• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2012 the V8 project authors. All rights reserved.
36 
37 #include "src/ia32/assembler-ia32.h"
38 
39 #include <cstring>
40 
41 #if V8_TARGET_ARCH_IA32
42 
43 #if V8_LIBC_MSVCRT
44 #include <intrin.h>  // _xgetbv()
45 #endif
46 #if V8_OS_MACOSX
47 #include <sys/sysctl.h>
48 #endif
49 
50 #include "src/base/bits.h"
51 #include "src/base/cpu.h"
52 #include "src/disassembler.h"
53 #include "src/macro-assembler.h"
54 #include "src/v8.h"
55 
56 namespace v8 {
57 namespace internal {
58 
59 // -----------------------------------------------------------------------------
60 // Implementation of CpuFeatures
61 
62 namespace {
63 
64 #if !V8_LIBC_MSVCRT
65 
_xgetbv(unsigned int xcr)66 V8_INLINE uint64_t _xgetbv(unsigned int xcr) {
67   unsigned eax, edx;
68   // Check xgetbv; this uses a .byte sequence instead of the instruction
69   // directly because older assemblers do not include support for xgetbv and
70   // there is no easy way to conditionally compile based on the assembler
71   // used.
72   __asm__ volatile(".byte 0x0f, 0x01, 0xd0" : "=a"(eax), "=d"(edx) : "c"(xcr));
73   return static_cast<uint64_t>(eax) | (static_cast<uint64_t>(edx) << 32);
74 }
75 
76 #define _XCR_XFEATURE_ENABLED_MASK 0
77 
78 #endif  // !V8_LIBC_MSVCRT
79 
80 
OSHasAVXSupport()81 bool OSHasAVXSupport() {
82 #if V8_OS_MACOSX
83   // Mac OS X up to 10.9 has a bug where AVX transitions were indeed being
84   // caused by ISRs, so we detect that here and disable AVX in that case.
85   char buffer[128];
86   size_t buffer_size = arraysize(buffer);
87   int ctl_name[] = {CTL_KERN, KERN_OSRELEASE};
88   if (sysctl(ctl_name, 2, buffer, &buffer_size, nullptr, 0) != 0) {
89     V8_Fatal(__FILE__, __LINE__, "V8 failed to get kernel version");
90   }
91   // The buffer now contains a string of the form XX.YY.ZZ, where
92   // XX is the major kernel version component.
93   char* period_pos = strchr(buffer, '.');
94   DCHECK_NOT_NULL(period_pos);
95   *period_pos = '\0';
96   long kernel_version_major = strtol(buffer, nullptr, 10);  // NOLINT
97   if (kernel_version_major <= 13) return false;
98 #endif  // V8_OS_MACOSX
99   // Check whether OS claims to support AVX.
100   uint64_t feature_mask = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
101   return (feature_mask & 0x6) == 0x6;
102 }
103 
104 }  // namespace
105 
106 
ProbeImpl(bool cross_compile)107 void CpuFeatures::ProbeImpl(bool cross_compile) {
108   base::CPU cpu;
109   CHECK(cpu.has_sse2());  // SSE2 support is mandatory.
110   CHECK(cpu.has_cmov());  // CMOV support is mandatory.
111 
112   // Only use statically determined features for cross compile (snapshot).
113   if (cross_compile) return;
114 
115   if (cpu.has_sse41() && FLAG_enable_sse4_1) supported_ |= 1u << SSE4_1;
116   if (cpu.has_sse3() && FLAG_enable_sse3) supported_ |= 1u << SSE3;
117   if (cpu.has_avx() && FLAG_enable_avx && cpu.has_osxsave() &&
118       OSHasAVXSupport()) {
119     supported_ |= 1u << AVX;
120   }
121   if (cpu.has_fma3() && FLAG_enable_fma3 && cpu.has_osxsave() &&
122       OSHasAVXSupport()) {
123     supported_ |= 1u << FMA3;
124   }
125   if (cpu.has_bmi1() && FLAG_enable_bmi1) supported_ |= 1u << BMI1;
126   if (cpu.has_bmi2() && FLAG_enable_bmi2) supported_ |= 1u << BMI2;
127   if (cpu.has_lzcnt() && FLAG_enable_lzcnt) supported_ |= 1u << LZCNT;
128   if (cpu.has_popcnt() && FLAG_enable_popcnt) supported_ |= 1u << POPCNT;
129   if (strcmp(FLAG_mcpu, "auto") == 0) {
130     if (cpu.is_atom()) supported_ |= 1u << ATOM;
131   } else if (strcmp(FLAG_mcpu, "atom") == 0) {
132     supported_ |= 1u << ATOM;
133   }
134 }
135 
136 
PrintTarget()137 void CpuFeatures::PrintTarget() { }
PrintFeatures()138 void CpuFeatures::PrintFeatures() {
139   printf(
140       "SSE3=%d SSE4_1=%d AVX=%d FMA3=%d BMI1=%d BMI2=%d LZCNT=%d POPCNT=%d "
141       "ATOM=%d\n",
142       CpuFeatures::IsSupported(SSE3), CpuFeatures::IsSupported(SSE4_1),
143       CpuFeatures::IsSupported(AVX), CpuFeatures::IsSupported(FMA3),
144       CpuFeatures::IsSupported(BMI1), CpuFeatures::IsSupported(BMI2),
145       CpuFeatures::IsSupported(LZCNT), CpuFeatures::IsSupported(POPCNT),
146       CpuFeatures::IsSupported(ATOM));
147 }
148 
149 
150 // -----------------------------------------------------------------------------
151 // Implementation of Displacement
152 
init(Label * L,Type type)153 void Displacement::init(Label* L, Type type) {
154   DCHECK(!L->is_bound());
155   int next = 0;
156   if (L->is_linked()) {
157     next = L->pos();
158     DCHECK(next > 0);  // Displacements must be at positions > 0
159   }
160   // Ensure that we _never_ overflow the next field.
161   DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize));
162   data_ = NextField::encode(next) | TypeField::encode(type);
163 }
164 
165 
166 // -----------------------------------------------------------------------------
167 // Implementation of RelocInfo
168 
169 
170 const int RelocInfo::kApplyMask =
171     RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
172     1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::CODE_AGE_SEQUENCE |
173     RelocInfo::kDebugBreakSlotMask;
174 
175 
IsCodedSpecially()176 bool RelocInfo::IsCodedSpecially() {
177   // The deserializer needs to know whether a pointer is specially coded.  Being
178   // specially coded on IA32 means that it is a relative address, as used by
179   // branch instructions.  These are also the ones that need changing when a
180   // code object moves.
181   return (1 << rmode_) & kApplyMask;
182 }
183 
184 
IsInConstantPool()185 bool RelocInfo::IsInConstantPool() {
186   return false;
187 }
188 
wasm_memory_reference()189 Address RelocInfo::wasm_memory_reference() {
190   DCHECK(IsWasmMemoryReference(rmode_));
191   return Memory::Address_at(pc_);
192 }
193 
wasm_global_reference()194 Address RelocInfo::wasm_global_reference() {
195   DCHECK(IsWasmGlobalReference(rmode_));
196   return Memory::Address_at(pc_);
197 }
198 
wasm_memory_size_reference()199 uint32_t RelocInfo::wasm_memory_size_reference() {
200   DCHECK(IsWasmMemorySizeReference(rmode_));
201   return Memory::uint32_at(pc_);
202 }
203 
wasm_function_table_size_reference()204 uint32_t RelocInfo::wasm_function_table_size_reference() {
205   DCHECK(IsWasmFunctionTableSizeReference(rmode_));
206   return Memory::uint32_at(pc_);
207 }
208 
unchecked_update_wasm_memory_reference(Address address,ICacheFlushMode flush_mode)209 void RelocInfo::unchecked_update_wasm_memory_reference(
210     Address address, ICacheFlushMode flush_mode) {
211   Memory::Address_at(pc_) = address;
212 }
213 
unchecked_update_wasm_size(uint32_t size,ICacheFlushMode flush_mode)214 void RelocInfo::unchecked_update_wasm_size(uint32_t size,
215                                            ICacheFlushMode flush_mode) {
216   Memory::uint32_at(pc_) = size;
217 }
218 
219 // -----------------------------------------------------------------------------
220 // Implementation of Operand
221 
Operand(Register base,int32_t disp,RelocInfo::Mode rmode)222 Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
223   // [base + disp/r]
224   if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
225     // [base]
226     set_modrm(0, base);
227     if (base.is(esp)) set_sib(times_1, esp, base);
228   } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
229     // [base + disp8]
230     set_modrm(1, base);
231     if (base.is(esp)) set_sib(times_1, esp, base);
232     set_disp8(disp);
233   } else {
234     // [base + disp/r]
235     set_modrm(2, base);
236     if (base.is(esp)) set_sib(times_1, esp, base);
237     set_dispr(disp, rmode);
238   }
239 }
240 
241 
Operand(Register base,Register index,ScaleFactor scale,int32_t disp,RelocInfo::Mode rmode)242 Operand::Operand(Register base,
243                  Register index,
244                  ScaleFactor scale,
245                  int32_t disp,
246                  RelocInfo::Mode rmode) {
247   DCHECK(!index.is(esp));  // illegal addressing mode
248   // [base + index*scale + disp/r]
249   if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
250     // [base + index*scale]
251     set_modrm(0, esp);
252     set_sib(scale, index, base);
253   } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
254     // [base + index*scale + disp8]
255     set_modrm(1, esp);
256     set_sib(scale, index, base);
257     set_disp8(disp);
258   } else {
259     // [base + index*scale + disp/r]
260     set_modrm(2, esp);
261     set_sib(scale, index, base);
262     set_dispr(disp, rmode);
263   }
264 }
265 
266 
Operand(Register index,ScaleFactor scale,int32_t disp,RelocInfo::Mode rmode)267 Operand::Operand(Register index,
268                  ScaleFactor scale,
269                  int32_t disp,
270                  RelocInfo::Mode rmode) {
271   DCHECK(!index.is(esp));  // illegal addressing mode
272   // [index*scale + disp/r]
273   set_modrm(0, esp);
274   set_sib(scale, index, ebp);
275   set_dispr(disp, rmode);
276 }
277 
278 
is_reg(Register reg) const279 bool Operand::is_reg(Register reg) const {
280   return ((buf_[0] & 0xF8) == 0xC0)  // addressing mode is register only.
281       && ((buf_[0] & 0x07) == reg.code());  // register codes match.
282 }
283 
284 
is_reg_only() const285 bool Operand::is_reg_only() const {
286   return (buf_[0] & 0xF8) == 0xC0;  // Addressing mode is register only.
287 }
288 
289 
reg() const290 Register Operand::reg() const {
291   DCHECK(is_reg_only());
292   return Register::from_code(buf_[0] & 0x07);
293 }
294 
295 
296 // -----------------------------------------------------------------------------
297 // Implementation of Assembler.
298 
299 // Emit a single byte. Must always be inlined.
300 #define EMIT(x)                                 \
301   *pc_++ = (x)
302 
Assembler(Isolate * isolate,void * buffer,int buffer_size)303 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
304     : AssemblerBase(isolate, buffer, buffer_size) {
305 // Clear the buffer in debug mode unless it was provided by the
306 // caller in which case we can't be sure it's okay to overwrite
307 // existing code in it; see CodePatcher::CodePatcher(...).
308 #ifdef DEBUG
309   if (own_buffer_) {
310     memset(buffer_, 0xCC, buffer_size_);  // int3
311   }
312 #endif
313 
314   reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
315 }
316 
317 
GetCode(CodeDesc * desc)318 void Assembler::GetCode(CodeDesc* desc) {
319   // Finalize code (at this point overflow() may be true, but the gap ensures
320   // that we are still not overlapping instructions and relocation info).
321   DCHECK(pc_ <= reloc_info_writer.pos());  // No overlap.
322   // Set up code descriptor.
323   desc->buffer = buffer_;
324   desc->buffer_size = buffer_size_;
325   desc->instr_size = pc_offset();
326   desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
327   desc->origin = this;
328   desc->constant_pool_size = 0;
329   desc->unwinding_info_size = 0;
330   desc->unwinding_info = nullptr;
331 }
332 
333 
Align(int m)334 void Assembler::Align(int m) {
335   DCHECK(base::bits::IsPowerOfTwo32(m));
336   int mask = m - 1;
337   int addr = pc_offset();
338   Nop((m - (addr & mask)) & mask);
339 }
340 
341 
IsNop(Address addr)342 bool Assembler::IsNop(Address addr) {
343   Address a = addr;
344   while (*a == 0x66) a++;
345   if (*a == 0x90) return true;
346   if (a[0] == 0xf && a[1] == 0x1f) return true;
347   return false;
348 }
349 
350 
Nop(int bytes)351 void Assembler::Nop(int bytes) {
352   EnsureSpace ensure_space(this);
353 
354   // Multi byte nops from http://support.amd.com/us/Processor_TechDocs/40546.pdf
355   while (bytes > 0) {
356     switch (bytes) {
357       case 2:
358         EMIT(0x66);
359       case 1:
360         EMIT(0x90);
361         return;
362       case 3:
363         EMIT(0xf);
364         EMIT(0x1f);
365         EMIT(0);
366         return;
367       case 4:
368         EMIT(0xf);
369         EMIT(0x1f);
370         EMIT(0x40);
371         EMIT(0);
372         return;
373       case 6:
374         EMIT(0x66);
375       case 5:
376         EMIT(0xf);
377         EMIT(0x1f);
378         EMIT(0x44);
379         EMIT(0);
380         EMIT(0);
381         return;
382       case 7:
383         EMIT(0xf);
384         EMIT(0x1f);
385         EMIT(0x80);
386         EMIT(0);
387         EMIT(0);
388         EMIT(0);
389         EMIT(0);
390         return;
391       default:
392       case 11:
393         EMIT(0x66);
394         bytes--;
395       case 10:
396         EMIT(0x66);
397         bytes--;
398       case 9:
399         EMIT(0x66);
400         bytes--;
401       case 8:
402         EMIT(0xf);
403         EMIT(0x1f);
404         EMIT(0x84);
405         EMIT(0);
406         EMIT(0);
407         EMIT(0);
408         EMIT(0);
409         EMIT(0);
410         bytes -= 8;
411     }
412   }
413 }
414 
415 
CodeTargetAlign()416 void Assembler::CodeTargetAlign() {
417   Align(16);  // Preferred alignment of jump targets on ia32.
418 }
419 
420 
cpuid()421 void Assembler::cpuid() {
422   EnsureSpace ensure_space(this);
423   EMIT(0x0F);
424   EMIT(0xA2);
425 }
426 
427 
pushad()428 void Assembler::pushad() {
429   EnsureSpace ensure_space(this);
430   EMIT(0x60);
431 }
432 
433 
popad()434 void Assembler::popad() {
435   EnsureSpace ensure_space(this);
436   EMIT(0x61);
437 }
438 
439 
pushfd()440 void Assembler::pushfd() {
441   EnsureSpace ensure_space(this);
442   EMIT(0x9C);
443 }
444 
445 
popfd()446 void Assembler::popfd() {
447   EnsureSpace ensure_space(this);
448   EMIT(0x9D);
449 }
450 
451 
push(const Immediate & x)452 void Assembler::push(const Immediate& x) {
453   EnsureSpace ensure_space(this);
454   if (x.is_int8()) {
455     EMIT(0x6a);
456     EMIT(x.x_);
457   } else {
458     EMIT(0x68);
459     emit(x);
460   }
461 }
462 
463 
push_imm32(int32_t imm32)464 void Assembler::push_imm32(int32_t imm32) {
465   EnsureSpace ensure_space(this);
466   EMIT(0x68);
467   emit(imm32);
468 }
469 
470 
push(Register src)471 void Assembler::push(Register src) {
472   EnsureSpace ensure_space(this);
473   EMIT(0x50 | src.code());
474 }
475 
476 
push(const Operand & src)477 void Assembler::push(const Operand& src) {
478   EnsureSpace ensure_space(this);
479   EMIT(0xFF);
480   emit_operand(esi, src);
481 }
482 
483 
pop(Register dst)484 void Assembler::pop(Register dst) {
485   DCHECK(reloc_info_writer.last_pc() != NULL);
486   EnsureSpace ensure_space(this);
487   EMIT(0x58 | dst.code());
488 }
489 
490 
pop(const Operand & dst)491 void Assembler::pop(const Operand& dst) {
492   EnsureSpace ensure_space(this);
493   EMIT(0x8F);
494   emit_operand(eax, dst);
495 }
496 
497 
enter(const Immediate & size)498 void Assembler::enter(const Immediate& size) {
499   EnsureSpace ensure_space(this);
500   EMIT(0xC8);
501   emit_w(size);
502   EMIT(0);
503 }
504 
505 
leave()506 void Assembler::leave() {
507   EnsureSpace ensure_space(this);
508   EMIT(0xC9);
509 }
510 
511 
mov_b(Register dst,const Operand & src)512 void Assembler::mov_b(Register dst, const Operand& src) {
513   CHECK(dst.is_byte_register());
514   EnsureSpace ensure_space(this);
515   EMIT(0x8A);
516   emit_operand(dst, src);
517 }
518 
519 
mov_b(const Operand & dst,const Immediate & src)520 void Assembler::mov_b(const Operand& dst, const Immediate& src) {
521   EnsureSpace ensure_space(this);
522   EMIT(0xC6);
523   emit_operand(eax, dst);
524   EMIT(static_cast<int8_t>(src.x_));
525 }
526 
527 
mov_b(const Operand & dst,Register src)528 void Assembler::mov_b(const Operand& dst, Register src) {
529   CHECK(src.is_byte_register());
530   EnsureSpace ensure_space(this);
531   EMIT(0x88);
532   emit_operand(src, dst);
533 }
534 
535 
mov_w(Register dst,const Operand & src)536 void Assembler::mov_w(Register dst, const Operand& src) {
537   EnsureSpace ensure_space(this);
538   EMIT(0x66);
539   EMIT(0x8B);
540   emit_operand(dst, src);
541 }
542 
543 
mov_w(const Operand & dst,Register src)544 void Assembler::mov_w(const Operand& dst, Register src) {
545   EnsureSpace ensure_space(this);
546   EMIT(0x66);
547   EMIT(0x89);
548   emit_operand(src, dst);
549 }
550 
551 
mov_w(const Operand & dst,const Immediate & src)552 void Assembler::mov_w(const Operand& dst, const Immediate& src) {
553   EnsureSpace ensure_space(this);
554   EMIT(0x66);
555   EMIT(0xC7);
556   emit_operand(eax, dst);
557   EMIT(static_cast<int8_t>(src.x_ & 0xff));
558   EMIT(static_cast<int8_t>(src.x_ >> 8));
559 }
560 
561 
mov(Register dst,int32_t imm32)562 void Assembler::mov(Register dst, int32_t imm32) {
563   EnsureSpace ensure_space(this);
564   EMIT(0xB8 | dst.code());
565   emit(imm32);
566 }
567 
568 
mov(Register dst,const Immediate & x)569 void Assembler::mov(Register dst, const Immediate& x) {
570   EnsureSpace ensure_space(this);
571   EMIT(0xB8 | dst.code());
572   emit(x);
573 }
574 
575 
mov(Register dst,Handle<Object> handle)576 void Assembler::mov(Register dst, Handle<Object> handle) {
577   EnsureSpace ensure_space(this);
578   EMIT(0xB8 | dst.code());
579   emit(handle);
580 }
581 
582 
mov(Register dst,const Operand & src)583 void Assembler::mov(Register dst, const Operand& src) {
584   EnsureSpace ensure_space(this);
585   EMIT(0x8B);
586   emit_operand(dst, src);
587 }
588 
589 
mov(Register dst,Register src)590 void Assembler::mov(Register dst, Register src) {
591   EnsureSpace ensure_space(this);
592   EMIT(0x89);
593   EMIT(0xC0 | src.code() << 3 | dst.code());
594 }
595 
596 
mov(const Operand & dst,const Immediate & x)597 void Assembler::mov(const Operand& dst, const Immediate& x) {
598   EnsureSpace ensure_space(this);
599   EMIT(0xC7);
600   emit_operand(eax, dst);
601   emit(x);
602 }
603 
604 
mov(const Operand & dst,Handle<Object> handle)605 void Assembler::mov(const Operand& dst, Handle<Object> handle) {
606   EnsureSpace ensure_space(this);
607   EMIT(0xC7);
608   emit_operand(eax, dst);
609   emit(handle);
610 }
611 
612 
mov(const Operand & dst,Register src)613 void Assembler::mov(const Operand& dst, Register src) {
614   EnsureSpace ensure_space(this);
615   EMIT(0x89);
616   emit_operand(src, dst);
617 }
618 
619 
movsx_b(Register dst,const Operand & src)620 void Assembler::movsx_b(Register dst, const Operand& src) {
621   EnsureSpace ensure_space(this);
622   EMIT(0x0F);
623   EMIT(0xBE);
624   emit_operand(dst, src);
625 }
626 
627 
movsx_w(Register dst,const Operand & src)628 void Assembler::movsx_w(Register dst, const Operand& src) {
629   EnsureSpace ensure_space(this);
630   EMIT(0x0F);
631   EMIT(0xBF);
632   emit_operand(dst, src);
633 }
634 
635 
movzx_b(Register dst,const Operand & src)636 void Assembler::movzx_b(Register dst, const Operand& src) {
637   EnsureSpace ensure_space(this);
638   EMIT(0x0F);
639   EMIT(0xB6);
640   emit_operand(dst, src);
641 }
642 
643 
movzx_w(Register dst,const Operand & src)644 void Assembler::movzx_w(Register dst, const Operand& src) {
645   EnsureSpace ensure_space(this);
646   EMIT(0x0F);
647   EMIT(0xB7);
648   emit_operand(dst, src);
649 }
650 
651 
cmov(Condition cc,Register dst,const Operand & src)652 void Assembler::cmov(Condition cc, Register dst, const Operand& src) {
653   EnsureSpace ensure_space(this);
654   // Opcode: 0f 40 + cc /r.
655   EMIT(0x0F);
656   EMIT(0x40 + cc);
657   emit_operand(dst, src);
658 }
659 
660 
cld()661 void Assembler::cld() {
662   EnsureSpace ensure_space(this);
663   EMIT(0xFC);
664 }
665 
666 
rep_movs()667 void Assembler::rep_movs() {
668   EnsureSpace ensure_space(this);
669   EMIT(0xF3);
670   EMIT(0xA5);
671 }
672 
673 
rep_stos()674 void Assembler::rep_stos() {
675   EnsureSpace ensure_space(this);
676   EMIT(0xF3);
677   EMIT(0xAB);
678 }
679 
680 
stos()681 void Assembler::stos() {
682   EnsureSpace ensure_space(this);
683   EMIT(0xAB);
684 }
685 
686 
xchg(Register dst,Register src)687 void Assembler::xchg(Register dst, Register src) {
688   EnsureSpace ensure_space(this);
689   if (src.is(eax) || dst.is(eax)) {  // Single-byte encoding.
690     EMIT(0x90 | (src.is(eax) ? dst.code() : src.code()));
691   } else {
692     EMIT(0x87);
693     EMIT(0xC0 | src.code() << 3 | dst.code());
694   }
695 }
696 
697 
xchg(Register dst,const Operand & src)698 void Assembler::xchg(Register dst, const Operand& src) {
699   EnsureSpace ensure_space(this);
700   EMIT(0x87);
701   emit_operand(dst, src);
702 }
703 
xchg_b(Register reg,const Operand & op)704 void Assembler::xchg_b(Register reg, const Operand& op) {
705   EnsureSpace ensure_space(this);
706   EMIT(0x86);
707   emit_operand(reg, op);
708 }
709 
xchg_w(Register reg,const Operand & op)710 void Assembler::xchg_w(Register reg, const Operand& op) {
711   EnsureSpace ensure_space(this);
712   EMIT(0x66);
713   EMIT(0x87);
714   emit_operand(reg, op);
715 }
716 
lock()717 void Assembler::lock() {
718   EnsureSpace ensure_space(this);
719   EMIT(0xF0);
720 }
721 
cmpxchg(const Operand & dst,Register src)722 void Assembler::cmpxchg(const Operand& dst, Register src) {
723   EnsureSpace ensure_space(this);
724   EMIT(0x0F);
725   EMIT(0xB1);
726   emit_operand(src, dst);
727 }
728 
cmpxchg_b(const Operand & dst,Register src)729 void Assembler::cmpxchg_b(const Operand& dst, Register src) {
730   EnsureSpace ensure_space(this);
731   EMIT(0x0F);
732   EMIT(0xB0);
733   emit_operand(src, dst);
734 }
735 
cmpxchg_w(const Operand & dst,Register src)736 void Assembler::cmpxchg_w(const Operand& dst, Register src) {
737   EnsureSpace ensure_space(this);
738   EMIT(0x66);
739   EMIT(0x0F);
740   EMIT(0xB1);
741   emit_operand(src, dst);
742 }
743 
adc(Register dst,int32_t imm32)744 void Assembler::adc(Register dst, int32_t imm32) {
745   EnsureSpace ensure_space(this);
746   emit_arith(2, Operand(dst), Immediate(imm32));
747 }
748 
749 
adc(Register dst,const Operand & src)750 void Assembler::adc(Register dst, const Operand& src) {
751   EnsureSpace ensure_space(this);
752   EMIT(0x13);
753   emit_operand(dst, src);
754 }
755 
756 
add(Register dst,const Operand & src)757 void Assembler::add(Register dst, const Operand& src) {
758   EnsureSpace ensure_space(this);
759   EMIT(0x03);
760   emit_operand(dst, src);
761 }
762 
763 
add(const Operand & dst,Register src)764 void Assembler::add(const Operand& dst, Register src) {
765   EnsureSpace ensure_space(this);
766   EMIT(0x01);
767   emit_operand(src, dst);
768 }
769 
770 
add(const Operand & dst,const Immediate & x)771 void Assembler::add(const Operand& dst, const Immediate& x) {
772   DCHECK(reloc_info_writer.last_pc() != NULL);
773   EnsureSpace ensure_space(this);
774   emit_arith(0, dst, x);
775 }
776 
777 
and_(Register dst,int32_t imm32)778 void Assembler::and_(Register dst, int32_t imm32) {
779   and_(dst, Immediate(imm32));
780 }
781 
782 
and_(Register dst,const Immediate & x)783 void Assembler::and_(Register dst, const Immediate& x) {
784   EnsureSpace ensure_space(this);
785   emit_arith(4, Operand(dst), x);
786 }
787 
788 
and_(Register dst,const Operand & src)789 void Assembler::and_(Register dst, const Operand& src) {
790   EnsureSpace ensure_space(this);
791   EMIT(0x23);
792   emit_operand(dst, src);
793 }
794 
795 
and_(const Operand & dst,const Immediate & x)796 void Assembler::and_(const Operand& dst, const Immediate& x) {
797   EnsureSpace ensure_space(this);
798   emit_arith(4, dst, x);
799 }
800 
801 
and_(const Operand & dst,Register src)802 void Assembler::and_(const Operand& dst, Register src) {
803   EnsureSpace ensure_space(this);
804   EMIT(0x21);
805   emit_operand(src, dst);
806 }
807 
cmpb(const Operand & op,Immediate imm8)808 void Assembler::cmpb(const Operand& op, Immediate imm8) {
809   DCHECK(imm8.is_int8() || imm8.is_uint8());
810   EnsureSpace ensure_space(this);
811   if (op.is_reg(eax)) {
812     EMIT(0x3C);
813   } else {
814     EMIT(0x80);
815     emit_operand(edi, op);  // edi == 7
816   }
817   emit_b(imm8);
818 }
819 
820 
cmpb(const Operand & op,Register reg)821 void Assembler::cmpb(const Operand& op, Register reg) {
822   CHECK(reg.is_byte_register());
823   EnsureSpace ensure_space(this);
824   EMIT(0x38);
825   emit_operand(reg, op);
826 }
827 
828 
cmpb(Register reg,const Operand & op)829 void Assembler::cmpb(Register reg, const Operand& op) {
830   CHECK(reg.is_byte_register());
831   EnsureSpace ensure_space(this);
832   EMIT(0x3A);
833   emit_operand(reg, op);
834 }
835 
836 
cmpw(const Operand & op,Immediate imm16)837 void Assembler::cmpw(const Operand& op, Immediate imm16) {
838   DCHECK(imm16.is_int16() || imm16.is_uint16());
839   EnsureSpace ensure_space(this);
840   EMIT(0x66);
841   EMIT(0x81);
842   emit_operand(edi, op);
843   emit_w(imm16);
844 }
845 
cmpw(Register reg,const Operand & op)846 void Assembler::cmpw(Register reg, const Operand& op) {
847   EnsureSpace ensure_space(this);
848   EMIT(0x66);
849   EMIT(0x3B);
850   emit_operand(reg, op);
851 }
852 
cmpw(const Operand & op,Register reg)853 void Assembler::cmpw(const Operand& op, Register reg) {
854   EnsureSpace ensure_space(this);
855   EMIT(0x66);
856   EMIT(0x39);
857   emit_operand(reg, op);
858 }
859 
cmp(Register reg,int32_t imm32)860 void Assembler::cmp(Register reg, int32_t imm32) {
861   EnsureSpace ensure_space(this);
862   emit_arith(7, Operand(reg), Immediate(imm32));
863 }
864 
865 
cmp(Register reg,Handle<Object> handle)866 void Assembler::cmp(Register reg, Handle<Object> handle) {
867   EnsureSpace ensure_space(this);
868   emit_arith(7, Operand(reg), Immediate(handle));
869 }
870 
871 
cmp(Register reg,const Operand & op)872 void Assembler::cmp(Register reg, const Operand& op) {
873   EnsureSpace ensure_space(this);
874   EMIT(0x3B);
875   emit_operand(reg, op);
876 }
877 
cmp(const Operand & op,Register reg)878 void Assembler::cmp(const Operand& op, Register reg) {
879   EnsureSpace ensure_space(this);
880   EMIT(0x39);
881   emit_operand(reg, op);
882 }
883 
cmp(const Operand & op,const Immediate & imm)884 void Assembler::cmp(const Operand& op, const Immediate& imm) {
885   EnsureSpace ensure_space(this);
886   emit_arith(7, op, imm);
887 }
888 
889 
cmp(const Operand & op,Handle<Object> handle)890 void Assembler::cmp(const Operand& op, Handle<Object> handle) {
891   EnsureSpace ensure_space(this);
892   emit_arith(7, op, Immediate(handle));
893 }
894 
895 
cmpb_al(const Operand & op)896 void Assembler::cmpb_al(const Operand& op) {
897   EnsureSpace ensure_space(this);
898   EMIT(0x38);  // CMP r/m8, r8
899   emit_operand(eax, op);  // eax has same code as register al.
900 }
901 
902 
cmpw_ax(const Operand & op)903 void Assembler::cmpw_ax(const Operand& op) {
904   EnsureSpace ensure_space(this);
905   EMIT(0x66);
906   EMIT(0x39);  // CMP r/m16, r16
907   emit_operand(eax, op);  // eax has same code as register ax.
908 }
909 
910 
dec_b(Register dst)911 void Assembler::dec_b(Register dst) {
912   CHECK(dst.is_byte_register());
913   EnsureSpace ensure_space(this);
914   EMIT(0xFE);
915   EMIT(0xC8 | dst.code());
916 }
917 
918 
dec_b(const Operand & dst)919 void Assembler::dec_b(const Operand& dst) {
920   EnsureSpace ensure_space(this);
921   EMIT(0xFE);
922   emit_operand(ecx, dst);
923 }
924 
925 
dec(Register dst)926 void Assembler::dec(Register dst) {
927   EnsureSpace ensure_space(this);
928   EMIT(0x48 | dst.code());
929 }
930 
931 
dec(const Operand & dst)932 void Assembler::dec(const Operand& dst) {
933   EnsureSpace ensure_space(this);
934   EMIT(0xFF);
935   emit_operand(ecx, dst);
936 }
937 
938 
cdq()939 void Assembler::cdq() {
940   EnsureSpace ensure_space(this);
941   EMIT(0x99);
942 }
943 
944 
idiv(const Operand & src)945 void Assembler::idiv(const Operand& src) {
946   EnsureSpace ensure_space(this);
947   EMIT(0xF7);
948   emit_operand(edi, src);
949 }
950 
951 
div(const Operand & src)952 void Assembler::div(const Operand& src) {
953   EnsureSpace ensure_space(this);
954   EMIT(0xF7);
955   emit_operand(esi, src);
956 }
957 
958 
imul(Register reg)959 void Assembler::imul(Register reg) {
960   EnsureSpace ensure_space(this);
961   EMIT(0xF7);
962   EMIT(0xE8 | reg.code());
963 }
964 
965 
imul(Register dst,const Operand & src)966 void Assembler::imul(Register dst, const Operand& src) {
967   EnsureSpace ensure_space(this);
968   EMIT(0x0F);
969   EMIT(0xAF);
970   emit_operand(dst, src);
971 }
972 
973 
imul(Register dst,Register src,int32_t imm32)974 void Assembler::imul(Register dst, Register src, int32_t imm32) {
975   imul(dst, Operand(src), imm32);
976 }
977 
978 
imul(Register dst,const Operand & src,int32_t imm32)979 void Assembler::imul(Register dst, const Operand& src, int32_t imm32) {
980   EnsureSpace ensure_space(this);
981   if (is_int8(imm32)) {
982     EMIT(0x6B);
983     emit_operand(dst, src);
984     EMIT(imm32);
985   } else {
986     EMIT(0x69);
987     emit_operand(dst, src);
988     emit(imm32);
989   }
990 }
991 
992 
inc(Register dst)993 void Assembler::inc(Register dst) {
994   EnsureSpace ensure_space(this);
995   EMIT(0x40 | dst.code());
996 }
997 
998 
inc(const Operand & dst)999 void Assembler::inc(const Operand& dst) {
1000   EnsureSpace ensure_space(this);
1001   EMIT(0xFF);
1002   emit_operand(eax, dst);
1003 }
1004 
1005 
lea(Register dst,const Operand & src)1006 void Assembler::lea(Register dst, const Operand& src) {
1007   EnsureSpace ensure_space(this);
1008   EMIT(0x8D);
1009   emit_operand(dst, src);
1010 }
1011 
1012 
mul(Register src)1013 void Assembler::mul(Register src) {
1014   EnsureSpace ensure_space(this);
1015   EMIT(0xF7);
1016   EMIT(0xE0 | src.code());
1017 }
1018 
1019 
neg(Register dst)1020 void Assembler::neg(Register dst) {
1021   EnsureSpace ensure_space(this);
1022   EMIT(0xF7);
1023   EMIT(0xD8 | dst.code());
1024 }
1025 
1026 
neg(const Operand & dst)1027 void Assembler::neg(const Operand& dst) {
1028   EnsureSpace ensure_space(this);
1029   EMIT(0xF7);
1030   emit_operand(ebx, dst);
1031 }
1032 
1033 
not_(Register dst)1034 void Assembler::not_(Register dst) {
1035   EnsureSpace ensure_space(this);
1036   EMIT(0xF7);
1037   EMIT(0xD0 | dst.code());
1038 }
1039 
1040 
not_(const Operand & dst)1041 void Assembler::not_(const Operand& dst) {
1042   EnsureSpace ensure_space(this);
1043   EMIT(0xF7);
1044   emit_operand(edx, dst);
1045 }
1046 
1047 
or_(Register dst,int32_t imm32)1048 void Assembler::or_(Register dst, int32_t imm32) {
1049   EnsureSpace ensure_space(this);
1050   emit_arith(1, Operand(dst), Immediate(imm32));
1051 }
1052 
1053 
or_(Register dst,const Operand & src)1054 void Assembler::or_(Register dst, const Operand& src) {
1055   EnsureSpace ensure_space(this);
1056   EMIT(0x0B);
1057   emit_operand(dst, src);
1058 }
1059 
1060 
or_(const Operand & dst,const Immediate & x)1061 void Assembler::or_(const Operand& dst, const Immediate& x) {
1062   EnsureSpace ensure_space(this);
1063   emit_arith(1, dst, x);
1064 }
1065 
1066 
or_(const Operand & dst,Register src)1067 void Assembler::or_(const Operand& dst, Register src) {
1068   EnsureSpace ensure_space(this);
1069   EMIT(0x09);
1070   emit_operand(src, dst);
1071 }
1072 
1073 
rcl(Register dst,uint8_t imm8)1074 void Assembler::rcl(Register dst, uint8_t imm8) {
1075   EnsureSpace ensure_space(this);
1076   DCHECK(is_uint5(imm8));  // illegal shift count
1077   if (imm8 == 1) {
1078     EMIT(0xD1);
1079     EMIT(0xD0 | dst.code());
1080   } else {
1081     EMIT(0xC1);
1082     EMIT(0xD0 | dst.code());
1083     EMIT(imm8);
1084   }
1085 }
1086 
1087 
rcr(Register dst,uint8_t imm8)1088 void Assembler::rcr(Register dst, uint8_t imm8) {
1089   EnsureSpace ensure_space(this);
1090   DCHECK(is_uint5(imm8));  // illegal shift count
1091   if (imm8 == 1) {
1092     EMIT(0xD1);
1093     EMIT(0xD8 | dst.code());
1094   } else {
1095     EMIT(0xC1);
1096     EMIT(0xD8 | dst.code());
1097     EMIT(imm8);
1098   }
1099 }
1100 
1101 
ror(const Operand & dst,uint8_t imm8)1102 void Assembler::ror(const Operand& dst, uint8_t imm8) {
1103   EnsureSpace ensure_space(this);
1104   DCHECK(is_uint5(imm8));  // illegal shift count
1105   if (imm8 == 1) {
1106     EMIT(0xD1);
1107     emit_operand(ecx, dst);
1108   } else {
1109     EMIT(0xC1);
1110     emit_operand(ecx, dst);
1111     EMIT(imm8);
1112   }
1113 }
1114 
1115 
ror_cl(const Operand & dst)1116 void Assembler::ror_cl(const Operand& dst) {
1117   EnsureSpace ensure_space(this);
1118   EMIT(0xD3);
1119   emit_operand(ecx, dst);
1120 }
1121 
1122 
sar(const Operand & dst,uint8_t imm8)1123 void Assembler::sar(const Operand& dst, uint8_t imm8) {
1124   EnsureSpace ensure_space(this);
1125   DCHECK(is_uint5(imm8));  // illegal shift count
1126   if (imm8 == 1) {
1127     EMIT(0xD1);
1128     emit_operand(edi, dst);
1129   } else {
1130     EMIT(0xC1);
1131     emit_operand(edi, dst);
1132     EMIT(imm8);
1133   }
1134 }
1135 
1136 
sar_cl(const Operand & dst)1137 void Assembler::sar_cl(const Operand& dst) {
1138   EnsureSpace ensure_space(this);
1139   EMIT(0xD3);
1140   emit_operand(edi, dst);
1141 }
1142 
sbb(Register dst,const Operand & src)1143 void Assembler::sbb(Register dst, const Operand& src) {
1144   EnsureSpace ensure_space(this);
1145   EMIT(0x1B);
1146   emit_operand(dst, src);
1147 }
1148 
shld(Register dst,Register src,uint8_t shift)1149 void Assembler::shld(Register dst, Register src, uint8_t shift) {
1150   DCHECK(is_uint5(shift));
1151   EnsureSpace ensure_space(this);
1152   EMIT(0x0F);
1153   EMIT(0xA4);
1154   emit_operand(src, Operand(dst));
1155   EMIT(shift);
1156 }
1157 
shld_cl(Register dst,Register src)1158 void Assembler::shld_cl(Register dst, Register src) {
1159   EnsureSpace ensure_space(this);
1160   EMIT(0x0F);
1161   EMIT(0xA5);
1162   emit_operand(src, Operand(dst));
1163 }
1164 
1165 
shl(const Operand & dst,uint8_t imm8)1166 void Assembler::shl(const Operand& dst, uint8_t imm8) {
1167   EnsureSpace ensure_space(this);
1168   DCHECK(is_uint5(imm8));  // illegal shift count
1169   if (imm8 == 1) {
1170     EMIT(0xD1);
1171     emit_operand(esp, dst);
1172   } else {
1173     EMIT(0xC1);
1174     emit_operand(esp, dst);
1175     EMIT(imm8);
1176   }
1177 }
1178 
1179 
shl_cl(const Operand & dst)1180 void Assembler::shl_cl(const Operand& dst) {
1181   EnsureSpace ensure_space(this);
1182   EMIT(0xD3);
1183   emit_operand(esp, dst);
1184 }
1185 
shr(const Operand & dst,uint8_t imm8)1186 void Assembler::shr(const Operand& dst, uint8_t imm8) {
1187   EnsureSpace ensure_space(this);
1188   DCHECK(is_uint5(imm8));  // illegal shift count
1189   if (imm8 == 1) {
1190     EMIT(0xD1);
1191     emit_operand(ebp, dst);
1192   } else {
1193     EMIT(0xC1);
1194     emit_operand(ebp, dst);
1195     EMIT(imm8);
1196   }
1197 }
1198 
1199 
shr_cl(const Operand & dst)1200 void Assembler::shr_cl(const Operand& dst) {
1201   EnsureSpace ensure_space(this);
1202   EMIT(0xD3);
1203   emit_operand(ebp, dst);
1204 }
1205 
shrd(Register dst,Register src,uint8_t shift)1206 void Assembler::shrd(Register dst, Register src, uint8_t shift) {
1207   DCHECK(is_uint5(shift));
1208   EnsureSpace ensure_space(this);
1209   EMIT(0x0F);
1210   EMIT(0xAC);
1211   emit_operand(dst, Operand(src));
1212   EMIT(shift);
1213 }
1214 
shrd_cl(const Operand & dst,Register src)1215 void Assembler::shrd_cl(const Operand& dst, Register src) {
1216   EnsureSpace ensure_space(this);
1217   EMIT(0x0F);
1218   EMIT(0xAD);
1219   emit_operand(src, dst);
1220 }
1221 
sub(const Operand & dst,const Immediate & x)1222 void Assembler::sub(const Operand& dst, const Immediate& x) {
1223   EnsureSpace ensure_space(this);
1224   emit_arith(5, dst, x);
1225 }
1226 
1227 
sub(Register dst,const Operand & src)1228 void Assembler::sub(Register dst, const Operand& src) {
1229   EnsureSpace ensure_space(this);
1230   EMIT(0x2B);
1231   emit_operand(dst, src);
1232 }
1233 
1234 
sub(const Operand & dst,Register src)1235 void Assembler::sub(const Operand& dst, Register src) {
1236   EnsureSpace ensure_space(this);
1237   EMIT(0x29);
1238   emit_operand(src, dst);
1239 }
1240 
1241 
test(Register reg,const Immediate & imm)1242 void Assembler::test(Register reg, const Immediate& imm) {
1243   if (imm.is_uint8()) {
1244     test_b(reg, imm);
1245     return;
1246   }
1247 
1248   EnsureSpace ensure_space(this);
1249   // This is not using emit_arith because test doesn't support
1250   // sign-extension of 8-bit operands.
1251   if (reg.is(eax)) {
1252     EMIT(0xA9);
1253   } else {
1254     EMIT(0xF7);
1255     EMIT(0xC0 | reg.code());
1256   }
1257   emit(imm);
1258 }
1259 
1260 
test(Register reg,const Operand & op)1261 void Assembler::test(Register reg, const Operand& op) {
1262   EnsureSpace ensure_space(this);
1263   EMIT(0x85);
1264   emit_operand(reg, op);
1265 }
1266 
1267 
test_b(Register reg,const Operand & op)1268 void Assembler::test_b(Register reg, const Operand& op) {
1269   CHECK(reg.is_byte_register());
1270   EnsureSpace ensure_space(this);
1271   EMIT(0x84);
1272   emit_operand(reg, op);
1273 }
1274 
1275 
test(const Operand & op,const Immediate & imm)1276 void Assembler::test(const Operand& op, const Immediate& imm) {
1277   if (op.is_reg_only()) {
1278     test(op.reg(), imm);
1279     return;
1280   }
1281   if (imm.is_uint8()) {
1282     return test_b(op, imm);
1283   }
1284   EnsureSpace ensure_space(this);
1285   EMIT(0xF7);
1286   emit_operand(eax, op);
1287   emit(imm);
1288 }
1289 
test_b(Register reg,Immediate imm8)1290 void Assembler::test_b(Register reg, Immediate imm8) {
1291   DCHECK(imm8.is_uint8());
1292   EnsureSpace ensure_space(this);
1293   // Only use test against byte for registers that have a byte
1294   // variant: eax, ebx, ecx, and edx.
1295   if (reg.is(eax)) {
1296     EMIT(0xA8);
1297     emit_b(imm8);
1298   } else if (reg.is_byte_register()) {
1299     emit_arith_b(0xF6, 0xC0, reg, static_cast<uint8_t>(imm8.x_));
1300   } else {
1301     EMIT(0x66);
1302     EMIT(0xF7);
1303     EMIT(0xC0 | reg.code());
1304     emit_w(imm8);
1305   }
1306 }
1307 
test_b(const Operand & op,Immediate imm8)1308 void Assembler::test_b(const Operand& op, Immediate imm8) {
1309   if (op.is_reg_only()) {
1310     test_b(op.reg(), imm8);
1311     return;
1312   }
1313   EnsureSpace ensure_space(this);
1314   EMIT(0xF6);
1315   emit_operand(eax, op);
1316   emit_b(imm8);
1317 }
1318 
test_w(Register reg,Immediate imm16)1319 void Assembler::test_w(Register reg, Immediate imm16) {
1320   DCHECK(imm16.is_int16() || imm16.is_uint16());
1321   EnsureSpace ensure_space(this);
1322   if (reg.is(eax)) {
1323     EMIT(0xA9);
1324     emit_w(imm16);
1325   } else {
1326     EMIT(0x66);
1327     EMIT(0xF7);
1328     EMIT(0xc0 | reg.code());
1329     emit_w(imm16);
1330   }
1331 }
1332 
test_w(Register reg,const Operand & op)1333 void Assembler::test_w(Register reg, const Operand& op) {
1334   EnsureSpace ensure_space(this);
1335   EMIT(0x66);
1336   EMIT(0x85);
1337   emit_operand(reg, op);
1338 }
1339 
test_w(const Operand & op,Immediate imm16)1340 void Assembler::test_w(const Operand& op, Immediate imm16) {
1341   DCHECK(imm16.is_int16() || imm16.is_uint16());
1342   if (op.is_reg_only()) {
1343     test_w(op.reg(), imm16);
1344     return;
1345   }
1346   EnsureSpace ensure_space(this);
1347   EMIT(0x66);
1348   EMIT(0xF7);
1349   emit_operand(eax, op);
1350   emit_w(imm16);
1351 }
1352 
xor_(Register dst,int32_t imm32)1353 void Assembler::xor_(Register dst, int32_t imm32) {
1354   EnsureSpace ensure_space(this);
1355   emit_arith(6, Operand(dst), Immediate(imm32));
1356 }
1357 
1358 
xor_(Register dst,const Operand & src)1359 void Assembler::xor_(Register dst, const Operand& src) {
1360   EnsureSpace ensure_space(this);
1361   EMIT(0x33);
1362   emit_operand(dst, src);
1363 }
1364 
1365 
xor_(const Operand & dst,Register src)1366 void Assembler::xor_(const Operand& dst, Register src) {
1367   EnsureSpace ensure_space(this);
1368   EMIT(0x31);
1369   emit_operand(src, dst);
1370 }
1371 
1372 
xor_(const Operand & dst,const Immediate & x)1373 void Assembler::xor_(const Operand& dst, const Immediate& x) {
1374   EnsureSpace ensure_space(this);
1375   emit_arith(6, dst, x);
1376 }
1377 
1378 
bt(const Operand & dst,Register src)1379 void Assembler::bt(const Operand& dst, Register src) {
1380   EnsureSpace ensure_space(this);
1381   EMIT(0x0F);
1382   EMIT(0xA3);
1383   emit_operand(src, dst);
1384 }
1385 
1386 
bts(const Operand & dst,Register src)1387 void Assembler::bts(const Operand& dst, Register src) {
1388   EnsureSpace ensure_space(this);
1389   EMIT(0x0F);
1390   EMIT(0xAB);
1391   emit_operand(src, dst);
1392 }
1393 
1394 
bsr(Register dst,const Operand & src)1395 void Assembler::bsr(Register dst, const Operand& src) {
1396   EnsureSpace ensure_space(this);
1397   EMIT(0x0F);
1398   EMIT(0xBD);
1399   emit_operand(dst, src);
1400 }
1401 
1402 
bsf(Register dst,const Operand & src)1403 void Assembler::bsf(Register dst, const Operand& src) {
1404   EnsureSpace ensure_space(this);
1405   EMIT(0x0F);
1406   EMIT(0xBC);
1407   emit_operand(dst, src);
1408 }
1409 
1410 
hlt()1411 void Assembler::hlt() {
1412   EnsureSpace ensure_space(this);
1413   EMIT(0xF4);
1414 }
1415 
1416 
int3()1417 void Assembler::int3() {
1418   EnsureSpace ensure_space(this);
1419   EMIT(0xCC);
1420 }
1421 
1422 
nop()1423 void Assembler::nop() {
1424   EnsureSpace ensure_space(this);
1425   EMIT(0x90);
1426 }
1427 
1428 
ret(int imm16)1429 void Assembler::ret(int imm16) {
1430   EnsureSpace ensure_space(this);
1431   DCHECK(is_uint16(imm16));
1432   if (imm16 == 0) {
1433     EMIT(0xC3);
1434   } else {
1435     EMIT(0xC2);
1436     EMIT(imm16 & 0xFF);
1437     EMIT((imm16 >> 8) & 0xFF);
1438   }
1439 }
1440 
1441 
ud2()1442 void Assembler::ud2() {
1443   EnsureSpace ensure_space(this);
1444   EMIT(0x0F);
1445   EMIT(0x0B);
1446 }
1447 
1448 
1449 // Labels refer to positions in the (to be) generated code.
1450 // There are bound, linked, and unused labels.
1451 //
1452 // Bound labels refer to known positions in the already
1453 // generated code. pos() is the position the label refers to.
1454 //
1455 // Linked labels refer to unknown positions in the code
1456 // to be generated; pos() is the position of the 32bit
1457 // Displacement of the last instruction using the label.
1458 
1459 
print(Label * L)1460 void Assembler::print(Label* L) {
1461   if (L->is_unused()) {
1462     PrintF("unused label\n");
1463   } else if (L->is_bound()) {
1464     PrintF("bound label to %d\n", L->pos());
1465   } else if (L->is_linked()) {
1466     Label l = *L;
1467     PrintF("unbound label");
1468     while (l.is_linked()) {
1469       Displacement disp = disp_at(&l);
1470       PrintF("@ %d ", l.pos());
1471       disp.print();
1472       PrintF("\n");
1473       disp.next(&l);
1474     }
1475   } else {
1476     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
1477   }
1478 }
1479 
1480 
bind_to(Label * L,int pos)1481 void Assembler::bind_to(Label* L, int pos) {
1482   EnsureSpace ensure_space(this);
1483   DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position
1484   while (L->is_linked()) {
1485     Displacement disp = disp_at(L);
1486     int fixup_pos = L->pos();
1487     if (disp.type() == Displacement::CODE_ABSOLUTE) {
1488       long_at_put(fixup_pos, reinterpret_cast<int>(buffer_ + pos));
1489       internal_reference_positions_.push_back(fixup_pos);
1490     } else if (disp.type() == Displacement::CODE_RELATIVE) {
1491       // Relative to Code* heap object pointer.
1492       long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
1493     } else {
1494       if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
1495         DCHECK(byte_at(fixup_pos - 1) == 0xE9);  // jmp expected
1496       }
1497       // Relative address, relative to point after address.
1498       int imm32 = pos - (fixup_pos + sizeof(int32_t));
1499       long_at_put(fixup_pos, imm32);
1500     }
1501     disp.next(L);
1502   }
1503   while (L->is_near_linked()) {
1504     int fixup_pos = L->near_link_pos();
1505     int offset_to_next =
1506         static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
1507     DCHECK(offset_to_next <= 0);
1508     // Relative address, relative to point after address.
1509     int disp = pos - fixup_pos - sizeof(int8_t);
1510     CHECK(0 <= disp && disp <= 127);
1511     set_byte_at(fixup_pos, disp);
1512     if (offset_to_next < 0) {
1513       L->link_to(fixup_pos + offset_to_next, Label::kNear);
1514     } else {
1515       L->UnuseNear();
1516     }
1517   }
1518   L->bind_to(pos);
1519 }
1520 
1521 
bind(Label * L)1522 void Assembler::bind(Label* L) {
1523   EnsureSpace ensure_space(this);
1524   DCHECK(!L->is_bound());  // label can only be bound once
1525   bind_to(L, pc_offset());
1526 }
1527 
1528 
call(Label * L)1529 void Assembler::call(Label* L) {
1530   EnsureSpace ensure_space(this);
1531   if (L->is_bound()) {
1532     const int long_size = 5;
1533     int offs = L->pos() - pc_offset();
1534     DCHECK(offs <= 0);
1535     // 1110 1000 #32-bit disp.
1536     EMIT(0xE8);
1537     emit(offs - long_size);
1538   } else {
1539     // 1110 1000 #32-bit disp.
1540     EMIT(0xE8);
1541     emit_disp(L, Displacement::OTHER);
1542   }
1543 }
1544 
1545 
call(byte * entry,RelocInfo::Mode rmode)1546 void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
1547   EnsureSpace ensure_space(this);
1548   DCHECK(!RelocInfo::IsCodeTarget(rmode));
1549   EMIT(0xE8);
1550   if (RelocInfo::IsRuntimeEntry(rmode)) {
1551     emit(reinterpret_cast<uint32_t>(entry), rmode);
1552   } else {
1553     emit(entry - (pc_ + sizeof(int32_t)), rmode);
1554   }
1555 }
1556 
1557 
CallSize(const Operand & adr)1558 int Assembler::CallSize(const Operand& adr) {
1559   // Call size is 1 (opcode) + adr.len_ (operand).
1560   return 1 + adr.len_;
1561 }
1562 
1563 
call(const Operand & adr)1564 void Assembler::call(const Operand& adr) {
1565   EnsureSpace ensure_space(this);
1566   EMIT(0xFF);
1567   emit_operand(edx, adr);
1568 }
1569 
1570 
CallSize(Handle<Code> code,RelocInfo::Mode rmode)1571 int Assembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode) {
1572   return 1 /* EMIT */ + sizeof(uint32_t) /* emit */;
1573 }
1574 
1575 
call(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id)1576 void Assembler::call(Handle<Code> code,
1577                      RelocInfo::Mode rmode,
1578                      TypeFeedbackId ast_id) {
1579   EnsureSpace ensure_space(this);
1580   DCHECK(RelocInfo::IsCodeTarget(rmode)
1581       || rmode == RelocInfo::CODE_AGE_SEQUENCE);
1582   EMIT(0xE8);
1583   emit(code, rmode, ast_id);
1584 }
1585 
1586 
jmp(Label * L,Label::Distance distance)1587 void Assembler::jmp(Label* L, Label::Distance distance) {
1588   EnsureSpace ensure_space(this);
1589   if (L->is_bound()) {
1590     const int short_size = 2;
1591     const int long_size  = 5;
1592     int offs = L->pos() - pc_offset();
1593     DCHECK(offs <= 0);
1594     if (is_int8(offs - short_size)) {
1595       // 1110 1011 #8-bit disp.
1596       EMIT(0xEB);
1597       EMIT((offs - short_size) & 0xFF);
1598     } else {
1599       // 1110 1001 #32-bit disp.
1600       EMIT(0xE9);
1601       emit(offs - long_size);
1602     }
1603   } else if (distance == Label::kNear) {
1604     EMIT(0xEB);
1605     emit_near_disp(L);
1606   } else {
1607     // 1110 1001 #32-bit disp.
1608     EMIT(0xE9);
1609     emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
1610   }
1611 }
1612 
1613 
jmp(byte * entry,RelocInfo::Mode rmode)1614 void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
1615   EnsureSpace ensure_space(this);
1616   DCHECK(!RelocInfo::IsCodeTarget(rmode));
1617   EMIT(0xE9);
1618   if (RelocInfo::IsRuntimeEntry(rmode)) {
1619     emit(reinterpret_cast<uint32_t>(entry), rmode);
1620   } else {
1621     emit(entry - (pc_ + sizeof(int32_t)), rmode);
1622   }
1623 }
1624 
1625 
jmp(const Operand & adr)1626 void Assembler::jmp(const Operand& adr) {
1627   EnsureSpace ensure_space(this);
1628   EMIT(0xFF);
1629   emit_operand(esp, adr);
1630 }
1631 
1632 
jmp(Handle<Code> code,RelocInfo::Mode rmode)1633 void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
1634   EnsureSpace ensure_space(this);
1635   DCHECK(RelocInfo::IsCodeTarget(rmode));
1636   EMIT(0xE9);
1637   emit(code, rmode);
1638 }
1639 
1640 
j(Condition cc,Label * L,Label::Distance distance)1641 void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
1642   EnsureSpace ensure_space(this);
1643   DCHECK(0 <= cc && static_cast<int>(cc) < 16);
1644   if (L->is_bound()) {
1645     const int short_size = 2;
1646     const int long_size  = 6;
1647     int offs = L->pos() - pc_offset();
1648     DCHECK(offs <= 0);
1649     if (is_int8(offs - short_size)) {
1650       // 0111 tttn #8-bit disp
1651       EMIT(0x70 | cc);
1652       EMIT((offs - short_size) & 0xFF);
1653     } else {
1654       // 0000 1111 1000 tttn #32-bit disp
1655       EMIT(0x0F);
1656       EMIT(0x80 | cc);
1657       emit(offs - long_size);
1658     }
1659   } else if (distance == Label::kNear) {
1660     EMIT(0x70 | cc);
1661     emit_near_disp(L);
1662   } else {
1663     // 0000 1111 1000 tttn #32-bit disp
1664     // Note: could eliminate cond. jumps to this jump if condition
1665     //       is the same however, seems to be rather unlikely case.
1666     EMIT(0x0F);
1667     EMIT(0x80 | cc);
1668     emit_disp(L, Displacement::OTHER);
1669   }
1670 }
1671 
1672 
j(Condition cc,byte * entry,RelocInfo::Mode rmode)1673 void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) {
1674   EnsureSpace ensure_space(this);
1675   DCHECK((0 <= cc) && (static_cast<int>(cc) < 16));
1676   // 0000 1111 1000 tttn #32-bit disp.
1677   EMIT(0x0F);
1678   EMIT(0x80 | cc);
1679   if (RelocInfo::IsRuntimeEntry(rmode)) {
1680     emit(reinterpret_cast<uint32_t>(entry), rmode);
1681   } else {
1682     emit(entry - (pc_ + sizeof(int32_t)), rmode);
1683   }
1684 }
1685 
1686 
j(Condition cc,Handle<Code> code,RelocInfo::Mode rmode)1687 void Assembler::j(Condition cc, Handle<Code> code, RelocInfo::Mode rmode) {
1688   EnsureSpace ensure_space(this);
1689   // 0000 1111 1000 tttn #32-bit disp
1690   EMIT(0x0F);
1691   EMIT(0x80 | cc);
1692   emit(code, rmode);
1693 }
1694 
1695 
1696 // FPU instructions.
1697 
fld(int i)1698 void Assembler::fld(int i) {
1699   EnsureSpace ensure_space(this);
1700   emit_farith(0xD9, 0xC0, i);
1701 }
1702 
1703 
fstp(int i)1704 void Assembler::fstp(int i) {
1705   EnsureSpace ensure_space(this);
1706   emit_farith(0xDD, 0xD8, i);
1707 }
1708 
1709 
fld1()1710 void Assembler::fld1() {
1711   EnsureSpace ensure_space(this);
1712   EMIT(0xD9);
1713   EMIT(0xE8);
1714 }
1715 
1716 
fldpi()1717 void Assembler::fldpi() {
1718   EnsureSpace ensure_space(this);
1719   EMIT(0xD9);
1720   EMIT(0xEB);
1721 }
1722 
1723 
fldz()1724 void Assembler::fldz() {
1725   EnsureSpace ensure_space(this);
1726   EMIT(0xD9);
1727   EMIT(0xEE);
1728 }
1729 
1730 
fldln2()1731 void Assembler::fldln2() {
1732   EnsureSpace ensure_space(this);
1733   EMIT(0xD9);
1734   EMIT(0xED);
1735 }
1736 
1737 
fld_s(const Operand & adr)1738 void Assembler::fld_s(const Operand& adr) {
1739   EnsureSpace ensure_space(this);
1740   EMIT(0xD9);
1741   emit_operand(eax, adr);
1742 }
1743 
1744 
fld_d(const Operand & adr)1745 void Assembler::fld_d(const Operand& adr) {
1746   EnsureSpace ensure_space(this);
1747   EMIT(0xDD);
1748   emit_operand(eax, adr);
1749 }
1750 
1751 
fstp_s(const Operand & adr)1752 void Assembler::fstp_s(const Operand& adr) {
1753   EnsureSpace ensure_space(this);
1754   EMIT(0xD9);
1755   emit_operand(ebx, adr);
1756 }
1757 
1758 
fst_s(const Operand & adr)1759 void Assembler::fst_s(const Operand& adr) {
1760   EnsureSpace ensure_space(this);
1761   EMIT(0xD9);
1762   emit_operand(edx, adr);
1763 }
1764 
1765 
fstp_d(const Operand & adr)1766 void Assembler::fstp_d(const Operand& adr) {
1767   EnsureSpace ensure_space(this);
1768   EMIT(0xDD);
1769   emit_operand(ebx, adr);
1770 }
1771 
1772 
fst_d(const Operand & adr)1773 void Assembler::fst_d(const Operand& adr) {
1774   EnsureSpace ensure_space(this);
1775   EMIT(0xDD);
1776   emit_operand(edx, adr);
1777 }
1778 
1779 
fild_s(const Operand & adr)1780 void Assembler::fild_s(const Operand& adr) {
1781   EnsureSpace ensure_space(this);
1782   EMIT(0xDB);
1783   emit_operand(eax, adr);
1784 }
1785 
1786 
fild_d(const Operand & adr)1787 void Assembler::fild_d(const Operand& adr) {
1788   EnsureSpace ensure_space(this);
1789   EMIT(0xDF);
1790   emit_operand(ebp, adr);
1791 }
1792 
1793 
fistp_s(const Operand & adr)1794 void Assembler::fistp_s(const Operand& adr) {
1795   EnsureSpace ensure_space(this);
1796   EMIT(0xDB);
1797   emit_operand(ebx, adr);
1798 }
1799 
1800 
fisttp_s(const Operand & adr)1801 void Assembler::fisttp_s(const Operand& adr) {
1802   DCHECK(IsEnabled(SSE3));
1803   EnsureSpace ensure_space(this);
1804   EMIT(0xDB);
1805   emit_operand(ecx, adr);
1806 }
1807 
1808 
fisttp_d(const Operand & adr)1809 void Assembler::fisttp_d(const Operand& adr) {
1810   DCHECK(IsEnabled(SSE3));
1811   EnsureSpace ensure_space(this);
1812   EMIT(0xDD);
1813   emit_operand(ecx, adr);
1814 }
1815 
1816 
fist_s(const Operand & adr)1817 void Assembler::fist_s(const Operand& adr) {
1818   EnsureSpace ensure_space(this);
1819   EMIT(0xDB);
1820   emit_operand(edx, adr);
1821 }
1822 
1823 
fistp_d(const Operand & adr)1824 void Assembler::fistp_d(const Operand& adr) {
1825   EnsureSpace ensure_space(this);
1826   EMIT(0xDF);
1827   emit_operand(edi, adr);
1828 }
1829 
1830 
fabs()1831 void Assembler::fabs() {
1832   EnsureSpace ensure_space(this);
1833   EMIT(0xD9);
1834   EMIT(0xE1);
1835 }
1836 
1837 
fchs()1838 void Assembler::fchs() {
1839   EnsureSpace ensure_space(this);
1840   EMIT(0xD9);
1841   EMIT(0xE0);
1842 }
1843 
1844 
fcos()1845 void Assembler::fcos() {
1846   EnsureSpace ensure_space(this);
1847   EMIT(0xD9);
1848   EMIT(0xFF);
1849 }
1850 
1851 
fsin()1852 void Assembler::fsin() {
1853   EnsureSpace ensure_space(this);
1854   EMIT(0xD9);
1855   EMIT(0xFE);
1856 }
1857 
1858 
fptan()1859 void Assembler::fptan() {
1860   EnsureSpace ensure_space(this);
1861   EMIT(0xD9);
1862   EMIT(0xF2);
1863 }
1864 
1865 
fyl2x()1866 void Assembler::fyl2x() {
1867   EnsureSpace ensure_space(this);
1868   EMIT(0xD9);
1869   EMIT(0xF1);
1870 }
1871 
1872 
f2xm1()1873 void Assembler::f2xm1() {
1874   EnsureSpace ensure_space(this);
1875   EMIT(0xD9);
1876   EMIT(0xF0);
1877 }
1878 
1879 
fscale()1880 void Assembler::fscale() {
1881   EnsureSpace ensure_space(this);
1882   EMIT(0xD9);
1883   EMIT(0xFD);
1884 }
1885 
1886 
fninit()1887 void Assembler::fninit() {
1888   EnsureSpace ensure_space(this);
1889   EMIT(0xDB);
1890   EMIT(0xE3);
1891 }
1892 
1893 
fadd(int i)1894 void Assembler::fadd(int i) {
1895   EnsureSpace ensure_space(this);
1896   emit_farith(0xDC, 0xC0, i);
1897 }
1898 
1899 
fadd_i(int i)1900 void Assembler::fadd_i(int i) {
1901   EnsureSpace ensure_space(this);
1902   emit_farith(0xD8, 0xC0, i);
1903 }
1904 
1905 
fsub(int i)1906 void Assembler::fsub(int i) {
1907   EnsureSpace ensure_space(this);
1908   emit_farith(0xDC, 0xE8, i);
1909 }
1910 
1911 
fsub_i(int i)1912 void Assembler::fsub_i(int i) {
1913   EnsureSpace ensure_space(this);
1914   emit_farith(0xD8, 0xE0, i);
1915 }
1916 
1917 
fisub_s(const Operand & adr)1918 void Assembler::fisub_s(const Operand& adr) {
1919   EnsureSpace ensure_space(this);
1920   EMIT(0xDA);
1921   emit_operand(esp, adr);
1922 }
1923 
1924 
fmul_i(int i)1925 void Assembler::fmul_i(int i) {
1926   EnsureSpace ensure_space(this);
1927   emit_farith(0xD8, 0xC8, i);
1928 }
1929 
1930 
fmul(int i)1931 void Assembler::fmul(int i) {
1932   EnsureSpace ensure_space(this);
1933   emit_farith(0xDC, 0xC8, i);
1934 }
1935 
1936 
fdiv(int i)1937 void Assembler::fdiv(int i) {
1938   EnsureSpace ensure_space(this);
1939   emit_farith(0xDC, 0xF8, i);
1940 }
1941 
1942 
fdiv_i(int i)1943 void Assembler::fdiv_i(int i) {
1944   EnsureSpace ensure_space(this);
1945   emit_farith(0xD8, 0xF0, i);
1946 }
1947 
1948 
faddp(int i)1949 void Assembler::faddp(int i) {
1950   EnsureSpace ensure_space(this);
1951   emit_farith(0xDE, 0xC0, i);
1952 }
1953 
1954 
fsubp(int i)1955 void Assembler::fsubp(int i) {
1956   EnsureSpace ensure_space(this);
1957   emit_farith(0xDE, 0xE8, i);
1958 }
1959 
1960 
fsubrp(int i)1961 void Assembler::fsubrp(int i) {
1962   EnsureSpace ensure_space(this);
1963   emit_farith(0xDE, 0xE0, i);
1964 }
1965 
1966 
fmulp(int i)1967 void Assembler::fmulp(int i) {
1968   EnsureSpace ensure_space(this);
1969   emit_farith(0xDE, 0xC8, i);
1970 }
1971 
1972 
fdivp(int i)1973 void Assembler::fdivp(int i) {
1974   EnsureSpace ensure_space(this);
1975   emit_farith(0xDE, 0xF8, i);
1976 }
1977 
1978 
fprem()1979 void Assembler::fprem() {
1980   EnsureSpace ensure_space(this);
1981   EMIT(0xD9);
1982   EMIT(0xF8);
1983 }
1984 
1985 
fprem1()1986 void Assembler::fprem1() {
1987   EnsureSpace ensure_space(this);
1988   EMIT(0xD9);
1989   EMIT(0xF5);
1990 }
1991 
1992 
fxch(int i)1993 void Assembler::fxch(int i) {
1994   EnsureSpace ensure_space(this);
1995   emit_farith(0xD9, 0xC8, i);
1996 }
1997 
1998 
fincstp()1999 void Assembler::fincstp() {
2000   EnsureSpace ensure_space(this);
2001   EMIT(0xD9);
2002   EMIT(0xF7);
2003 }
2004 
2005 
ffree(int i)2006 void Assembler::ffree(int i) {
2007   EnsureSpace ensure_space(this);
2008   emit_farith(0xDD, 0xC0, i);
2009 }
2010 
2011 
ftst()2012 void Assembler::ftst() {
2013   EnsureSpace ensure_space(this);
2014   EMIT(0xD9);
2015   EMIT(0xE4);
2016 }
2017 
2018 
fucomp(int i)2019 void Assembler::fucomp(int i) {
2020   EnsureSpace ensure_space(this);
2021   emit_farith(0xDD, 0xE8, i);
2022 }
2023 
2024 
fucompp()2025 void Assembler::fucompp() {
2026   EnsureSpace ensure_space(this);
2027   EMIT(0xDA);
2028   EMIT(0xE9);
2029 }
2030 
2031 
fucomi(int i)2032 void Assembler::fucomi(int i) {
2033   EnsureSpace ensure_space(this);
2034   EMIT(0xDB);
2035   EMIT(0xE8 + i);
2036 }
2037 
2038 
fucomip()2039 void Assembler::fucomip() {
2040   EnsureSpace ensure_space(this);
2041   EMIT(0xDF);
2042   EMIT(0xE9);
2043 }
2044 
2045 
fcompp()2046 void Assembler::fcompp() {
2047   EnsureSpace ensure_space(this);
2048   EMIT(0xDE);
2049   EMIT(0xD9);
2050 }
2051 
2052 
fnstsw_ax()2053 void Assembler::fnstsw_ax() {
2054   EnsureSpace ensure_space(this);
2055   EMIT(0xDF);
2056   EMIT(0xE0);
2057 }
2058 
2059 
fwait()2060 void Assembler::fwait() {
2061   EnsureSpace ensure_space(this);
2062   EMIT(0x9B);
2063 }
2064 
2065 
frndint()2066 void Assembler::frndint() {
2067   EnsureSpace ensure_space(this);
2068   EMIT(0xD9);
2069   EMIT(0xFC);
2070 }
2071 
2072 
fnclex()2073 void Assembler::fnclex() {
2074   EnsureSpace ensure_space(this);
2075   EMIT(0xDB);
2076   EMIT(0xE2);
2077 }
2078 
2079 
sahf()2080 void Assembler::sahf() {
2081   EnsureSpace ensure_space(this);
2082   EMIT(0x9E);
2083 }
2084 
2085 
setcc(Condition cc,Register reg)2086 void Assembler::setcc(Condition cc, Register reg) {
2087   DCHECK(reg.is_byte_register());
2088   EnsureSpace ensure_space(this);
2089   EMIT(0x0F);
2090   EMIT(0x90 | cc);
2091   EMIT(0xC0 | reg.code());
2092 }
2093 
2094 
cvttss2si(Register dst,const Operand & src)2095 void Assembler::cvttss2si(Register dst, const Operand& src) {
2096   EnsureSpace ensure_space(this);
2097   EMIT(0xF3);
2098   EMIT(0x0F);
2099   EMIT(0x2C);
2100   emit_operand(dst, src);
2101 }
2102 
2103 
cvttsd2si(Register dst,const Operand & src)2104 void Assembler::cvttsd2si(Register dst, const Operand& src) {
2105   EnsureSpace ensure_space(this);
2106   EMIT(0xF2);
2107   EMIT(0x0F);
2108   EMIT(0x2C);
2109   emit_operand(dst, src);
2110 }
2111 
2112 
cvtsd2si(Register dst,XMMRegister src)2113 void Assembler::cvtsd2si(Register dst, XMMRegister src) {
2114   EnsureSpace ensure_space(this);
2115   EMIT(0xF2);
2116   EMIT(0x0F);
2117   EMIT(0x2D);
2118   emit_sse_operand(dst, src);
2119 }
2120 
2121 
cvtsi2ss(XMMRegister dst,const Operand & src)2122 void Assembler::cvtsi2ss(XMMRegister dst, const Operand& src) {
2123   EnsureSpace ensure_space(this);
2124   EMIT(0xF3);
2125   EMIT(0x0F);
2126   EMIT(0x2A);
2127   emit_sse_operand(dst, src);
2128 }
2129 
2130 
cvtsi2sd(XMMRegister dst,const Operand & src)2131 void Assembler::cvtsi2sd(XMMRegister dst, const Operand& src) {
2132   EnsureSpace ensure_space(this);
2133   EMIT(0xF2);
2134   EMIT(0x0F);
2135   EMIT(0x2A);
2136   emit_sse_operand(dst, src);
2137 }
2138 
2139 
cvtss2sd(XMMRegister dst,const Operand & src)2140 void Assembler::cvtss2sd(XMMRegister dst, const Operand& src) {
2141   EnsureSpace ensure_space(this);
2142   EMIT(0xF3);
2143   EMIT(0x0F);
2144   EMIT(0x5A);
2145   emit_sse_operand(dst, src);
2146 }
2147 
2148 
cvtsd2ss(XMMRegister dst,const Operand & src)2149 void Assembler::cvtsd2ss(XMMRegister dst, const Operand& src) {
2150   EnsureSpace ensure_space(this);
2151   EMIT(0xF2);
2152   EMIT(0x0F);
2153   EMIT(0x5A);
2154   emit_sse_operand(dst, src);
2155 }
2156 
2157 
addsd(XMMRegister dst,const Operand & src)2158 void Assembler::addsd(XMMRegister dst, const Operand& src) {
2159   EnsureSpace ensure_space(this);
2160   EMIT(0xF2);
2161   EMIT(0x0F);
2162   EMIT(0x58);
2163   emit_sse_operand(dst, src);
2164 }
2165 
2166 
mulsd(XMMRegister dst,const Operand & src)2167 void Assembler::mulsd(XMMRegister dst, const Operand& src) {
2168   EnsureSpace ensure_space(this);
2169   EMIT(0xF2);
2170   EMIT(0x0F);
2171   EMIT(0x59);
2172   emit_sse_operand(dst, src);
2173 }
2174 
2175 
subsd(XMMRegister dst,const Operand & src)2176 void Assembler::subsd(XMMRegister dst, const Operand& src) {
2177   EnsureSpace ensure_space(this);
2178   EMIT(0xF2);
2179   EMIT(0x0F);
2180   EMIT(0x5C);
2181   emit_sse_operand(dst, src);
2182 }
2183 
2184 
divsd(XMMRegister dst,const Operand & src)2185 void Assembler::divsd(XMMRegister dst, const Operand& src) {
2186   EnsureSpace ensure_space(this);
2187   EMIT(0xF2);
2188   EMIT(0x0F);
2189   EMIT(0x5E);
2190   emit_sse_operand(dst, src);
2191 }
2192 
2193 
xorpd(XMMRegister dst,XMMRegister src)2194 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
2195   EnsureSpace ensure_space(this);
2196   EMIT(0x66);
2197   EMIT(0x0F);
2198   EMIT(0x57);
2199   emit_sse_operand(dst, src);
2200 }
2201 
2202 
andps(XMMRegister dst,const Operand & src)2203 void Assembler::andps(XMMRegister dst, const Operand& src) {
2204   EnsureSpace ensure_space(this);
2205   EMIT(0x0F);
2206   EMIT(0x54);
2207   emit_sse_operand(dst, src);
2208 }
2209 
2210 
orps(XMMRegister dst,const Operand & src)2211 void Assembler::orps(XMMRegister dst, const Operand& src) {
2212   EnsureSpace ensure_space(this);
2213   EMIT(0x0F);
2214   EMIT(0x56);
2215   emit_sse_operand(dst, src);
2216 }
2217 
2218 
xorps(XMMRegister dst,const Operand & src)2219 void Assembler::xorps(XMMRegister dst, const Operand& src) {
2220   EnsureSpace ensure_space(this);
2221   EMIT(0x0F);
2222   EMIT(0x57);
2223   emit_sse_operand(dst, src);
2224 }
2225 
2226 
addps(XMMRegister dst,const Operand & src)2227 void Assembler::addps(XMMRegister dst, const Operand& src) {
2228   EnsureSpace ensure_space(this);
2229   EMIT(0x0F);
2230   EMIT(0x58);
2231   emit_sse_operand(dst, src);
2232 }
2233 
2234 
subps(XMMRegister dst,const Operand & src)2235 void Assembler::subps(XMMRegister dst, const Operand& src) {
2236   EnsureSpace ensure_space(this);
2237   EMIT(0x0F);
2238   EMIT(0x5C);
2239   emit_sse_operand(dst, src);
2240 }
2241 
2242 
mulps(XMMRegister dst,const Operand & src)2243 void Assembler::mulps(XMMRegister dst, const Operand& src) {
2244   EnsureSpace ensure_space(this);
2245   EMIT(0x0F);
2246   EMIT(0x59);
2247   emit_sse_operand(dst, src);
2248 }
2249 
2250 
divps(XMMRegister dst,const Operand & src)2251 void Assembler::divps(XMMRegister dst, const Operand& src) {
2252   EnsureSpace ensure_space(this);
2253   EMIT(0x0F);
2254   EMIT(0x5E);
2255   emit_sse_operand(dst, src);
2256 }
2257 
2258 
sqrtsd(XMMRegister dst,const Operand & src)2259 void Assembler::sqrtsd(XMMRegister dst, const Operand& src) {
2260   EnsureSpace ensure_space(this);
2261   EMIT(0xF2);
2262   EMIT(0x0F);
2263   EMIT(0x51);
2264   emit_sse_operand(dst, src);
2265 }
2266 
2267 
andpd(XMMRegister dst,XMMRegister src)2268 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
2269   EnsureSpace ensure_space(this);
2270   EMIT(0x66);
2271   EMIT(0x0F);
2272   EMIT(0x54);
2273   emit_sse_operand(dst, src);
2274 }
2275 
2276 
orpd(XMMRegister dst,XMMRegister src)2277 void Assembler::orpd(XMMRegister dst, XMMRegister src) {
2278   EnsureSpace ensure_space(this);
2279   EMIT(0x66);
2280   EMIT(0x0F);
2281   EMIT(0x56);
2282   emit_sse_operand(dst, src);
2283 }
2284 
2285 
ucomisd(XMMRegister dst,const Operand & src)2286 void Assembler::ucomisd(XMMRegister dst, const Operand& src) {
2287   EnsureSpace ensure_space(this);
2288   EMIT(0x66);
2289   EMIT(0x0F);
2290   EMIT(0x2E);
2291   emit_sse_operand(dst, src);
2292 }
2293 
2294 
roundss(XMMRegister dst,XMMRegister src,RoundingMode mode)2295 void Assembler::roundss(XMMRegister dst, XMMRegister src, RoundingMode mode) {
2296   DCHECK(IsEnabled(SSE4_1));
2297   EnsureSpace ensure_space(this);
2298   EMIT(0x66);
2299   EMIT(0x0F);
2300   EMIT(0x3A);
2301   EMIT(0x0A);
2302   emit_sse_operand(dst, src);
2303   // Mask precision exeption.
2304   EMIT(static_cast<byte>(mode) | 0x8);
2305 }
2306 
2307 
roundsd(XMMRegister dst,XMMRegister src,RoundingMode mode)2308 void Assembler::roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode) {
2309   DCHECK(IsEnabled(SSE4_1));
2310   EnsureSpace ensure_space(this);
2311   EMIT(0x66);
2312   EMIT(0x0F);
2313   EMIT(0x3A);
2314   EMIT(0x0B);
2315   emit_sse_operand(dst, src);
2316   // Mask precision exeption.
2317   EMIT(static_cast<byte>(mode) | 0x8);
2318 }
2319 
2320 
movmskpd(Register dst,XMMRegister src)2321 void Assembler::movmskpd(Register dst, XMMRegister src) {
2322   EnsureSpace ensure_space(this);
2323   EMIT(0x66);
2324   EMIT(0x0F);
2325   EMIT(0x50);
2326   emit_sse_operand(dst, src);
2327 }
2328 
2329 
movmskps(Register dst,XMMRegister src)2330 void Assembler::movmskps(Register dst, XMMRegister src) {
2331   EnsureSpace ensure_space(this);
2332   EMIT(0x0F);
2333   EMIT(0x50);
2334   emit_sse_operand(dst, src);
2335 }
2336 
2337 
pcmpeqd(XMMRegister dst,XMMRegister src)2338 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
2339   EnsureSpace ensure_space(this);
2340   EMIT(0x66);
2341   EMIT(0x0F);
2342   EMIT(0x76);
2343   emit_sse_operand(dst, src);
2344 }
2345 
2346 
punpckldq(XMMRegister dst,XMMRegister src)2347 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
2348   EnsureSpace ensure_space(this);
2349   EMIT(0x66);
2350   EMIT(0x0F);
2351   EMIT(0x62);
2352   emit_sse_operand(dst, src);
2353 }
2354 
2355 
punpckhdq(XMMRegister dst,XMMRegister src)2356 void Assembler::punpckhdq(XMMRegister dst, XMMRegister src) {
2357   EnsureSpace ensure_space(this);
2358   EMIT(0x66);
2359   EMIT(0x0F);
2360   EMIT(0x6A);
2361   emit_sse_operand(dst, src);
2362 }
2363 
2364 
maxsd(XMMRegister dst,const Operand & src)2365 void Assembler::maxsd(XMMRegister dst, const Operand& src) {
2366   EnsureSpace ensure_space(this);
2367   EMIT(0xF2);
2368   EMIT(0x0F);
2369   EMIT(0x5F);
2370   emit_sse_operand(dst, src);
2371 }
2372 
2373 
minsd(XMMRegister dst,const Operand & src)2374 void Assembler::minsd(XMMRegister dst, const Operand& src) {
2375   EnsureSpace ensure_space(this);
2376   EMIT(0xF2);
2377   EMIT(0x0F);
2378   EMIT(0x5D);
2379   emit_sse_operand(dst, src);
2380 }
2381 
2382 
cmpltsd(XMMRegister dst,XMMRegister src)2383 void Assembler::cmpltsd(XMMRegister dst, XMMRegister src) {
2384   EnsureSpace ensure_space(this);
2385   EMIT(0xF2);
2386   EMIT(0x0F);
2387   EMIT(0xC2);
2388   emit_sse_operand(dst, src);
2389   EMIT(1);  // LT == 1
2390 }
2391 
2392 
movaps(XMMRegister dst,XMMRegister src)2393 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2394   EnsureSpace ensure_space(this);
2395   EMIT(0x0F);
2396   EMIT(0x28);
2397   emit_sse_operand(dst, src);
2398 }
2399 
movups(XMMRegister dst,XMMRegister src)2400 void Assembler::movups(XMMRegister dst, XMMRegister src) {
2401   EnsureSpace ensure_space(this);
2402   EMIT(0x0F);
2403   EMIT(0x11);
2404   emit_sse_operand(dst, src);
2405 }
2406 
movups(XMMRegister dst,const Operand & src)2407 void Assembler::movups(XMMRegister dst, const Operand& src) {
2408   EnsureSpace ensure_space(this);
2409   EMIT(0x0F);
2410   EMIT(0x10);
2411   emit_sse_operand(dst, src);
2412 }
2413 
movups(const Operand & dst,XMMRegister src)2414 void Assembler::movups(const Operand& dst, XMMRegister src) {
2415   EnsureSpace ensure_space(this);
2416   EMIT(0x0F);
2417   EMIT(0x11);
2418   emit_sse_operand(src, dst);
2419 }
2420 
shufps(XMMRegister dst,XMMRegister src,byte imm8)2421 void Assembler::shufps(XMMRegister dst, XMMRegister src, byte imm8) {
2422   DCHECK(is_uint8(imm8));
2423   EnsureSpace ensure_space(this);
2424   EMIT(0x0F);
2425   EMIT(0xC6);
2426   emit_sse_operand(dst, src);
2427   EMIT(imm8);
2428 }
2429 
2430 
movdqa(const Operand & dst,XMMRegister src)2431 void Assembler::movdqa(const Operand& dst, XMMRegister src) {
2432   EnsureSpace ensure_space(this);
2433   EMIT(0x66);
2434   EMIT(0x0F);
2435   EMIT(0x7F);
2436   emit_sse_operand(src, dst);
2437 }
2438 
2439 
movdqa(XMMRegister dst,const Operand & src)2440 void Assembler::movdqa(XMMRegister dst, const Operand& src) {
2441   EnsureSpace ensure_space(this);
2442   EMIT(0x66);
2443   EMIT(0x0F);
2444   EMIT(0x6F);
2445   emit_sse_operand(dst, src);
2446 }
2447 
2448 
movdqu(const Operand & dst,XMMRegister src)2449 void Assembler::movdqu(const Operand& dst, XMMRegister src ) {
2450   EnsureSpace ensure_space(this);
2451   EMIT(0xF3);
2452   EMIT(0x0F);
2453   EMIT(0x7F);
2454   emit_sse_operand(src, dst);
2455 }
2456 
2457 
movdqu(XMMRegister dst,const Operand & src)2458 void Assembler::movdqu(XMMRegister dst, const Operand& src) {
2459   EnsureSpace ensure_space(this);
2460   EMIT(0xF3);
2461   EMIT(0x0F);
2462   EMIT(0x6F);
2463   emit_sse_operand(dst, src);
2464 }
2465 
2466 
prefetch(const Operand & src,int level)2467 void Assembler::prefetch(const Operand& src, int level) {
2468   DCHECK(is_uint2(level));
2469   EnsureSpace ensure_space(this);
2470   EMIT(0x0F);
2471   EMIT(0x18);
2472   // Emit hint number in Reg position of RegR/M.
2473   XMMRegister code = XMMRegister::from_code(level);
2474   emit_sse_operand(code, src);
2475 }
2476 
2477 
movsd(const Operand & dst,XMMRegister src)2478 void Assembler::movsd(const Operand& dst, XMMRegister src ) {
2479   EnsureSpace ensure_space(this);
2480   EMIT(0xF2);  // double
2481   EMIT(0x0F);
2482   EMIT(0x11);  // store
2483   emit_sse_operand(src, dst);
2484 }
2485 
2486 
movsd(XMMRegister dst,const Operand & src)2487 void Assembler::movsd(XMMRegister dst, const Operand& src) {
2488   EnsureSpace ensure_space(this);
2489   EMIT(0xF2);  // double
2490   EMIT(0x0F);
2491   EMIT(0x10);  // load
2492   emit_sse_operand(dst, src);
2493 }
2494 
2495 
movss(const Operand & dst,XMMRegister src)2496 void Assembler::movss(const Operand& dst, XMMRegister src ) {
2497   EnsureSpace ensure_space(this);
2498   EMIT(0xF3);  // float
2499   EMIT(0x0F);
2500   EMIT(0x11);  // store
2501   emit_sse_operand(src, dst);
2502 }
2503 
2504 
movss(XMMRegister dst,const Operand & src)2505 void Assembler::movss(XMMRegister dst, const Operand& src) {
2506   EnsureSpace ensure_space(this);
2507   EMIT(0xF3);  // float
2508   EMIT(0x0F);
2509   EMIT(0x10);  // load
2510   emit_sse_operand(dst, src);
2511 }
2512 
2513 
movd(XMMRegister dst,const Operand & src)2514 void Assembler::movd(XMMRegister dst, const Operand& src) {
2515   EnsureSpace ensure_space(this);
2516   EMIT(0x66);
2517   EMIT(0x0F);
2518   EMIT(0x6E);
2519   emit_sse_operand(dst, src);
2520 }
2521 
2522 
movd(const Operand & dst,XMMRegister src)2523 void Assembler::movd(const Operand& dst, XMMRegister src) {
2524   EnsureSpace ensure_space(this);
2525   EMIT(0x66);
2526   EMIT(0x0F);
2527   EMIT(0x7E);
2528   emit_sse_operand(src, dst);
2529 }
2530 
2531 
extractps(Register dst,XMMRegister src,byte imm8)2532 void Assembler::extractps(Register dst, XMMRegister src, byte imm8) {
2533   DCHECK(IsEnabled(SSE4_1));
2534   DCHECK(is_uint8(imm8));
2535   EnsureSpace ensure_space(this);
2536   EMIT(0x66);
2537   EMIT(0x0F);
2538   EMIT(0x3A);
2539   EMIT(0x17);
2540   emit_sse_operand(src, dst);
2541   EMIT(imm8);
2542 }
2543 
2544 
pand(XMMRegister dst,XMMRegister src)2545 void Assembler::pand(XMMRegister dst, XMMRegister src) {
2546   EnsureSpace ensure_space(this);
2547   EMIT(0x66);
2548   EMIT(0x0F);
2549   EMIT(0xDB);
2550   emit_sse_operand(dst, src);
2551 }
2552 
2553 
pxor(XMMRegister dst,XMMRegister src)2554 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
2555   EnsureSpace ensure_space(this);
2556   EMIT(0x66);
2557   EMIT(0x0F);
2558   EMIT(0xEF);
2559   emit_sse_operand(dst, src);
2560 }
2561 
2562 
por(XMMRegister dst,XMMRegister src)2563 void Assembler::por(XMMRegister dst, XMMRegister src) {
2564   EnsureSpace ensure_space(this);
2565   EMIT(0x66);
2566   EMIT(0x0F);
2567   EMIT(0xEB);
2568   emit_sse_operand(dst, src);
2569 }
2570 
2571 
ptest(XMMRegister dst,XMMRegister src)2572 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2573   DCHECK(IsEnabled(SSE4_1));
2574   EnsureSpace ensure_space(this);
2575   EMIT(0x66);
2576   EMIT(0x0F);
2577   EMIT(0x38);
2578   EMIT(0x17);
2579   emit_sse_operand(dst, src);
2580 }
2581 
2582 
pslld(XMMRegister reg,int8_t shift)2583 void Assembler::pslld(XMMRegister reg, int8_t shift) {
2584   EnsureSpace ensure_space(this);
2585   EMIT(0x66);
2586   EMIT(0x0F);
2587   EMIT(0x72);
2588   emit_sse_operand(esi, reg);  // esi == 6
2589   EMIT(shift);
2590 }
2591 
2592 
psrld(XMMRegister reg,int8_t shift)2593 void Assembler::psrld(XMMRegister reg, int8_t shift) {
2594   EnsureSpace ensure_space(this);
2595   EMIT(0x66);
2596   EMIT(0x0F);
2597   EMIT(0x72);
2598   emit_sse_operand(edx, reg);  // edx == 2
2599   EMIT(shift);
2600 }
2601 
2602 
psllq(XMMRegister reg,int8_t shift)2603 void Assembler::psllq(XMMRegister reg, int8_t shift) {
2604   EnsureSpace ensure_space(this);
2605   EMIT(0x66);
2606   EMIT(0x0F);
2607   EMIT(0x73);
2608   emit_sse_operand(esi, reg);  // esi == 6
2609   EMIT(shift);
2610 }
2611 
2612 
psllq(XMMRegister dst,XMMRegister src)2613 void Assembler::psllq(XMMRegister dst, XMMRegister src) {
2614   EnsureSpace ensure_space(this);
2615   EMIT(0x66);
2616   EMIT(0x0F);
2617   EMIT(0xF3);
2618   emit_sse_operand(dst, src);
2619 }
2620 
2621 
psrlq(XMMRegister reg,int8_t shift)2622 void Assembler::psrlq(XMMRegister reg, int8_t shift) {
2623   EnsureSpace ensure_space(this);
2624   EMIT(0x66);
2625   EMIT(0x0F);
2626   EMIT(0x73);
2627   emit_sse_operand(edx, reg);  // edx == 2
2628   EMIT(shift);
2629 }
2630 
2631 
psrlq(XMMRegister dst,XMMRegister src)2632 void Assembler::psrlq(XMMRegister dst, XMMRegister src) {
2633   EnsureSpace ensure_space(this);
2634   EMIT(0x66);
2635   EMIT(0x0F);
2636   EMIT(0xD3);
2637   emit_sse_operand(dst, src);
2638 }
2639 
2640 
pshufd(XMMRegister dst,XMMRegister src,uint8_t shuffle)2641 void Assembler::pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
2642   EnsureSpace ensure_space(this);
2643   EMIT(0x66);
2644   EMIT(0x0F);
2645   EMIT(0x70);
2646   emit_sse_operand(dst, src);
2647   EMIT(shuffle);
2648 }
2649 
2650 
pextrd(const Operand & dst,XMMRegister src,int8_t offset)2651 void Assembler::pextrd(const Operand& dst, XMMRegister src, int8_t offset) {
2652   DCHECK(IsEnabled(SSE4_1));
2653   EnsureSpace ensure_space(this);
2654   EMIT(0x66);
2655   EMIT(0x0F);
2656   EMIT(0x3A);
2657   EMIT(0x16);
2658   emit_sse_operand(src, dst);
2659   EMIT(offset);
2660 }
2661 
2662 
pinsrd(XMMRegister dst,const Operand & src,int8_t offset)2663 void Assembler::pinsrd(XMMRegister dst, const Operand& src, int8_t offset) {
2664   DCHECK(IsEnabled(SSE4_1));
2665   EnsureSpace ensure_space(this);
2666   EMIT(0x66);
2667   EMIT(0x0F);
2668   EMIT(0x3A);
2669   EMIT(0x22);
2670   emit_sse_operand(dst, src);
2671   EMIT(offset);
2672 }
2673 
2674 
addss(XMMRegister dst,const Operand & src)2675 void Assembler::addss(XMMRegister dst, const Operand& src) {
2676   EnsureSpace ensure_space(this);
2677   EMIT(0xF3);
2678   EMIT(0x0F);
2679   EMIT(0x58);
2680   emit_sse_operand(dst, src);
2681 }
2682 
2683 
subss(XMMRegister dst,const Operand & src)2684 void Assembler::subss(XMMRegister dst, const Operand& src) {
2685   EnsureSpace ensure_space(this);
2686   EMIT(0xF3);
2687   EMIT(0x0F);
2688   EMIT(0x5C);
2689   emit_sse_operand(dst, src);
2690 }
2691 
2692 
mulss(XMMRegister dst,const Operand & src)2693 void Assembler::mulss(XMMRegister dst, const Operand& src) {
2694   EnsureSpace ensure_space(this);
2695   EMIT(0xF3);
2696   EMIT(0x0F);
2697   EMIT(0x59);
2698   emit_sse_operand(dst, src);
2699 }
2700 
2701 
divss(XMMRegister dst,const Operand & src)2702 void Assembler::divss(XMMRegister dst, const Operand& src) {
2703   EnsureSpace ensure_space(this);
2704   EMIT(0xF3);
2705   EMIT(0x0F);
2706   EMIT(0x5E);
2707   emit_sse_operand(dst, src);
2708 }
2709 
2710 
sqrtss(XMMRegister dst,const Operand & src)2711 void Assembler::sqrtss(XMMRegister dst, const Operand& src) {
2712   EnsureSpace ensure_space(this);
2713   EMIT(0xF3);
2714   EMIT(0x0F);
2715   EMIT(0x51);
2716   emit_sse_operand(dst, src);
2717 }
2718 
2719 
ucomiss(XMMRegister dst,const Operand & src)2720 void Assembler::ucomiss(XMMRegister dst, const Operand& src) {
2721   EnsureSpace ensure_space(this);
2722   EMIT(0x0f);
2723   EMIT(0x2e);
2724   emit_sse_operand(dst, src);
2725 }
2726 
2727 
maxss(XMMRegister dst,const Operand & src)2728 void Assembler::maxss(XMMRegister dst, const Operand& src) {
2729   EnsureSpace ensure_space(this);
2730   EMIT(0xF3);
2731   EMIT(0x0F);
2732   EMIT(0x5F);
2733   emit_sse_operand(dst, src);
2734 }
2735 
2736 
minss(XMMRegister dst,const Operand & src)2737 void Assembler::minss(XMMRegister dst, const Operand& src) {
2738   EnsureSpace ensure_space(this);
2739   EMIT(0xF3);
2740   EMIT(0x0F);
2741   EMIT(0x5D);
2742   emit_sse_operand(dst, src);
2743 }
2744 
2745 
2746 // AVX instructions
vfmasd(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2747 void Assembler::vfmasd(byte op, XMMRegister dst, XMMRegister src1,
2748                        const Operand& src2) {
2749   DCHECK(IsEnabled(FMA3));
2750   EnsureSpace ensure_space(this);
2751   emit_vex_prefix(src1, kLIG, k66, k0F38, kW1);
2752   EMIT(op);
2753   emit_sse_operand(dst, src2);
2754 }
2755 
2756 
vfmass(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2757 void Assembler::vfmass(byte op, XMMRegister dst, XMMRegister src1,
2758                        const Operand& src2) {
2759   DCHECK(IsEnabled(FMA3));
2760   EnsureSpace ensure_space(this);
2761   emit_vex_prefix(src1, kLIG, k66, k0F38, kW0);
2762   EMIT(op);
2763   emit_sse_operand(dst, src2);
2764 }
2765 
2766 
vsd(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2767 void Assembler::vsd(byte op, XMMRegister dst, XMMRegister src1,
2768                     const Operand& src2) {
2769   DCHECK(IsEnabled(AVX));
2770   EnsureSpace ensure_space(this);
2771   emit_vex_prefix(src1, kLIG, kF2, k0F, kWIG);
2772   EMIT(op);
2773   emit_sse_operand(dst, src2);
2774 }
2775 
2776 
vss(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2777 void Assembler::vss(byte op, XMMRegister dst, XMMRegister src1,
2778                     const Operand& src2) {
2779   DCHECK(IsEnabled(AVX));
2780   EnsureSpace ensure_space(this);
2781   emit_vex_prefix(src1, kLIG, kF3, k0F, kWIG);
2782   EMIT(op);
2783   emit_sse_operand(dst, src2);
2784 }
2785 
2786 
vps(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2787 void Assembler::vps(byte op, XMMRegister dst, XMMRegister src1,
2788                     const Operand& src2) {
2789   DCHECK(IsEnabled(AVX));
2790   EnsureSpace ensure_space(this);
2791   emit_vex_prefix(src1, kL128, kNone, k0F, kWIG);
2792   EMIT(op);
2793   emit_sse_operand(dst, src2);
2794 }
2795 
2796 
vpd(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2797 void Assembler::vpd(byte op, XMMRegister dst, XMMRegister src1,
2798                     const Operand& src2) {
2799   DCHECK(IsEnabled(AVX));
2800   EnsureSpace ensure_space(this);
2801   emit_vex_prefix(src1, kL128, k66, k0F, kWIG);
2802   EMIT(op);
2803   emit_sse_operand(dst, src2);
2804 }
2805 
2806 
bmi1(byte op,Register reg,Register vreg,const Operand & rm)2807 void Assembler::bmi1(byte op, Register reg, Register vreg, const Operand& rm) {
2808   DCHECK(IsEnabled(BMI1));
2809   EnsureSpace ensure_space(this);
2810   emit_vex_prefix(vreg, kLZ, kNone, k0F38, kW0);
2811   EMIT(op);
2812   emit_operand(reg, rm);
2813 }
2814 
2815 
tzcnt(Register dst,const Operand & src)2816 void Assembler::tzcnt(Register dst, const Operand& src) {
2817   DCHECK(IsEnabled(BMI1));
2818   EnsureSpace ensure_space(this);
2819   EMIT(0xF3);
2820   EMIT(0x0F);
2821   EMIT(0xBC);
2822   emit_operand(dst, src);
2823 }
2824 
2825 
lzcnt(Register dst,const Operand & src)2826 void Assembler::lzcnt(Register dst, const Operand& src) {
2827   DCHECK(IsEnabled(LZCNT));
2828   EnsureSpace ensure_space(this);
2829   EMIT(0xF3);
2830   EMIT(0x0F);
2831   EMIT(0xBD);
2832   emit_operand(dst, src);
2833 }
2834 
2835 
popcnt(Register dst,const Operand & src)2836 void Assembler::popcnt(Register dst, const Operand& src) {
2837   DCHECK(IsEnabled(POPCNT));
2838   EnsureSpace ensure_space(this);
2839   EMIT(0xF3);
2840   EMIT(0x0F);
2841   EMIT(0xB8);
2842   emit_operand(dst, src);
2843 }
2844 
2845 
bmi2(SIMDPrefix pp,byte op,Register reg,Register vreg,const Operand & rm)2846 void Assembler::bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg,
2847                      const Operand& rm) {
2848   DCHECK(IsEnabled(BMI2));
2849   EnsureSpace ensure_space(this);
2850   emit_vex_prefix(vreg, kLZ, pp, k0F38, kW0);
2851   EMIT(op);
2852   emit_operand(reg, rm);
2853 }
2854 
2855 
rorx(Register dst,const Operand & src,byte imm8)2856 void Assembler::rorx(Register dst, const Operand& src, byte imm8) {
2857   DCHECK(IsEnabled(BMI2));
2858   DCHECK(is_uint8(imm8));
2859   Register vreg = {0};  // VEX.vvvv unused
2860   EnsureSpace ensure_space(this);
2861   emit_vex_prefix(vreg, kLZ, kF2, k0F3A, kW0);
2862   EMIT(0xF0);
2863   emit_operand(dst, src);
2864   EMIT(imm8);
2865 }
2866 
2867 
emit_sse_operand(XMMRegister reg,const Operand & adr)2868 void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) {
2869   Register ireg = { reg.code() };
2870   emit_operand(ireg, adr);
2871 }
2872 
2873 
emit_sse_operand(XMMRegister dst,XMMRegister src)2874 void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
2875   EMIT(0xC0 | dst.code() << 3 | src.code());
2876 }
2877 
2878 
emit_sse_operand(Register dst,XMMRegister src)2879 void Assembler::emit_sse_operand(Register dst, XMMRegister src) {
2880   EMIT(0xC0 | dst.code() << 3 | src.code());
2881 }
2882 
2883 
emit_sse_operand(XMMRegister dst,Register src)2884 void Assembler::emit_sse_operand(XMMRegister dst, Register src) {
2885   EMIT(0xC0 | (dst.code() << 3) | src.code());
2886 }
2887 
2888 
emit_vex_prefix(XMMRegister vreg,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)2889 void Assembler::emit_vex_prefix(XMMRegister vreg, VectorLength l, SIMDPrefix pp,
2890                                 LeadingOpcode mm, VexW w) {
2891   if (mm != k0F || w != kW0) {
2892     EMIT(0xc4);
2893     // Change RXB from "110" to "111" to align with gdb disassembler.
2894     EMIT(0xe0 | mm);
2895     EMIT(w | ((~vreg.code() & 0xf) << 3) | l | pp);
2896   } else {
2897     EMIT(0xc5);
2898     EMIT(((~vreg.code()) << 3) | l | pp);
2899   }
2900 }
2901 
2902 
emit_vex_prefix(Register vreg,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)2903 void Assembler::emit_vex_prefix(Register vreg, VectorLength l, SIMDPrefix pp,
2904                                 LeadingOpcode mm, VexW w) {
2905   XMMRegister ivreg = {vreg.code()};
2906   emit_vex_prefix(ivreg, l, pp, mm, w);
2907 }
2908 
2909 
GrowBuffer()2910 void Assembler::GrowBuffer() {
2911   DCHECK(buffer_overflow());
2912   if (!own_buffer_) FATAL("external code buffer is too small");
2913 
2914   // Compute new buffer size.
2915   CodeDesc desc;  // the new buffer
2916   desc.buffer_size = 2 * buffer_size_;
2917 
2918   // Some internal data structures overflow for very large buffers,
2919   // they must ensure that kMaximalBufferSize is not too large.
2920   if (desc.buffer_size > kMaximalBufferSize ||
2921       static_cast<size_t>(desc.buffer_size) >
2922           isolate()->heap()->MaxOldGenerationSize()) {
2923     V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
2924   }
2925 
2926   // Set up new buffer.
2927   desc.buffer = NewArray<byte>(desc.buffer_size);
2928   desc.origin = this;
2929   desc.instr_size = pc_offset();
2930   desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
2931 
2932   // Clear the buffer in debug mode. Use 'int3' instructions to make
2933   // sure to get into problems if we ever run uninitialized code.
2934 #ifdef DEBUG
2935   memset(desc.buffer, 0xCC, desc.buffer_size);
2936 #endif
2937 
2938   // Copy the data.
2939   int pc_delta = desc.buffer - buffer_;
2940   int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
2941   MemMove(desc.buffer, buffer_, desc.instr_size);
2942   MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
2943           desc.reloc_size);
2944 
2945   // Switch buffers.
2946   DeleteArray(buffer_);
2947   buffer_ = desc.buffer;
2948   buffer_size_ = desc.buffer_size;
2949   pc_ += pc_delta;
2950   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2951                                reloc_info_writer.last_pc() + pc_delta);
2952 
2953   // Relocate internal references.
2954   for (auto pos : internal_reference_positions_) {
2955     int32_t* p = reinterpret_cast<int32_t*>(buffer_ + pos);
2956     *p += pc_delta;
2957   }
2958 
2959   DCHECK(!buffer_overflow());
2960 }
2961 
2962 
emit_arith_b(int op1,int op2,Register dst,int imm8)2963 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
2964   DCHECK(is_uint8(op1) && is_uint8(op2));  // wrong opcode
2965   DCHECK(is_uint8(imm8));
2966   DCHECK((op1 & 0x01) == 0);  // should be 8bit operation
2967   EMIT(op1);
2968   EMIT(op2 | dst.code());
2969   EMIT(imm8);
2970 }
2971 
2972 
emit_arith(int sel,Operand dst,const Immediate & x)2973 void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
2974   DCHECK((0 <= sel) && (sel <= 7));
2975   Register ireg = { sel };
2976   if (x.is_int8()) {
2977     EMIT(0x83);  // using a sign-extended 8-bit immediate.
2978     emit_operand(ireg, dst);
2979     EMIT(x.x_ & 0xFF);
2980   } else if (dst.is_reg(eax)) {
2981     EMIT((sel << 3) | 0x05);  // short form if the destination is eax.
2982     emit(x);
2983   } else {
2984     EMIT(0x81);  // using a literal 32-bit immediate.
2985     emit_operand(ireg, dst);
2986     emit(x);
2987   }
2988 }
2989 
2990 
emit_operand(Register reg,const Operand & adr)2991 void Assembler::emit_operand(Register reg, const Operand& adr) {
2992   const unsigned length = adr.len_;
2993   DCHECK(length > 0);
2994 
2995   // Emit updated ModRM byte containing the given register.
2996   pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3);
2997 
2998   // Emit the rest of the encoded operand.
2999   for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
3000   pc_ += length;
3001 
3002   // Emit relocation information if necessary.
3003   if (length >= sizeof(int32_t) && !RelocInfo::IsNone(adr.rmode_)) {
3004     pc_ -= sizeof(int32_t);  // pc_ must be *at* disp32
3005     RecordRelocInfo(adr.rmode_);
3006     if (adr.rmode_ == RelocInfo::INTERNAL_REFERENCE) {  // Fixup for labels
3007       emit_label(*reinterpret_cast<Label**>(pc_));
3008     } else {
3009       pc_ += sizeof(int32_t);
3010     }
3011   }
3012 }
3013 
3014 
emit_label(Label * label)3015 void Assembler::emit_label(Label* label) {
3016   if (label->is_bound()) {
3017     internal_reference_positions_.push_back(pc_offset());
3018     emit(reinterpret_cast<uint32_t>(buffer_ + label->pos()));
3019   } else {
3020     emit_disp(label, Displacement::CODE_ABSOLUTE);
3021   }
3022 }
3023 
3024 
emit_farith(int b1,int b2,int i)3025 void Assembler::emit_farith(int b1, int b2, int i) {
3026   DCHECK(is_uint8(b1) && is_uint8(b2));  // wrong opcode
3027   DCHECK(0 <= i &&  i < 8);  // illegal stack offset
3028   EMIT(b1);
3029   EMIT(b2 + i);
3030 }
3031 
3032 
db(uint8_t data)3033 void Assembler::db(uint8_t data) {
3034   EnsureSpace ensure_space(this);
3035   EMIT(data);
3036 }
3037 
3038 
dd(uint32_t data)3039 void Assembler::dd(uint32_t data) {
3040   EnsureSpace ensure_space(this);
3041   emit(data);
3042 }
3043 
3044 
dq(uint64_t data)3045 void Assembler::dq(uint64_t data) {
3046   EnsureSpace ensure_space(this);
3047   emit_q(data);
3048 }
3049 
3050 
dd(Label * label)3051 void Assembler::dd(Label* label) {
3052   EnsureSpace ensure_space(this);
3053   RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
3054   emit_label(label);
3055 }
3056 
3057 
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)3058 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3059   DCHECK(!RelocInfo::IsNone(rmode));
3060   // Don't record external references unless the heap will be serialized.
3061   if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
3062       !serializer_enabled() && !emit_debug_code()) {
3063     return;
3064   }
3065   RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
3066   reloc_info_writer.Write(&rinfo);
3067 }
3068 
3069 
3070 }  // namespace internal
3071 }  // namespace v8
3072 
3073 #endif  // V8_TARGET_ARCH_IA32
3074