1 // Copyright (c) 1994-2006 Sun Microsystems Inc. 2 // All Rights Reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // - Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // 11 // - Redistribution in binary form must reproduce the above copyright 12 // notice, this list of conditions and the following disclaimer in the 13 // documentation and/or other materials provided with the distribution. 14 // 15 // - Neither the name of Sun Microsystems or the names of contributors may 16 // be used to endorse or promote products derived from this software without 17 // specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // The original source code covered by the above license above has been 32 // modified significantly by Google Inc. 33 // Copyright 2012 the V8 project authors. All rights reserved. 34 35 36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_ 37 #define V8_MIPS_ASSEMBLER_MIPS_H_ 38 39 #include <stdio.h> 40 41 #include <set> 42 43 #include "src/assembler.h" 44 #include "src/mips/constants-mips.h" 45 46 namespace v8 { 47 namespace internal { 48 49 // clang-format off 50 #define GENERAL_REGISTERS(V) \ 51 V(zero_reg) V(at) V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \ 52 V(t0) V(t1) V(t2) V(t3) V(t4) V(t5) V(t6) V(t7) \ 53 V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) V(t8) V(t9) \ 54 V(k0) V(k1) V(gp) V(sp) V(fp) V(ra) 55 56 #define ALLOCATABLE_GENERAL_REGISTERS(V) \ 57 V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \ 58 V(t0) V(t1) V(t2) V(t3) V(t4) V(t5) V(t6) V(s7) 59 60 #define DOUBLE_REGISTERS(V) \ 61 V(f0) V(f1) V(f2) V(f3) V(f4) V(f5) V(f6) V(f7) \ 62 V(f8) V(f9) V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \ 63 V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \ 64 V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31) 65 66 #define FLOAT_REGISTERS DOUBLE_REGISTERS 67 #define SIMD128_REGISTERS DOUBLE_REGISTERS 68 69 #define ALLOCATABLE_DOUBLE_REGISTERS(V) \ 70 V(f0) V(f2) V(f4) V(f6) V(f8) V(f10) V(f12) V(f14) \ 71 V(f16) V(f18) V(f20) V(f22) V(f24) 72 // clang-format on 73 74 // CPU Registers. 75 // 76 // 1) We would prefer to use an enum, but enum values are assignment- 77 // compatible with int, which has caused code-generation bugs. 78 // 79 // 2) We would prefer to use a class instead of a struct but we don't like 80 // the register initialization to depend on the particular initialization 81 // order (which appears to be different on OS X, Linux, and Windows for the 82 // installed versions of C++ we tried). Using a struct permits C-style 83 // "initialization". Also, the Register objects cannot be const as this 84 // forces initialization stubs in MSVC, making us dependent on initialization 85 // order. 86 // 87 // 3) By not using an enum, we are possibly preventing the compiler from 88 // doing certain constant folds, which may significantly reduce the 89 // code generated for some assembly instructions (because they boil down 90 // to a few constants). If this is a problem, we could change the code 91 // such that we use an enum in optimized mode, and the struct in debug 92 // mode. This way we get the compile-time error checking in debug mode 93 // and best performance in optimized code. 94 95 96 // ----------------------------------------------------------------------------- 97 // Implementation of Register and FPURegister. 98 99 struct Register { 100 static const int kCpRegister = 23; // cp (s7) is the 23rd register. 101 102 enum Code { 103 #define REGISTER_CODE(R) kCode_##R, 104 GENERAL_REGISTERS(REGISTER_CODE) 105 #undef REGISTER_CODE 106 kAfterLast, 107 kCode_no_reg = -1 108 }; 109 110 static const int kNumRegisters = Code::kAfterLast; 111 112 #if defined(V8_TARGET_LITTLE_ENDIAN) 113 static const int kMantissaOffset = 0; 114 static const int kExponentOffset = 4; 115 #elif defined(V8_TARGET_BIG_ENDIAN) 116 static const int kMantissaOffset = 4; 117 static const int kExponentOffset = 0; 118 #else 119 #error Unknown endianness 120 #endif 121 122 from_codeRegister123 static Register from_code(int code) { 124 DCHECK(code >= 0); 125 DCHECK(code < kNumRegisters); 126 Register r = {code}; 127 return r; 128 } is_validRegister129 bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; } isRegister130 bool is(Register reg) const { return reg_code == reg.reg_code; } codeRegister131 int code() const { 132 DCHECK(is_valid()); 133 return reg_code; 134 } bitRegister135 int bit() const { 136 DCHECK(is_valid()); 137 return 1 << reg_code; 138 } 139 140 // Unfortunately we can't make this private in a struct. 141 int reg_code; 142 }; 143 144 // s7: context register 145 // s3: lithium scratch 146 // s4: lithium scratch2 147 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R}; 148 GENERAL_REGISTERS(DECLARE_REGISTER) 149 #undef DECLARE_REGISTER 150 const Register no_reg = {Register::kCode_no_reg}; 151 152 153 int ToNumber(Register reg); 154 155 Register ToRegister(int num); 156 157 static const bool kSimpleFPAliasing = true; 158 static const bool kSimdMaskRegisters = false; 159 160 // Coprocessor register. 161 struct FPURegister { 162 enum Code { 163 #define REGISTER_CODE(R) kCode_##R, 164 DOUBLE_REGISTERS(REGISTER_CODE) 165 #undef REGISTER_CODE 166 kAfterLast, 167 kCode_no_reg = -1 168 }; 169 170 static const int kMaxNumRegisters = Code::kAfterLast; 171 172 inline static int NumRegisters(); 173 174 // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers 175 // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to 176 // number of Double regs (64-bit regs, or FPU-reg-pairs). 177 is_validFPURegister178 bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; } isFPURegister179 bool is(FPURegister reg) const { return reg_code == reg.reg_code; } lowFPURegister180 FPURegister low() const { 181 // Find low reg of a Double-reg pair, which is the reg itself. 182 DCHECK(reg_code % 2 == 0); // Specified Double reg must be even. 183 FPURegister reg; 184 reg.reg_code = reg_code; 185 DCHECK(reg.is_valid()); 186 return reg; 187 } highFPURegister188 FPURegister high() const { 189 // Find high reg of a Doubel-reg pair, which is reg + 1. 190 DCHECK(reg_code % 2 == 0); // Specified Double reg must be even. 191 FPURegister reg; 192 reg.reg_code = reg_code + 1; 193 DCHECK(reg.is_valid()); 194 return reg; 195 } 196 codeFPURegister197 int code() const { 198 DCHECK(is_valid()); 199 return reg_code; 200 } bitFPURegister201 int bit() const { 202 DCHECK(is_valid()); 203 return 1 << reg_code; 204 } 205 from_codeFPURegister206 static FPURegister from_code(int code) { 207 FPURegister r = {code}; 208 return r; 209 } setcodeFPURegister210 void setcode(int f) { 211 reg_code = f; 212 DCHECK(is_valid()); 213 } 214 // Unfortunately we can't make this private in a struct. 215 int reg_code; 216 }; 217 218 // A few double registers are reserved: one as a scratch register and one to 219 // hold 0.0. 220 // f28: 0.0 221 // f30: scratch register. 222 223 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32 224 // 32-bit registers, f0 through f31. When used as 'double' they are used 225 // in pairs, starting with the even numbered register. So a double operation 226 // on f0 really uses f0 and f1. 227 // (Modern mips hardware also supports 32 64-bit registers, via setting 228 // (priviledged) Status Register FR bit to 1. This is used by the N32 ABI, 229 // but it is not in common use. Someday we will want to support this in v8.) 230 231 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers. 232 typedef FPURegister FloatRegister; 233 234 typedef FPURegister DoubleRegister; 235 236 // TODO(mips) Define SIMD registers. 237 typedef FPURegister Simd128Register; 238 239 const DoubleRegister no_freg = {-1}; 240 241 const DoubleRegister f0 = {0}; // Return value in hard float mode. 242 const DoubleRegister f1 = {1}; 243 const DoubleRegister f2 = {2}; 244 const DoubleRegister f3 = {3}; 245 const DoubleRegister f4 = {4}; 246 const DoubleRegister f5 = {5}; 247 const DoubleRegister f6 = {6}; 248 const DoubleRegister f7 = {7}; 249 const DoubleRegister f8 = {8}; 250 const DoubleRegister f9 = {9}; 251 const DoubleRegister f10 = {10}; 252 const DoubleRegister f11 = {11}; 253 const DoubleRegister f12 = {12}; // Arg 0 in hard float mode. 254 const DoubleRegister f13 = {13}; 255 const DoubleRegister f14 = {14}; // Arg 1 in hard float mode. 256 const DoubleRegister f15 = {15}; 257 const DoubleRegister f16 = {16}; 258 const DoubleRegister f17 = {17}; 259 const DoubleRegister f18 = {18}; 260 const DoubleRegister f19 = {19}; 261 const DoubleRegister f20 = {20}; 262 const DoubleRegister f21 = {21}; 263 const DoubleRegister f22 = {22}; 264 const DoubleRegister f23 = {23}; 265 const DoubleRegister f24 = {24}; 266 const DoubleRegister f25 = {25}; 267 const DoubleRegister f26 = {26}; 268 const DoubleRegister f27 = {27}; 269 const DoubleRegister f28 = {28}; 270 const DoubleRegister f29 = {29}; 271 const DoubleRegister f30 = {30}; 272 const DoubleRegister f31 = {31}; 273 274 // Register aliases. 275 // cp is assumed to be a callee saved register. 276 // Defined using #define instead of "static const Register&" because Clang 277 // complains otherwise when a compilation unit that includes this header 278 // doesn't use the variables. 279 #define kRootRegister s6 280 #define cp s7 281 #define kLithiumScratchReg s3 282 #define kLithiumScratchReg2 s4 283 #define kLithiumScratchDouble f30 284 #define kDoubleRegZero f28 285 // Used on mips32r6 for compare operations. 286 #define kDoubleCompareReg f26 287 288 // FPU (coprocessor 1) control registers. 289 // Currently only FCSR (#31) is implemented. 290 struct FPUControlRegister { is_validFPUControlRegister291 bool is_valid() const { return reg_code == kFCSRRegister; } isFPUControlRegister292 bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; } codeFPUControlRegister293 int code() const { 294 DCHECK(is_valid()); 295 return reg_code; 296 } bitFPUControlRegister297 int bit() const { 298 DCHECK(is_valid()); 299 return 1 << reg_code; 300 } setcodeFPUControlRegister301 void setcode(int f) { 302 reg_code = f; 303 DCHECK(is_valid()); 304 } 305 // Unfortunately we can't make this private in a struct. 306 int reg_code; 307 }; 308 309 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister }; 310 const FPUControlRegister FCSR = { kFCSRRegister }; 311 312 // ----------------------------------------------------------------------------- 313 // Machine instruction Operands. 314 315 // Class Operand represents a shifter operand in data processing instructions. 316 class Operand BASE_EMBEDDED { 317 public: 318 // Immediate. 319 INLINE(explicit Operand(int32_t immediate, 320 RelocInfo::Mode rmode = RelocInfo::NONE32)); 321 INLINE(explicit Operand(const ExternalReference& f)); 322 INLINE(explicit Operand(const char* s)); 323 INLINE(explicit Operand(Object** opp)); 324 INLINE(explicit Operand(Context** cpp)); 325 explicit Operand(Handle<Object> handle); 326 INLINE(explicit Operand(Smi* value)); 327 328 // Register. 329 INLINE(explicit Operand(Register rm)); 330 331 // Return true if this is a register operand. 332 INLINE(bool is_reg() const); 333 immediate()334 inline int32_t immediate() const { 335 DCHECK(!is_reg()); 336 return imm32_; 337 } 338 rm()339 Register rm() const { return rm_; } 340 341 private: 342 Register rm_; 343 int32_t imm32_; // Valid if rm_ == no_reg. 344 RelocInfo::Mode rmode_; 345 346 friend class Assembler; 347 friend class MacroAssembler; 348 }; 349 350 351 // On MIPS we have only one adressing mode with base_reg + offset. 352 // Class MemOperand represents a memory operand in load and store instructions. 353 class MemOperand : public Operand { 354 public: 355 // Immediate value attached to offset. 356 enum OffsetAddend { 357 offset_minus_one = -1, 358 offset_zero = 0 359 }; 360 361 explicit MemOperand(Register rn, int32_t offset = 0); 362 explicit MemOperand(Register rn, int32_t unit, int32_t multiplier, 363 OffsetAddend offset_addend = offset_zero); offset()364 int32_t offset() const { return offset_; } 365 OffsetIsInt16Encodable()366 bool OffsetIsInt16Encodable() const { 367 return is_int16(offset_); 368 } 369 370 private: 371 int32_t offset_; 372 373 friend class Assembler; 374 }; 375 376 377 class Assembler : public AssemblerBase { 378 public: 379 // Create an assembler. Instructions and relocation information are emitted 380 // into a buffer, with the instructions starting from the beginning and the 381 // relocation information starting from the end of the buffer. See CodeDesc 382 // for a detailed comment on the layout (globals.h). 383 // 384 // If the provided buffer is NULL, the assembler allocates and grows its own 385 // buffer, and buffer_size determines the initial buffer size. The buffer is 386 // owned by the assembler and deallocated upon destruction of the assembler. 387 // 388 // If the provided buffer is not NULL, the assembler uses the provided buffer 389 // for code generation and assumes its size to be buffer_size. If the buffer 390 // is too small, a fatal error occurs. No deallocation of the buffer is done 391 // upon destruction of the assembler. 392 Assembler(Isolate* isolate, void* buffer, int buffer_size); ~Assembler()393 virtual ~Assembler() { } 394 395 // GetCode emits any pending (non-emitted) code and fills the descriptor 396 // desc. GetCode() is idempotent; it returns the same result if no other 397 // Assembler functions are invoked in between GetCode() calls. 398 void GetCode(CodeDesc* desc); 399 400 // Label operations & relative jumps (PPUM Appendix D). 401 // 402 // Takes a branch opcode (cc) and a label (L) and generates 403 // either a backward branch or a forward branch and links it 404 // to the label fixup chain. Usage: 405 // 406 // Label L; // unbound label 407 // j(cc, &L); // forward branch to unbound label 408 // bind(&L); // bind label to the current pc 409 // j(cc, &L); // backward branch to bound label 410 // bind(&L); // illegal: a label may be bound only once 411 // 412 // Note: The same Label can be used for forward and backward branches 413 // but it may be bound only once. 414 void bind(Label* L); // Binds an unbound label L to current code position. 415 416 enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 }; 417 418 // Determines if Label is bound and near enough so that branch instruction 419 // can be used to reach it, instead of jump instruction. 420 bool is_near(Label* L); 421 bool is_near(Label* L, OffsetSize bits); 422 bool is_near_branch(Label* L); is_near_pre_r6(Label * L)423 inline bool is_near_pre_r6(Label* L) { 424 DCHECK(!IsMipsArchVariant(kMips32r6)); 425 return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize; 426 } is_near_r6(Label * L)427 inline bool is_near_r6(Label* L) { 428 DCHECK(IsMipsArchVariant(kMips32r6)); 429 return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize; 430 } 431 432 int BranchOffset(Instr instr); 433 434 // Returns the branch offset to the given label from the current code 435 // position. Links the label to the current position if it is still unbound. 436 // Manages the jump elimination optimization if the second parameter is true. 437 int32_t branch_offset_helper(Label* L, OffsetSize bits); branch_offset(Label * L)438 inline int32_t branch_offset(Label* L) { 439 return branch_offset_helper(L, OffsetSize::kOffset16); 440 } branch_offset21(Label * L)441 inline int32_t branch_offset21(Label* L) { 442 return branch_offset_helper(L, OffsetSize::kOffset21); 443 } branch_offset26(Label * L)444 inline int32_t branch_offset26(Label* L) { 445 return branch_offset_helper(L, OffsetSize::kOffset26); 446 } shifted_branch_offset(Label * L)447 inline int32_t shifted_branch_offset(Label* L) { 448 return branch_offset(L) >> 2; 449 } shifted_branch_offset21(Label * L)450 inline int32_t shifted_branch_offset21(Label* L) { 451 return branch_offset21(L) >> 2; 452 } shifted_branch_offset26(Label * L)453 inline int32_t shifted_branch_offset26(Label* L) { 454 return branch_offset26(L) >> 2; 455 } 456 uint32_t jump_address(Label* L); 457 458 // Puts a labels target address at the given position. 459 // The high 8 bits are set to zero. 460 void label_at_put(Label* L, int at_offset); 461 462 // Read/Modify the code target address in the branch/call instruction at pc. 463 static Address target_address_at(Address pc); 464 static void set_target_address_at( 465 Isolate* isolate, Address pc, Address target, 466 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); 467 // On MIPS there is no Constant Pool so we skip that parameter. INLINE(static Address target_address_at (Address pc,Address constant_pool))468 INLINE(static Address target_address_at(Address pc, Address constant_pool)) { 469 return target_address_at(pc); 470 } INLINE(static void set_target_address_at (Isolate * isolate,Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))471 INLINE(static void set_target_address_at( 472 Isolate* isolate, Address pc, Address constant_pool, Address target, 473 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) { 474 set_target_address_at(isolate, pc, target, icache_flush_mode); 475 } 476 INLINE(static Address target_address_at(Address pc, Code* code)); 477 INLINE(static void set_target_address_at( 478 Isolate* isolate, Address pc, Code* code, Address target, 479 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)); 480 481 // Return the code target address at a call site from the return address 482 // of that call in the instruction stream. 483 inline static Address target_address_from_return_address(Address pc); 484 485 static void QuietNaN(HeapObject* nan); 486 487 // This sets the branch destination (which gets loaded at the call address). 488 // This is for calls and branches within generated code. The serializer 489 // has already deserialized the lui/ori instructions etc. deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)490 inline static void deserialization_set_special_target_at( 491 Isolate* isolate, Address instruction_payload, Code* code, 492 Address target) { 493 set_target_address_at( 494 isolate, 495 instruction_payload - kInstructionsFor32BitConstant * kInstrSize, code, 496 target); 497 } 498 499 // This sets the internal reference at the pc. 500 inline static void deserialization_set_target_internal_reference_at( 501 Isolate* isolate, Address pc, Address target, 502 RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE); 503 504 // Size of an instruction. 505 static const int kInstrSize = sizeof(Instr); 506 507 // Difference between address of current opcode and target address offset. 508 static const int kBranchPCOffset = 4; 509 510 // Here we are patching the address in the LUI/ORI instruction pair. 511 // These values are used in the serialization process and must be zero for 512 // MIPS platform, as Code, Embedded Object or External-reference pointers 513 // are split across two consecutive instructions and don't exist separately 514 // in the code, so the serializer should not step forwards in memory after 515 // a target is resolved and written. 516 static const int kSpecialTargetSize = 0; 517 518 // Number of consecutive instructions used to store 32bit constant. This 519 // constant is used in RelocInfo::target_address_address() function to tell 520 // serializer address of the instruction that follows LUI/ORI instruction 521 // pair. 522 static const int kInstructionsFor32BitConstant = 2; 523 524 // Distance between the instruction referring to the address of the call 525 // target and the return address. 526 #ifdef _MIPS_ARCH_MIPS32R6 527 static const int kCallTargetAddressOffset = 3 * kInstrSize; 528 #else 529 static const int kCallTargetAddressOffset = 4 * kInstrSize; 530 #endif 531 532 // Distance between start of patched debug break slot and the emitted address 533 // to jump to. 534 static const int kPatchDebugBreakSlotAddressOffset = 4 * kInstrSize; 535 536 // Difference between address of current opcode and value read from pc 537 // register. 538 static const int kPcLoadDelta = 4; 539 540 #ifdef _MIPS_ARCH_MIPS32R6 541 static const int kDebugBreakSlotInstructions = 3; 542 #else 543 static const int kDebugBreakSlotInstructions = 4; 544 #endif 545 static const int kDebugBreakSlotLength = 546 kDebugBreakSlotInstructions * kInstrSize; 547 548 // Max offset for instructions with 16-bit offset field 549 static const int kMaxBranchOffset = (1 << (18 - 1)) - 1; 550 551 // Max offset for compact branch instructions with 26-bit offset field 552 static const int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1; 553 554 #ifdef _MIPS_ARCH_MIPS32R6 555 static const int kTrampolineSlotsSize = 2 * kInstrSize; 556 #else 557 static const int kTrampolineSlotsSize = 4 * kInstrSize; 558 #endif 559 560 // --------------------------------------------------------------------------- 561 // Code generation. 562 563 // Insert the smallest number of nop instructions 564 // possible to align the pc offset to a multiple 565 // of m. m must be a power of 2 (>= 4). 566 void Align(int m); 567 // Insert the smallest number of zero bytes possible to align the pc offset 568 // to a mulitple of m. m must be a power of 2 (>= 2). 569 void DataAlign(int m); 570 // Aligns code to something that's optimal for a jump target for the platform. 571 void CodeTargetAlign(); 572 573 // Different nop operations are used by the code generator to detect certain 574 // states of the generated code. 575 enum NopMarkerTypes { 576 NON_MARKING_NOP = 0, 577 DEBUG_BREAK_NOP, 578 // IC markers. 579 PROPERTY_ACCESS_INLINED, 580 PROPERTY_ACCESS_INLINED_CONTEXT, 581 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, 582 // Helper values. 583 LAST_CODE_MARKER, 584 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED, 585 // Code aging 586 CODE_AGE_MARKER_NOP = 6, 587 CODE_AGE_SEQUENCE_NOP 588 }; 589 590 // Type == 0 is the default non-marking nop. For mips this is a 591 // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero 592 // marking, to avoid conflict with ssnop and ehb instructions. 593 void nop(unsigned int type = 0) { 594 DCHECK(type < 32); 595 Register nop_rt_reg = (type == 0) ? zero_reg : at; 596 sll(zero_reg, nop_rt_reg, type, true); 597 } 598 599 600 // --------Branch-and-jump-instructions---------- 601 // We don't use likely variant of instructions. 602 void b(int16_t offset); b(Label * L)603 inline void b(Label* L) { b(shifted_branch_offset(L)); } 604 void bal(int16_t offset); bal(Label * L)605 inline void bal(Label* L) { bal(shifted_branch_offset(L)); } 606 void bc(int32_t offset); bc(Label * L)607 inline void bc(Label* L) { bc(shifted_branch_offset26(L)); } 608 void balc(int32_t offset); balc(Label * L)609 inline void balc(Label* L) { balc(shifted_branch_offset26(L)); } 610 611 void beq(Register rs, Register rt, int16_t offset); beq(Register rs,Register rt,Label * L)612 inline void beq(Register rs, Register rt, Label* L) { 613 beq(rs, rt, shifted_branch_offset(L)); 614 } 615 void bgez(Register rs, int16_t offset); 616 void bgezc(Register rt, int16_t offset); bgezc(Register rt,Label * L)617 inline void bgezc(Register rt, Label* L) { 618 bgezc(rt, shifted_branch_offset(L)); 619 } 620 void bgeuc(Register rs, Register rt, int16_t offset); bgeuc(Register rs,Register rt,Label * L)621 inline void bgeuc(Register rs, Register rt, Label* L) { 622 bgeuc(rs, rt, shifted_branch_offset(L)); 623 } 624 void bgec(Register rs, Register rt, int16_t offset); bgec(Register rs,Register rt,Label * L)625 inline void bgec(Register rs, Register rt, Label* L) { 626 bgec(rs, rt, shifted_branch_offset(L)); 627 } 628 void bgezal(Register rs, int16_t offset); 629 void bgezalc(Register rt, int16_t offset); bgezalc(Register rt,Label * L)630 inline void bgezalc(Register rt, Label* L) { 631 bgezalc(rt, shifted_branch_offset(L)); 632 } 633 void bgezall(Register rs, int16_t offset); bgezall(Register rs,Label * L)634 inline void bgezall(Register rs, Label* L) { 635 bgezall(rs, branch_offset(L) >> 2); 636 } 637 void bgtz(Register rs, int16_t offset); 638 void bgtzc(Register rt, int16_t offset); bgtzc(Register rt,Label * L)639 inline void bgtzc(Register rt, Label* L) { 640 bgtzc(rt, shifted_branch_offset(L)); 641 } 642 void blez(Register rs, int16_t offset); 643 void blezc(Register rt, int16_t offset); blezc(Register rt,Label * L)644 inline void blezc(Register rt, Label* L) { 645 blezc(rt, shifted_branch_offset(L)); 646 } 647 void bltz(Register rs, int16_t offset); 648 void bltzc(Register rt, int16_t offset); bltzc(Register rt,Label * L)649 inline void bltzc(Register rt, Label* L) { 650 bltzc(rt, shifted_branch_offset(L)); 651 } 652 void bltuc(Register rs, Register rt, int16_t offset); bltuc(Register rs,Register rt,Label * L)653 inline void bltuc(Register rs, Register rt, Label* L) { 654 bltuc(rs, rt, shifted_branch_offset(L)); 655 } 656 void bltc(Register rs, Register rt, int16_t offset); bltc(Register rs,Register rt,Label * L)657 inline void bltc(Register rs, Register rt, Label* L) { 658 bltc(rs, rt, shifted_branch_offset(L)); 659 } 660 void bltzal(Register rs, int16_t offset); 661 void blezalc(Register rt, int16_t offset); blezalc(Register rt,Label * L)662 inline void blezalc(Register rt, Label* L) { 663 blezalc(rt, shifted_branch_offset(L)); 664 } 665 void bltzalc(Register rt, int16_t offset); bltzalc(Register rt,Label * L)666 inline void bltzalc(Register rt, Label* L) { 667 bltzalc(rt, shifted_branch_offset(L)); 668 } 669 void bgtzalc(Register rt, int16_t offset); bgtzalc(Register rt,Label * L)670 inline void bgtzalc(Register rt, Label* L) { 671 bgtzalc(rt, shifted_branch_offset(L)); 672 } 673 void beqzalc(Register rt, int16_t offset); beqzalc(Register rt,Label * L)674 inline void beqzalc(Register rt, Label* L) { 675 beqzalc(rt, shifted_branch_offset(L)); 676 } 677 void beqc(Register rs, Register rt, int16_t offset); beqc(Register rs,Register rt,Label * L)678 inline void beqc(Register rs, Register rt, Label* L) { 679 beqc(rs, rt, shifted_branch_offset(L)); 680 } 681 void beqzc(Register rs, int32_t offset); beqzc(Register rs,Label * L)682 inline void beqzc(Register rs, Label* L) { 683 beqzc(rs, shifted_branch_offset21(L)); 684 } 685 void bnezalc(Register rt, int16_t offset); bnezalc(Register rt,Label * L)686 inline void bnezalc(Register rt, Label* L) { 687 bnezalc(rt, shifted_branch_offset(L)); 688 } 689 void bnec(Register rs, Register rt, int16_t offset); bnec(Register rs,Register rt,Label * L)690 inline void bnec(Register rs, Register rt, Label* L) { 691 bnec(rs, rt, shifted_branch_offset(L)); 692 } 693 void bnezc(Register rt, int32_t offset); bnezc(Register rt,Label * L)694 inline void bnezc(Register rt, Label* L) { 695 bnezc(rt, shifted_branch_offset21(L)); 696 } 697 void bne(Register rs, Register rt, int16_t offset); bne(Register rs,Register rt,Label * L)698 inline void bne(Register rs, Register rt, Label* L) { 699 bne(rs, rt, shifted_branch_offset(L)); 700 } 701 void bovc(Register rs, Register rt, int16_t offset); bovc(Register rs,Register rt,Label * L)702 inline void bovc(Register rs, Register rt, Label* L) { 703 bovc(rs, rt, shifted_branch_offset(L)); 704 } 705 void bnvc(Register rs, Register rt, int16_t offset); bnvc(Register rs,Register rt,Label * L)706 inline void bnvc(Register rs, Register rt, Label* L) { 707 bnvc(rs, rt, shifted_branch_offset(L)); 708 } 709 710 // Never use the int16_t b(l)cond version with a branch offset 711 // instead of using the Label* version. 712 713 // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits. 714 void j(int32_t target); 715 void jal(int32_t target); 716 void jalr(Register rs, Register rd = ra); 717 void jr(Register target); 718 void jic(Register rt, int16_t offset); 719 void jialc(Register rt, int16_t offset); 720 721 722 // -------Data-processing-instructions--------- 723 724 // Arithmetic. 725 void addu(Register rd, Register rs, Register rt); 726 void subu(Register rd, Register rs, Register rt); 727 void mult(Register rs, Register rt); 728 void multu(Register rs, Register rt); 729 void div(Register rs, Register rt); 730 void divu(Register rs, Register rt); 731 void div(Register rd, Register rs, Register rt); 732 void divu(Register rd, Register rs, Register rt); 733 void mod(Register rd, Register rs, Register rt); 734 void modu(Register rd, Register rs, Register rt); 735 void mul(Register rd, Register rs, Register rt); 736 void muh(Register rd, Register rs, Register rt); 737 void mulu(Register rd, Register rs, Register rt); 738 void muhu(Register rd, Register rs, Register rt); 739 740 void addiu(Register rd, Register rs, int32_t j); 741 742 // Logical. 743 void and_(Register rd, Register rs, Register rt); 744 void or_(Register rd, Register rs, Register rt); 745 void xor_(Register rd, Register rs, Register rt); 746 void nor(Register rd, Register rs, Register rt); 747 748 void andi(Register rd, Register rs, int32_t j); 749 void ori(Register rd, Register rs, int32_t j); 750 void xori(Register rd, Register rs, int32_t j); 751 void lui(Register rd, int32_t j); 752 void aui(Register rs, Register rt, int32_t j); 753 754 // Shifts. 755 // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop 756 // and may cause problems in normal code. coming_from_nop makes sure this 757 // doesn't happen. 758 void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false); 759 void sllv(Register rd, Register rt, Register rs); 760 void srl(Register rd, Register rt, uint16_t sa); 761 void srlv(Register rd, Register rt, Register rs); 762 void sra(Register rt, Register rd, uint16_t sa); 763 void srav(Register rt, Register rd, Register rs); 764 void rotr(Register rd, Register rt, uint16_t sa); 765 void rotrv(Register rd, Register rt, Register rs); 766 767 // ------------Memory-instructions------------- 768 769 void lb(Register rd, const MemOperand& rs); 770 void lbu(Register rd, const MemOperand& rs); 771 void lh(Register rd, const MemOperand& rs); 772 void lhu(Register rd, const MemOperand& rs); 773 void lw(Register rd, const MemOperand& rs); 774 void lwl(Register rd, const MemOperand& rs); 775 void lwr(Register rd, const MemOperand& rs); 776 void sb(Register rd, const MemOperand& rs); 777 void sh(Register rd, const MemOperand& rs); 778 void sw(Register rd, const MemOperand& rs); 779 void swl(Register rd, const MemOperand& rs); 780 void swr(Register rd, const MemOperand& rs); 781 782 783 // ---------PC-Relative-instructions----------- 784 785 void addiupc(Register rs, int32_t imm19); 786 void lwpc(Register rs, int32_t offset19); 787 void auipc(Register rs, int16_t imm16); 788 void aluipc(Register rs, int16_t imm16); 789 790 791 // ----------------Prefetch-------------------- 792 793 void pref(int32_t hint, const MemOperand& rs); 794 795 796 // -------------Misc-instructions-------------- 797 798 // Break / Trap instructions. 799 void break_(uint32_t code, bool break_as_stop = false); 800 void stop(const char* msg, uint32_t code = kMaxStopCode); 801 void tge(Register rs, Register rt, uint16_t code); 802 void tgeu(Register rs, Register rt, uint16_t code); 803 void tlt(Register rs, Register rt, uint16_t code); 804 void tltu(Register rs, Register rt, uint16_t code); 805 void teq(Register rs, Register rt, uint16_t code); 806 void tne(Register rs, Register rt, uint16_t code); 807 808 // Memory barrier instruction. 809 void sync(); 810 811 // Move from HI/LO register. 812 void mfhi(Register rd); 813 void mflo(Register rd); 814 815 // Set on less than. 816 void slt(Register rd, Register rs, Register rt); 817 void sltu(Register rd, Register rs, Register rt); 818 void slti(Register rd, Register rs, int32_t j); 819 void sltiu(Register rd, Register rs, int32_t j); 820 821 // Conditional move. 822 void movz(Register rd, Register rs, Register rt); 823 void movn(Register rd, Register rs, Register rt); 824 void movt(Register rd, Register rs, uint16_t cc = 0); 825 void movf(Register rd, Register rs, uint16_t cc = 0); 826 827 void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 828 void sel_s(FPURegister fd, FPURegister fs, FPURegister ft); 829 void sel_d(FPURegister fd, FPURegister fs, FPURegister ft); 830 void seleqz(Register rd, Register rs, Register rt); 831 void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs, 832 FPURegister ft); 833 void selnez(Register rd, Register rs, Register rt); 834 void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs, 835 FPURegister ft); 836 void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft); 837 void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft); 838 void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft); 839 void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft); 840 841 void movz_s(FPURegister fd, FPURegister fs, Register rt); 842 void movz_d(FPURegister fd, FPURegister fs, Register rt); 843 void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0); 844 void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0); 845 void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0); 846 void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0); 847 void movn_s(FPURegister fd, FPURegister fs, Register rt); 848 void movn_d(FPURegister fd, FPURegister fs, Register rt); 849 // Bit twiddling. 850 void clz(Register rd, Register rs); 851 void ins_(Register rt, Register rs, uint16_t pos, uint16_t size); 852 void ext_(Register rt, Register rs, uint16_t pos, uint16_t size); 853 void bitswap(Register rd, Register rt); 854 void align(Register rd, Register rs, Register rt, uint8_t bp); 855 856 void wsbh(Register rd, Register rt); 857 void seh(Register rd, Register rt); 858 void seb(Register rd, Register rt); 859 860 // --------Coprocessor-instructions---------------- 861 862 // Load, store, and move. 863 void lwc1(FPURegister fd, const MemOperand& src); 864 void ldc1(FPURegister fd, const MemOperand& src); 865 866 void swc1(FPURegister fs, const MemOperand& dst); 867 void sdc1(FPURegister fs, const MemOperand& dst); 868 869 void mtc1(Register rt, FPURegister fs); 870 void mthc1(Register rt, FPURegister fs); 871 872 void mfc1(Register rt, FPURegister fs); 873 void mfhc1(Register rt, FPURegister fs); 874 875 void ctc1(Register rt, FPUControlRegister fs); 876 void cfc1(Register rt, FPUControlRegister fs); 877 878 // Arithmetic. 879 void add_s(FPURegister fd, FPURegister fs, FPURegister ft); 880 void add_d(FPURegister fd, FPURegister fs, FPURegister ft); 881 void sub_s(FPURegister fd, FPURegister fs, FPURegister ft); 882 void sub_d(FPURegister fd, FPURegister fs, FPURegister ft); 883 void mul_s(FPURegister fd, FPURegister fs, FPURegister ft); 884 void mul_d(FPURegister fd, FPURegister fs, FPURegister ft); 885 void madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 886 void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 887 void msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 888 void msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 889 void maddf_s(FPURegister fd, FPURegister fs, FPURegister ft); 890 void maddf_d(FPURegister fd, FPURegister fs, FPURegister ft); 891 void msubf_s(FPURegister fd, FPURegister fs, FPURegister ft); 892 void msubf_d(FPURegister fd, FPURegister fs, FPURegister ft); 893 void div_s(FPURegister fd, FPURegister fs, FPURegister ft); 894 void div_d(FPURegister fd, FPURegister fs, FPURegister ft); 895 void abs_s(FPURegister fd, FPURegister fs); 896 void abs_d(FPURegister fd, FPURegister fs); 897 void mov_d(FPURegister fd, FPURegister fs); 898 void mov_s(FPURegister fd, FPURegister fs); 899 void neg_s(FPURegister fd, FPURegister fs); 900 void neg_d(FPURegister fd, FPURegister fs); 901 void sqrt_s(FPURegister fd, FPURegister fs); 902 void sqrt_d(FPURegister fd, FPURegister fs); 903 void rsqrt_s(FPURegister fd, FPURegister fs); 904 void rsqrt_d(FPURegister fd, FPURegister fs); 905 void recip_d(FPURegister fd, FPURegister fs); 906 void recip_s(FPURegister fd, FPURegister fs); 907 908 // Conversion. 909 void cvt_w_s(FPURegister fd, FPURegister fs); 910 void cvt_w_d(FPURegister fd, FPURegister fs); 911 void trunc_w_s(FPURegister fd, FPURegister fs); 912 void trunc_w_d(FPURegister fd, FPURegister fs); 913 void round_w_s(FPURegister fd, FPURegister fs); 914 void round_w_d(FPURegister fd, FPURegister fs); 915 void floor_w_s(FPURegister fd, FPURegister fs); 916 void floor_w_d(FPURegister fd, FPURegister fs); 917 void ceil_w_s(FPURegister fd, FPURegister fs); 918 void ceil_w_d(FPURegister fd, FPURegister fs); 919 void rint_s(FPURegister fd, FPURegister fs); 920 void rint_d(FPURegister fd, FPURegister fs); 921 void rint(SecondaryField fmt, FPURegister fd, FPURegister fs); 922 923 void cvt_l_s(FPURegister fd, FPURegister fs); 924 void cvt_l_d(FPURegister fd, FPURegister fs); 925 void trunc_l_s(FPURegister fd, FPURegister fs); 926 void trunc_l_d(FPURegister fd, FPURegister fs); 927 void round_l_s(FPURegister fd, FPURegister fs); 928 void round_l_d(FPURegister fd, FPURegister fs); 929 void floor_l_s(FPURegister fd, FPURegister fs); 930 void floor_l_d(FPURegister fd, FPURegister fs); 931 void ceil_l_s(FPURegister fd, FPURegister fs); 932 void ceil_l_d(FPURegister fd, FPURegister fs); 933 934 void class_s(FPURegister fd, FPURegister fs); 935 void class_d(FPURegister fd, FPURegister fs); 936 937 void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 938 void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 939 void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 940 void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 941 void min_s(FPURegister fd, FPURegister fs, FPURegister ft); 942 void min_d(FPURegister fd, FPURegister fs, FPURegister ft); 943 void max_s(FPURegister fd, FPURegister fs, FPURegister ft); 944 void max_d(FPURegister fd, FPURegister fs, FPURegister ft); 945 void mina_s(FPURegister fd, FPURegister fs, FPURegister ft); 946 void mina_d(FPURegister fd, FPURegister fs, FPURegister ft); 947 void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft); 948 void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft); 949 950 void cvt_s_w(FPURegister fd, FPURegister fs); 951 void cvt_s_l(FPURegister fd, FPURegister fs); 952 void cvt_s_d(FPURegister fd, FPURegister fs); 953 954 void cvt_d_w(FPURegister fd, FPURegister fs); 955 void cvt_d_l(FPURegister fd, FPURegister fs); 956 void cvt_d_s(FPURegister fd, FPURegister fs); 957 958 // Conditions and branches for MIPSr6. 959 void cmp(FPUCondition cond, SecondaryField fmt, 960 FPURegister fd, FPURegister ft, FPURegister fs); 961 void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft); 962 void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft); 963 964 void bc1eqz(int16_t offset, FPURegister ft); bc1eqz(Label * L,FPURegister ft)965 inline void bc1eqz(Label* L, FPURegister ft) { 966 bc1eqz(shifted_branch_offset(L), ft); 967 } 968 void bc1nez(int16_t offset, FPURegister ft); bc1nez(Label * L,FPURegister ft)969 inline void bc1nez(Label* L, FPURegister ft) { 970 bc1nez(shifted_branch_offset(L), ft); 971 } 972 973 // Conditions and branches for non MIPSr6. 974 void c(FPUCondition cond, SecondaryField fmt, 975 FPURegister ft, FPURegister fs, uint16_t cc = 0); 976 void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0); 977 void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0); 978 979 void bc1f(int16_t offset, uint16_t cc = 0); 980 inline void bc1f(Label* L, uint16_t cc = 0) { 981 bc1f(shifted_branch_offset(L), cc); 982 } 983 void bc1t(int16_t offset, uint16_t cc = 0); 984 inline void bc1t(Label* L, uint16_t cc = 0) { 985 bc1t(shifted_branch_offset(L), cc); 986 } 987 void fcmp(FPURegister src1, const double src2, FPUCondition cond); 988 989 // Check the code size generated from label to here. SizeOfCodeGeneratedSince(Label * label)990 int SizeOfCodeGeneratedSince(Label* label) { 991 return pc_offset() - label->pos(); 992 } 993 994 // Check the number of instructions generated from label to here. InstructionsGeneratedSince(Label * label)995 int InstructionsGeneratedSince(Label* label) { 996 return SizeOfCodeGeneratedSince(label) / kInstrSize; 997 } 998 999 // Class for scoping postponing the trampoline pool generation. 1000 class BlockTrampolinePoolScope { 1001 public: BlockTrampolinePoolScope(Assembler * assem)1002 explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) { 1003 assem_->StartBlockTrampolinePool(); 1004 } ~BlockTrampolinePoolScope()1005 ~BlockTrampolinePoolScope() { 1006 assem_->EndBlockTrampolinePool(); 1007 } 1008 1009 private: 1010 Assembler* assem_; 1011 1012 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope); 1013 }; 1014 1015 // Class for postponing the assembly buffer growth. Typically used for 1016 // sequences of instructions that must be emitted as a unit, before 1017 // buffer growth (and relocation) can occur. 1018 // This blocking scope is not nestable. 1019 class BlockGrowBufferScope { 1020 public: BlockGrowBufferScope(Assembler * assem)1021 explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) { 1022 assem_->StartBlockGrowBuffer(); 1023 } ~BlockGrowBufferScope()1024 ~BlockGrowBufferScope() { 1025 assem_->EndBlockGrowBuffer(); 1026 } 1027 1028 private: 1029 Assembler* assem_; 1030 1031 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope); 1032 }; 1033 1034 // Debugging. 1035 1036 // Mark address of a debug break slot. 1037 void RecordDebugBreakSlot(RelocInfo::Mode mode); 1038 1039 // Record the AST id of the CallIC being compiled, so that it can be placed 1040 // in the relocation information. SetRecordedAstId(TypeFeedbackId ast_id)1041 void SetRecordedAstId(TypeFeedbackId ast_id) { 1042 DCHECK(recorded_ast_id_.IsNone()); 1043 recorded_ast_id_ = ast_id; 1044 } 1045 RecordedAstId()1046 TypeFeedbackId RecordedAstId() { 1047 DCHECK(!recorded_ast_id_.IsNone()); 1048 return recorded_ast_id_; 1049 } 1050 ClearRecordedAstId()1051 void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); } 1052 1053 // Record a comment relocation entry that can be used by a disassembler. 1054 // Use --code-comments to enable. 1055 void RecordComment(const char* msg); 1056 1057 // Record a deoptimization reason that can be used by a log or cpu profiler. 1058 // Use --trace-deopt to enable. 1059 void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position, 1060 int id); 1061 1062 static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc, 1063 intptr_t pc_delta); 1064 1065 // Writes a single byte or word of data in the code stream. Used for 1066 // inline tables, e.g., jump-tables. 1067 void db(uint8_t data); 1068 void dd(uint32_t data); 1069 void dq(uint64_t data); dp(uintptr_t data)1070 void dp(uintptr_t data) { dd(data); } 1071 void dd(Label* label); 1072 1073 // Postpone the generation of the trampoline pool for the specified number of 1074 // instructions. 1075 void BlockTrampolinePoolFor(int instructions); 1076 1077 // Check if there is less than kGap bytes available in the buffer. 1078 // If this is the case, we need to grow the buffer before emitting 1079 // an instruction or relocation information. overflow()1080 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } 1081 1082 // Get the number of bytes available in the buffer. available_space()1083 inline int available_space() const { return reloc_info_writer.pos() - pc_; } 1084 1085 // Read/patch instructions. instr_at(byte * pc)1086 static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); } instr_at_put(byte * pc,Instr instr)1087 static void instr_at_put(byte* pc, Instr instr) { 1088 *reinterpret_cast<Instr*>(pc) = instr; 1089 } instr_at(int pos)1090 Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); } instr_at_put(int pos,Instr instr)1091 void instr_at_put(int pos, Instr instr) { 1092 *reinterpret_cast<Instr*>(buffer_ + pos) = instr; 1093 } 1094 1095 // Check if an instruction is a branch of some kind. 1096 static bool IsBranch(Instr instr); 1097 static bool IsBc(Instr instr); 1098 static bool IsBzc(Instr instr); 1099 static bool IsBeq(Instr instr); 1100 static bool IsBne(Instr instr); 1101 static bool IsBeqzc(Instr instr); 1102 static bool IsBnezc(Instr instr); 1103 static bool IsBeqc(Instr instr); 1104 static bool IsBnec(Instr instr); 1105 static bool IsJicOrJialc(Instr instr); 1106 1107 static bool IsJump(Instr instr); 1108 static bool IsJ(Instr instr); 1109 static bool IsLui(Instr instr); 1110 static bool IsOri(Instr instr); 1111 1112 static bool IsJal(Instr instr); 1113 static bool IsJr(Instr instr); 1114 static bool IsJalr(Instr instr); 1115 1116 static bool IsNop(Instr instr, unsigned int type); 1117 static bool IsPop(Instr instr); 1118 static bool IsPush(Instr instr); 1119 static bool IsLwRegFpOffset(Instr instr); 1120 static bool IsSwRegFpOffset(Instr instr); 1121 static bool IsLwRegFpNegOffset(Instr instr); 1122 static bool IsSwRegFpNegOffset(Instr instr); 1123 1124 static Register GetRtReg(Instr instr); 1125 static Register GetRsReg(Instr instr); 1126 static Register GetRdReg(Instr instr); 1127 1128 static uint32_t GetRt(Instr instr); 1129 static uint32_t GetRtField(Instr instr); 1130 static uint32_t GetRs(Instr instr); 1131 static uint32_t GetRsField(Instr instr); 1132 static uint32_t GetRd(Instr instr); 1133 static uint32_t GetRdField(Instr instr); 1134 static uint32_t GetSa(Instr instr); 1135 static uint32_t GetSaField(Instr instr); 1136 static uint32_t GetOpcodeField(Instr instr); 1137 static uint32_t GetFunction(Instr instr); 1138 static uint32_t GetFunctionField(Instr instr); 1139 static uint32_t GetImmediate16(Instr instr); 1140 static uint32_t GetLabelConst(Instr instr); 1141 1142 static int32_t GetBranchOffset(Instr instr); 1143 static bool IsLw(Instr instr); 1144 static int16_t GetLwOffset(Instr instr); 1145 static int16_t GetJicOrJialcOffset(Instr instr); 1146 static int16_t GetLuiOffset(Instr instr); 1147 static Instr SetLwOffset(Instr instr, int16_t offset); 1148 1149 static bool IsSw(Instr instr); 1150 static Instr SetSwOffset(Instr instr, int16_t offset); 1151 static bool IsAddImmediate(Instr instr); 1152 static Instr SetAddImmediateOffset(Instr instr, int16_t offset); 1153 static uint32_t CreateTargetAddress(Instr instr_lui, Instr instr_jic); 1154 static void UnpackTargetAddress(uint32_t address, int16_t& lui_offset, 1155 int16_t& jic_offset); 1156 static void UnpackTargetAddressUnsigned(uint32_t address, 1157 uint32_t& lui_offset, 1158 uint32_t& jic_offset); 1159 1160 static bool IsAndImmediate(Instr instr); 1161 static bool IsEmittedConstant(Instr instr); 1162 1163 void CheckTrampolinePool(); 1164 PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1165 void PatchConstantPoolAccessInstruction(int pc_offset, int offset, 1166 ConstantPoolEntry::Access access, 1167 ConstantPoolEntry::Type type) { 1168 // No embedded constant pool support. 1169 UNREACHABLE(); 1170 } 1171 IsPrevInstrCompactBranch()1172 bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; } IsCompactBranchSupported()1173 static bool IsCompactBranchSupported() { 1174 return IsMipsArchVariant(kMips32r6); 1175 } 1176 UnboundLabelsCount()1177 inline int UnboundLabelsCount() { return unbound_labels_count_; } 1178 1179 protected: 1180 // Load Scaled Address instruction. 1181 void lsa(Register rd, Register rt, Register rs, uint8_t sa); 1182 1183 // Helpers. 1184 void LoadRegPlusOffsetToAt(const MemOperand& src); 1185 int32_t LoadRegPlusUpperOffsetPartToAt(const MemOperand& src); 1186 int32_t LoadUpperOffsetForTwoMemoryAccesses(const MemOperand& src); 1187 1188 // Relocation for a type-recording IC has the AST id added to it. This 1189 // member variable is a way to pass the information from the call site to 1190 // the relocation info. 1191 TypeFeedbackId recorded_ast_id_; 1192 buffer_space()1193 int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; } 1194 1195 // Decode branch instruction at pos and return branch target pos. 1196 int target_at(int pos, bool is_internal); 1197 1198 // Patch branch instruction at pos to branch to given branch target pos. 1199 void target_at_put(int pos, int target_pos, bool is_internal); 1200 1201 // Say if we need to relocate with this mode. 1202 bool MustUseReg(RelocInfo::Mode rmode); 1203 1204 // Record reloc info for current pc_. 1205 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); 1206 1207 // Block the emission of the trampoline pool before pc_offset. BlockTrampolinePoolBefore(int pc_offset)1208 void BlockTrampolinePoolBefore(int pc_offset) { 1209 if (no_trampoline_pool_before_ < pc_offset) 1210 no_trampoline_pool_before_ = pc_offset; 1211 } 1212 StartBlockTrampolinePool()1213 void StartBlockTrampolinePool() { 1214 trampoline_pool_blocked_nesting_++; 1215 } 1216 EndBlockTrampolinePool()1217 void EndBlockTrampolinePool() { 1218 trampoline_pool_blocked_nesting_--; 1219 } 1220 is_trampoline_pool_blocked()1221 bool is_trampoline_pool_blocked() const { 1222 return trampoline_pool_blocked_nesting_ > 0; 1223 } 1224 has_exception()1225 bool has_exception() const { 1226 return internal_trampoline_exception_; 1227 } 1228 1229 void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi); 1230 is_trampoline_emitted()1231 bool is_trampoline_emitted() const { 1232 return trampoline_emitted_; 1233 } 1234 1235 // Temporarily block automatic assembly buffer growth. StartBlockGrowBuffer()1236 void StartBlockGrowBuffer() { 1237 DCHECK(!block_buffer_growth_); 1238 block_buffer_growth_ = true; 1239 } 1240 EndBlockGrowBuffer()1241 void EndBlockGrowBuffer() { 1242 DCHECK(block_buffer_growth_); 1243 block_buffer_growth_ = false; 1244 } 1245 is_buffer_growth_blocked()1246 bool is_buffer_growth_blocked() const { 1247 return block_buffer_growth_; 1248 } 1249 EmitForbiddenSlotInstruction()1250 void EmitForbiddenSlotInstruction() { 1251 if (IsPrevInstrCompactBranch()) { 1252 nop(); 1253 } 1254 } 1255 1256 inline void CheckTrampolinePoolQuick(int extra_instructions = 0); 1257 1258 inline void CheckBuffer(); 1259 1260 private: 1261 inline static void set_target_internal_reference_encoded_at(Address pc, 1262 Address target); 1263 1264 // Buffer size and constant pool distance are checked together at regular 1265 // intervals of kBufferCheckInterval emitted bytes. 1266 static const int kBufferCheckInterval = 1*KB/2; 1267 1268 // Code generation. 1269 // The relocation writer's position is at least kGap bytes below the end of 1270 // the generated instructions. This is so that multi-instruction sequences do 1271 // not have to check for overflow. The same is true for writes of large 1272 // relocation info entries. 1273 static const int kGap = 32; 1274 1275 1276 // Repeated checking whether the trampoline pool should be emitted is rather 1277 // expensive. By default we only check again once a number of instructions 1278 // has been generated. 1279 static const int kCheckConstIntervalInst = 32; 1280 static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize; 1281 1282 int next_buffer_check_; // pc offset of next buffer check. 1283 1284 // Emission of the trampoline pool may be blocked in some code sequences. 1285 int trampoline_pool_blocked_nesting_; // Block emission if this is not zero. 1286 int no_trampoline_pool_before_; // Block emission before this pc offset. 1287 1288 // Keep track of the last emitted pool to guarantee a maximal distance. 1289 int last_trampoline_pool_end_; // pc offset of the end of the last pool. 1290 1291 // Automatic growth of the assembly buffer may be blocked for some sequences. 1292 bool block_buffer_growth_; // Block growth when true. 1293 1294 // Relocation information generation. 1295 // Each relocation is encoded as a variable size value. 1296 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize; 1297 RelocInfoWriter reloc_info_writer; 1298 1299 // The bound position, before this we cannot do instruction elimination. 1300 int last_bound_pos_; 1301 1302 // Readable constants for compact branch handling in emit() 1303 enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true }; 1304 1305 // Code emission. 1306 void GrowBuffer(); 1307 inline void emit(Instr x, 1308 CompactBranchType is_compact_branch = CompactBranchType::NO); 1309 inline void emit(uint64_t x); 1310 inline void CheckForEmitInForbiddenSlot(); 1311 template <typename T> 1312 inline void EmitHelper(T x); 1313 inline void EmitHelper(Instr x, CompactBranchType is_compact_branch); 1314 1315 // Instruction generation. 1316 // We have 3 different kind of encoding layout on MIPS. 1317 // However due to many different types of objects encoded in the same fields 1318 // we have quite a few aliases for each mode. 1319 // Using the same structure to refer to Register and FPURegister would spare a 1320 // few aliases, but mixing both does not look clean to me. 1321 // Anyway we could surely implement this differently. 1322 1323 void GenInstrRegister(Opcode opcode, 1324 Register rs, 1325 Register rt, 1326 Register rd, 1327 uint16_t sa = 0, 1328 SecondaryField func = NULLSF); 1329 1330 void GenInstrRegister(Opcode opcode, 1331 Register rs, 1332 Register rt, 1333 uint16_t msb, 1334 uint16_t lsb, 1335 SecondaryField func); 1336 1337 void GenInstrRegister(Opcode opcode, 1338 SecondaryField fmt, 1339 FPURegister ft, 1340 FPURegister fs, 1341 FPURegister fd, 1342 SecondaryField func = NULLSF); 1343 1344 void GenInstrRegister(Opcode opcode, 1345 FPURegister fr, 1346 FPURegister ft, 1347 FPURegister fs, 1348 FPURegister fd, 1349 SecondaryField func = NULLSF); 1350 1351 void GenInstrRegister(Opcode opcode, 1352 SecondaryField fmt, 1353 Register rt, 1354 FPURegister fs, 1355 FPURegister fd, 1356 SecondaryField func = NULLSF); 1357 1358 void GenInstrRegister(Opcode opcode, 1359 SecondaryField fmt, 1360 Register rt, 1361 FPUControlRegister fs, 1362 SecondaryField func = NULLSF); 1363 1364 void GenInstrImmediate( 1365 Opcode opcode, Register rs, Register rt, int32_t j, 1366 CompactBranchType is_compact_branch = CompactBranchType::NO); 1367 void GenInstrImmediate( 1368 Opcode opcode, Register rs, SecondaryField SF, int32_t j, 1369 CompactBranchType is_compact_branch = CompactBranchType::NO); 1370 void GenInstrImmediate( 1371 Opcode opcode, Register r1, FPURegister r2, int32_t j, 1372 CompactBranchType is_compact_branch = CompactBranchType::NO); 1373 void GenInstrImmediate( 1374 Opcode opcode, Register rs, int32_t offset21, 1375 CompactBranchType is_compact_branch = CompactBranchType::NO); 1376 void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21); 1377 void GenInstrImmediate( 1378 Opcode opcode, int32_t offset26, 1379 CompactBranchType is_compact_branch = CompactBranchType::NO); 1380 1381 1382 void GenInstrJump(Opcode opcode, 1383 uint32_t address); 1384 1385 1386 // Labels. 1387 void print(Label* L); 1388 void bind_to(Label* L, int pos); 1389 void next(Label* L, bool is_internal); 1390 1391 // One trampoline consists of: 1392 // - space for trampoline slots, 1393 // - space for labels. 1394 // 1395 // Space for trampoline slots is equal to slot_count * 2 * kInstrSize. 1396 // Space for trampoline slots preceeds space for labels. Each label is of one 1397 // instruction size, so total amount for labels is equal to 1398 // label_count * kInstrSize. 1399 class Trampoline { 1400 public: Trampoline()1401 Trampoline() { 1402 start_ = 0; 1403 next_slot_ = 0; 1404 free_slot_count_ = 0; 1405 end_ = 0; 1406 } Trampoline(int start,int slot_count)1407 Trampoline(int start, int slot_count) { 1408 start_ = start; 1409 next_slot_ = start; 1410 free_slot_count_ = slot_count; 1411 end_ = start + slot_count * kTrampolineSlotsSize; 1412 } start()1413 int start() { 1414 return start_; 1415 } end()1416 int end() { 1417 return end_; 1418 } take_slot()1419 int take_slot() { 1420 int trampoline_slot = kInvalidSlotPos; 1421 if (free_slot_count_ <= 0) { 1422 // We have run out of space on trampolines. 1423 // Make sure we fail in debug mode, so we become aware of each case 1424 // when this happens. 1425 DCHECK(0); 1426 // Internal exception will be caught. 1427 } else { 1428 trampoline_slot = next_slot_; 1429 free_slot_count_--; 1430 next_slot_ += kTrampolineSlotsSize; 1431 } 1432 return trampoline_slot; 1433 } 1434 1435 private: 1436 int start_; 1437 int end_; 1438 int next_slot_; 1439 int free_slot_count_; 1440 }; 1441 1442 int32_t get_trampoline_entry(int32_t pos); 1443 int unbound_labels_count_; 1444 // If trampoline is emitted, generated code is becoming large. As this is 1445 // already a slow case which can possibly break our code generation for the 1446 // extreme case, we use this information to trigger different mode of 1447 // branch instruction generation, where we use jump instructions rather 1448 // than regular branch instructions. 1449 bool trampoline_emitted_; 1450 static const int kInvalidSlotPos = -1; 1451 1452 // Internal reference positions, required for unbounded internal reference 1453 // labels. 1454 std::set<int> internal_reference_positions_; is_internal_reference(Label * L)1455 bool is_internal_reference(Label* L) { 1456 return internal_reference_positions_.find(L->pos()) != 1457 internal_reference_positions_.end(); 1458 } 1459 EmittedCompactBranchInstruction()1460 void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; } ClearCompactBranchState()1461 void ClearCompactBranchState() { prev_instr_compact_branch_ = false; } 1462 bool prev_instr_compact_branch_ = false; 1463 1464 Trampoline trampoline_; 1465 bool internal_trampoline_exception_; 1466 1467 friend class RegExpMacroAssemblerMIPS; 1468 friend class RelocInfo; 1469 friend class CodePatcher; 1470 friend class BlockTrampolinePoolScope; 1471 friend class EnsureSpace; 1472 }; 1473 1474 1475 class EnsureSpace BASE_EMBEDDED { 1476 public: EnsureSpace(Assembler * assembler)1477 explicit EnsureSpace(Assembler* assembler) { 1478 assembler->CheckBuffer(); 1479 } 1480 }; 1481 1482 } // namespace internal 1483 } // namespace v8 1484 1485 #endif // V8_ARM_ASSEMBLER_MIPS_H_ 1486