• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/compiler/gap-resolver.h"
6 
7 #include <algorithm>
8 #include <functional>
9 #include <set>
10 
11 namespace v8 {
12 namespace internal {
13 namespace compiler {
14 
15 namespace {
16 
17 #define REP_BIT(rep) (1 << static_cast<int>(rep))
18 
19 const int kFloat32Bit = REP_BIT(MachineRepresentation::kFloat32);
20 const int kFloat64Bit = REP_BIT(MachineRepresentation::kFloat64);
21 
Blocks(MoveOperands * move,InstructionOperand destination)22 inline bool Blocks(MoveOperands* move, InstructionOperand destination) {
23   return !move->IsEliminated() && move->source().InterferesWith(destination);
24 }
25 
26 // Splits a FP move between two location operands into the equivalent series of
27 // moves between smaller sub-operands, e.g. a double move to two single moves.
28 // This helps reduce the number of cycles that would normally occur under FP
29 // aliasing, and makes swaps much easier to implement.
Split(MoveOperands * move,MachineRepresentation smaller_rep,ParallelMove * moves)30 MoveOperands* Split(MoveOperands* move, MachineRepresentation smaller_rep,
31                     ParallelMove* moves) {
32   DCHECK(!kSimpleFPAliasing);
33   // Splitting is only possible when the slot size is the same as float size.
34   DCHECK_EQ(kPointerSize, kFloatSize);
35   const LocationOperand& src_loc = LocationOperand::cast(move->source());
36   const LocationOperand& dst_loc = LocationOperand::cast(move->destination());
37   MachineRepresentation dst_rep = dst_loc.representation();
38   DCHECK_NE(smaller_rep, dst_rep);
39   auto src_kind = src_loc.location_kind();
40   auto dst_kind = dst_loc.location_kind();
41 
42   int aliases =
43       1 << (ElementSizeLog2Of(dst_rep) - ElementSizeLog2Of(smaller_rep));
44   int base = -1;
45   USE(base);
46   DCHECK_EQ(aliases, RegisterConfiguration::Turbofan()->GetAliases(
47                          dst_rep, 0, smaller_rep, &base));
48 
49   int src_index = -1;
50   int slot_size = (1 << ElementSizeLog2Of(smaller_rep)) / kPointerSize;
51   int src_step = 1;
52   if (src_kind == LocationOperand::REGISTER) {
53     src_index = src_loc.register_code() * aliases;
54   } else {
55     src_index = src_loc.index();
56     // For operands that occuply multiple slots, the index refers to the last
57     // slot. On little-endian architectures, we start at the high slot and use a
58     // negative step so that register-to-slot moves are in the correct order.
59     src_step = -slot_size;
60   }
61   int dst_index = -1;
62   int dst_step = 1;
63   if (dst_kind == LocationOperand::REGISTER) {
64     dst_index = dst_loc.register_code() * aliases;
65   } else {
66     dst_index = dst_loc.index();
67     dst_step = -slot_size;
68   }
69 
70   // Reuse 'move' for the first fragment. It is not pending.
71   move->set_source(AllocatedOperand(src_kind, smaller_rep, src_index));
72   move->set_destination(AllocatedOperand(dst_kind, smaller_rep, dst_index));
73   // Add the remaining fragment moves.
74   for (int i = 1; i < aliases; ++i) {
75     src_index += src_step;
76     dst_index += dst_step;
77     moves->AddMove(AllocatedOperand(src_kind, smaller_rep, src_index),
78                    AllocatedOperand(dst_kind, smaller_rep, dst_index));
79   }
80   // Return the first fragment.
81   return move;
82 }
83 
84 }  // namespace
85 
Resolve(ParallelMove * moves)86 void GapResolver::Resolve(ParallelMove* moves) {
87   // Clear redundant moves, and collect FP move representations if aliasing
88   // is non-simple.
89   int reps = 0;
90   for (size_t i = 0; i < moves->size();) {
91     MoveOperands* move = (*moves)[i];
92     if (move->IsRedundant()) {
93       (*moves)[i] = moves->back();
94       moves->pop_back();
95       continue;
96     }
97     i++;
98     if (!kSimpleFPAliasing && move->destination().IsFPRegister()) {
99       reps |=
100           REP_BIT(LocationOperand::cast(move->destination()).representation());
101     }
102   }
103 
104   if (!kSimpleFPAliasing) {
105     if (reps && !base::bits::IsPowerOfTwo32(reps)) {
106       // Start with the smallest FP moves, so we never encounter smaller moves
107       // in the middle of a cycle of larger moves.
108       if ((reps & kFloat32Bit) != 0) {
109         split_rep_ = MachineRepresentation::kFloat32;
110         for (size_t i = 0; i < moves->size(); ++i) {
111           auto move = (*moves)[i];
112           if (!move->IsEliminated() && move->destination().IsFloatRegister())
113             PerformMove(moves, move);
114         }
115       }
116       if ((reps & kFloat64Bit) != 0) {
117         split_rep_ = MachineRepresentation::kFloat64;
118         for (size_t i = 0; i < moves->size(); ++i) {
119           auto move = (*moves)[i];
120           if (!move->IsEliminated() && move->destination().IsDoubleRegister())
121             PerformMove(moves, move);
122         }
123       }
124     }
125     split_rep_ = MachineRepresentation::kSimd128;
126   }
127 
128   for (size_t i = 0; i < moves->size(); ++i) {
129     auto move = (*moves)[i];
130     if (!move->IsEliminated()) PerformMove(moves, move);
131   }
132 }
133 
PerformMove(ParallelMove * moves,MoveOperands * move)134 void GapResolver::PerformMove(ParallelMove* moves, MoveOperands* move) {
135   // Each call to this function performs a move and deletes it from the move
136   // graph.  We first recursively perform any move blocking this one.  We mark a
137   // move as "pending" on entry to PerformMove in order to detect cycles in the
138   // move graph.  We use operand swaps to resolve cycles, which means that a
139   // call to PerformMove could change any source operand in the move graph.
140   DCHECK(!move->IsPending());
141   DCHECK(!move->IsRedundant());
142 
143   // Clear this move's destination to indicate a pending move.  The actual
144   // destination is saved on the side.
145   InstructionOperand source = move->source();
146   DCHECK(!source.IsInvalid());  // Or else it will look eliminated.
147   InstructionOperand destination = move->destination();
148   move->SetPending();
149 
150   // We may need to split moves between FP locations differently.
151   bool is_fp_loc_move = !kSimpleFPAliasing && destination.IsFPLocationOperand();
152 
153   // Perform a depth-first traversal of the move graph to resolve dependencies.
154   // Any unperformed, unpending move with a source the same as this one's
155   // destination blocks this one so recursively perform all such moves.
156   for (size_t i = 0; i < moves->size(); ++i) {
157     auto other = (*moves)[i];
158     if (other->IsEliminated()) continue;
159     if (other->IsPending()) continue;
160     if (other->source().InterferesWith(destination)) {
161       if (!kSimpleFPAliasing && is_fp_loc_move &&
162           LocationOperand::cast(other->source()).representation() >
163               split_rep_) {
164         // 'other' must also be an FP location move. Break it into fragments
165         // of the same size as 'move'. 'other' is set to one of the fragments,
166         // and the rest are appended to 'moves'.
167         other = Split(other, split_rep_, moves);
168         // 'other' may not block destination now.
169         if (!other->source().InterferesWith(destination)) continue;
170       }
171       // Though PerformMove can change any source operand in the move graph,
172       // this call cannot create a blocking move via a swap (this loop does not
173       // miss any).  Assume there is a non-blocking move with source A and this
174       // move is blocked on source B and there is a swap of A and B.  Then A and
175       // B must be involved in the same cycle (or they would not be swapped).
176       // Since this move's destination is B and there is only a single incoming
177       // edge to an operand, this move must also be involved in the same cycle.
178       // In that case, the blocking move will be created but will be "pending"
179       // when we return from PerformMove.
180       PerformMove(moves, other);
181     }
182   }
183 
184   // This move's source may have changed due to swaps to resolve cycles and so
185   // it may now be the last move in the cycle.  If so remove it.
186   source = move->source();
187   if (source.EqualsCanonicalized(destination)) {
188     move->Eliminate();
189     return;
190   }
191 
192   // We are about to resolve this move and don't need it marked as pending, so
193   // restore its destination.
194   move->set_destination(destination);
195 
196   // The move may be blocked on a (at most one) pending move, in which case we
197   // have a cycle.  Search for such a blocking move and perform a swap to
198   // resolve it.
199   auto blocker = std::find_if(moves->begin(), moves->end(),
200                               std::bind2nd(std::ptr_fun(&Blocks), destination));
201   if (blocker == moves->end()) {
202     // The easy case: This move is not blocked.
203     assembler_->AssembleMove(&source, &destination);
204     move->Eliminate();
205     return;
206   }
207 
208   // Ensure source is a register or both are stack slots, to limit swap cases.
209   if (source.IsStackSlot() || source.IsFPStackSlot()) {
210     std::swap(source, destination);
211   }
212   assembler_->AssembleSwap(&source, &destination);
213   move->Eliminate();
214 
215   // Update outstanding moves whose source may now have been moved.
216   if (!kSimpleFPAliasing && is_fp_loc_move) {
217     // We may have to split larger moves.
218     for (size_t i = 0; i < moves->size(); ++i) {
219       auto other = (*moves)[i];
220       if (other->IsEliminated()) continue;
221       if (source.InterferesWith(other->source())) {
222         if (LocationOperand::cast(other->source()).representation() >
223             split_rep_) {
224           other = Split(other, split_rep_, moves);
225           if (!source.InterferesWith(other->source())) continue;
226         }
227         other->set_source(destination);
228       } else if (destination.InterferesWith(other->source())) {
229         if (LocationOperand::cast(other->source()).representation() >
230             split_rep_) {
231           other = Split(other, split_rep_, moves);
232           if (!destination.InterferesWith(other->source())) continue;
233         }
234         other->set_source(source);
235       }
236     }
237   } else {
238     for (auto other : *moves) {
239       if (other->IsEliminated()) continue;
240       if (source.EqualsCanonicalized(other->source())) {
241         other->set_source(destination);
242       } else if (destination.EqualsCanonicalized(other->source())) {
243         other->set_source(source);
244       }
245     }
246   }
247 }
248 }  // namespace compiler
249 }  // namespace internal
250 }  // namespace v8
251