
387 putchar(i % 16 == 15 ? '\n' : ' ');
388 }
389 }
390 #endif
391 nic->packetlen = rcv_size;
392 rcv_car = (rx_start + RCV_HEADER + rcv_size);
393 rx_start = rcv_next_frame;
394 /*
395 hex_dump(rcv_car, nic->packetlen);
396 */
397
398 if (rcv_car == 0)
399 rcv_car = ((RCV_UPPER_LIMIT << 8) | 0xff);
400 outw(rcv_car - 1, nic->ioaddr + RCV_STOP);
401 return (1);
402 }
403
404 /**************************************************************************
405 TRANSMIT - Transmit a frame
406 ***************************************************************************/
eepro_transmit(struct nic * nic,const char * d,unsigned int t,unsigned int s,const char * p)407 static void eepro_transmit(
408 struct nic *nic,
409 const char *d, /* Destination */
410 unsigned int t, /* Type */
411 unsigned int s, /* size */
412 const char *p) /* Packet */
413 {
414 unsigned int status, tx_available, last, end, length;
415 unsigned short type;
416 int boguscount = 20;
417
418 length = s + ETH_HLEN;
419 if (tx_end > tx_start)
420 tx_available = XMT_RAM - (tx_end - tx_start);
421 else if (tx_end < tx_start)
422 tx_available = tx_start - tx_end;
423 else
424 tx_available = XMT_RAM;
425 last = tx_end;
426 end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
427 if (end >= (XMT_UPPER_LIMIT << 8)) {
428 last = (XMT_LOWER_LIMIT << 8);
429 end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
430 }
431 outw(last, nic->ioaddr + HOST_ADDRESS_REG);
432 outw(XMT_CMD, nic->ioaddr + IO_PORT);
433 outw(0, nic->ioaddr + IO_PORT);
434 outw(end, nic->ioaddr + IO_PORT);
435 outw(length, nic->ioaddr + IO_PORT);
436 outsw(nic->ioaddr + IO_PORT, d, ETH_ALEN / 2);
437 outsw(nic->ioaddr + IO_PORT, nic->node_addr, ETH_ALEN / 2);
438 type = htons(t);
439 outsw(nic->ioaddr + IO_PORT, &type, sizeof(type) / 2);
440 outsw(nic->ioaddr + IO_PORT, p, (s + 3) >> 1);
441 /* A dummy read to flush the DRAM write pipeline */
442 status = inw(nic->ioaddr + IO_PORT);
443 outw(last, nic->ioaddr + xmt_bar);
444 outb(XMT_CMD, nic->ioaddr);
445 tx_start = last;
446 tx_last = last;
447 tx_end = end;
448 #if 0
449 printf("%d %d\n", tx_start, tx_end);
450 #endif
451 while (boguscount > 0) {
452 if (((status = inw(nic->ioaddr + IO_PORT)) & TX_DONE_BIT) == 0) {
453 udelay(40);
454 boguscount--;
455 continue;
456 }
457 if ((status & 0x2000) == 0) {
458 DBG("Transmit status %hX\n", status);
459 }
460 }
461 }
462
463 /**************************************************************************
464 DISABLE - Turn off ethernet interface
465 ***************************************************************************/
eepro_disable(struct nic * nic,struct isa_device * isa __unused)466 static void eepro_disable ( struct nic *nic, struct isa_device *isa __unused ) {
467 eepro_sw2bank0(nic->ioaddr); /* Switch to bank 0 */
468 /* Flush the Tx and disable Rx */
469 outb(STOP_RCV_CMD, nic->ioaddr);
470 tx_start = tx_end = (XMT_LOWER_LIMIT << 8);
471 tx_last = 0;
472 /* Reset the 82595 */
473 eepro_full_reset(nic->ioaddr);
474 }
475
476 /**************************************************************************
477 DISABLE - Enable, Disable, or Force interrupts
478 ***************************************************************************/
eepro_irq(struct nic * nic __unused,irq_action_t action __unused)479 static void eepro_irq(struct nic *nic __unused, irq_action_t action __unused)
480 {
481 switch ( action ) {
482 case DISABLE :
483 break;
484 case ENABLE :
485 break;
486 case FORCE :
487 break;
488 }
489 }
490
read_eeprom(uint16_t ioaddr,int location)491 static int read_eeprom(uint16_t ioaddr, int location)
492 {
493 int i;
494 unsigned short retval = 0;
495 int ee_addr = ioaddr + eeprom_reg;
496 int read_cmd = location | EE_READ_CMD;
497 int ctrl_val = EECS;
498
499 if (eepro == LAN595FX_10ISA) {
500 eepro_sw2bank1(ioaddr);
501 outb(0x00, ioaddr + STATUS_REG);
502 }
503 eepro_sw2bank2(ioaddr);
504 outb(ctrl_val, ee_addr);
505 /* shift the read command bits out */
506 for (i = 8; i >= 0; i--) {
507 short outval = (read_cmd & (1 << i)) ? ctrl_val | EEDI : ctrl_val;
508 outb(outval, ee_addr);
509 outb(outval | EESK, ee_addr); /* EEPROM clock tick */
510 eeprom_delay();
511 outb(outval, ee_addr); /* finish EEPROM clock tick */
512 eeprom_delay();
513 }
514 outb(ctrl_val, ee_addr);
515 for (i = 16; i > 0; i--) {
516 outb(ctrl_val | EESK, ee_addr);
517 eeprom_delay();
518 retval = (retval << 1) | ((inb(ee_addr) & EEDO) ? 1 : 0);
519 outb(ctrl_val, ee_addr);
520 eeprom_delay();
521 }
522 /* terminate the EEPROM access */
523 ctrl_val &= ~EECS;
524 outb(ctrl_val | EESK, ee_addr);
525 eeprom_delay();
526 outb(ctrl_val, ee_addr);
527 eeprom_delay();
528 eepro_sw2bank0(ioaddr);
529 return (retval);
530 }
531
eepro_probe1(isa_probe_addr_t ioaddr)532 static int eepro_probe1 ( isa_probe_addr_t ioaddr ) {
533 int id, counter;
534
535 id = inb(ioaddr + ID_REG);
536 if ((id & ID_REG_MASK) != ID_REG_SIG)
537 return (0);
538 counter = id & R_ROBIN_BITS;
539 if (((id = inb(ioaddr + ID_REG)) & R_ROBIN_BITS) != (counter + 0x40))
540 return (0);
541 /* yes the 82595 has been found */
542 return (1);
543 }
544
545 static struct nic_operations eepro_operations = {
546 .connect = dummy_connect,
547 .poll = eepro_poll,
548 .transmit = eepro_transmit,
549 .irq = eepro_irq,
550
551 };
552
553 /**************************************************************************
554 PROBE - Look for an adapter, this routine's visible to the outside
555 ***************************************************************************/
eepro_probe(struct nic * nic,struct isa_device * isa)556 static int eepro_probe ( struct nic *nic, struct isa_device *isa ) {
557
558 int i, l_eepro = 0;
559 union {
560 unsigned char caddr[ETH_ALEN];
561 unsigned short saddr[ETH_ALEN/2];
562 } station_addr;
563 const char *name;
564
565 nic->irqno = 0;
566 nic->ioaddr = isa->ioaddr;
567
568 station_addr.saddr[2] = read_eeprom(nic->ioaddr,2);
569 if ( ( station_addr.saddr[2] == 0x0000 ) ||
570 ( station_addr.saddr[2] == 0xFFFF ) ) {
571 l_eepro = 3;
572 eepro = LAN595FX_10ISA;
573 eeprom_reg= EEPROM_REG_10;
574 rcv_start = RCV_START_10;
575 xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_10;
576 xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_10;
577 station_addr.saddr[2] = read_eeprom(nic->ioaddr,2);
578 }
579 station_addr.saddr[1] = read_eeprom(nic->ioaddr,3);
580 station_addr.saddr[0] = read_eeprom(nic->ioaddr,4);
581 if (l_eepro)
582 name = "Intel EtherExpress 10 ISA";
583 else if (read_eeprom(nic->ioaddr,7) == ee_FX_INT2IRQ) {
584 name = "Intel EtherExpress Pro/10+ ISA";
585 l_eepro = 2;
586 } else if (station_addr.saddr[0] == SA_ADDR1) {
587 name = "Intel EtherExpress Pro/10 ISA";
588 l_eepro = 1;
589 } else {
590 l_eepro = 0;
591 name = "Intel 82595-based LAN card";
592 }
593 station_addr.saddr[0] = swap16(station_addr.saddr[0]);
594 station_addr.saddr[1] = swap16(station_addr.saddr[1]);
595 station_addr.saddr[2] = swap16(station_addr.saddr[2]);
596 for (i = 0; i < ETH_ALEN; i++) {
597 nic->node_addr[i] = station_addr.caddr[i];
598 }
599
600 DBG ( "%s ioaddr %#hX, addr %s", name, nic->ioaddr, eth_ntoa ( nic->node_addr ) );
601
602 mem_start = RCV_LOWER_LIMIT << 8;
603 if ((mem_end & 0x3F) < 3 || (mem_end & 0x3F) > 29)
604 mem_end = RCV_UPPER_LIMIT << 8;
605 else {
606 mem_end = mem_end * 1024 + (RCV_LOWER_LIMIT << 8);
607 rcv_ram = mem_end - (RCV_LOWER_LIMIT << 8);
608 }
609 printf(", Rx mem %dK, if %s\n", (mem_end - mem_start) >> 10,
610 GetBit(read_eeprom(nic->ioaddr,5), ee_BNC_TPE) ? "BNC" : "TP");
611
612 eepro_reset(nic);
613
614 /* point to NIC specific routines */
615 nic->nic_op = &eepro_operations;
616 return 1;
617 }
618
619 static isa_probe_addr_t eepro_probe_addrs[] = {
620 0x300, 0x210, 0x240, 0x280, 0x2C0, 0x200, 0x320, 0x340, 0x360,
621 };
622
623 ISA_DRIVER ( eepro_driver, eepro_probe_addrs, eepro_probe1,
624 GENERIC_ISAPNP_VENDOR, 0x828a );
625
626 DRIVER ( "eepro", nic_driver, isa_driver, eepro_driver,
627 eepro_probe, eepro_disable );
628
629 ISA_ROM ( "eepro", "Intel Etherexpress Pro/10" );
630
631 /*
632 * Local variables:
633 * c-basic-offset: 8
634 * c-indent-level: 8
635 * tab-width: 8
636 * End:
637 */
638