• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_H_
38 
39 #include <stdio.h>
40 
41 #include <set>
42 
43 #include "src/assembler.h"
44 #include "src/mips/constants-mips.h"
45 
46 namespace v8 {
47 namespace internal {
48 
49 // clang-format off
50 #define GENERAL_REGISTERS(V)                              \
51   V(zero_reg)  V(at)  V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3)  \
52   V(t0)  V(t1)  V(t2)  V(t3)  V(t4)  V(t5)  V(t6)  V(t7)  \
53   V(s0)  V(s1)  V(s2)  V(s3)  V(s4)  V(s5)  V(s6)  V(s7)  V(t8)  V(t9) \
54   V(k0)  V(k1)  V(gp)  V(sp)  V(fp)  V(ra)
55 
56 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
57   V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3) \
58   V(t0)  V(t1)  V(t2)  V(t3)  V(t4)  V(t5)  V(t6) V(s7)
59 
60 #define DOUBLE_REGISTERS(V)                               \
61   V(f0)  V(f1)  V(f2)  V(f3)  V(f4)  V(f5)  V(f6)  V(f7)  \
62   V(f8)  V(f9)  V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \
63   V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \
64   V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31)
65 
66 #define FLOAT_REGISTERS DOUBLE_REGISTERS
67 #define SIMD128_REGISTERS DOUBLE_REGISTERS
68 
69 #define ALLOCATABLE_DOUBLE_REGISTERS(V)                   \
70   V(f0)  V(f2)  V(f4)  V(f6)  V(f8)  V(f10) V(f12) V(f14) \
71   V(f16) V(f18) V(f20) V(f22) V(f24)
72 // clang-format on
73 
74 // CPU Registers.
75 //
76 // 1) We would prefer to use an enum, but enum values are assignment-
77 // compatible with int, which has caused code-generation bugs.
78 //
79 // 2) We would prefer to use a class instead of a struct but we don't like
80 // the register initialization to depend on the particular initialization
81 // order (which appears to be different on OS X, Linux, and Windows for the
82 // installed versions of C++ we tried). Using a struct permits C-style
83 // "initialization". Also, the Register objects cannot be const as this
84 // forces initialization stubs in MSVC, making us dependent on initialization
85 // order.
86 //
87 // 3) By not using an enum, we are possibly preventing the compiler from
88 // doing certain constant folds, which may significantly reduce the
89 // code generated for some assembly instructions (because they boil down
90 // to a few constants). If this is a problem, we could change the code
91 // such that we use an enum in optimized mode, and the struct in debug
92 // mode. This way we get the compile-time error checking in debug mode
93 // and best performance in optimized code.
94 
95 
96 // -----------------------------------------------------------------------------
97 // Implementation of Register and FPURegister.
98 
99 struct Register {
100   static const int kCpRegister = 23;  // cp (s7) is the 23rd register.
101 
102   enum Code {
103 #define REGISTER_CODE(R) kCode_##R,
104     GENERAL_REGISTERS(REGISTER_CODE)
105 #undef REGISTER_CODE
106         kAfterLast,
107     kCode_no_reg = -1
108   };
109 
110   static const int kNumRegisters = Code::kAfterLast;
111 
112 #if defined(V8_TARGET_LITTLE_ENDIAN)
113   static const int kMantissaOffset = 0;
114   static const int kExponentOffset = 4;
115 #elif defined(V8_TARGET_BIG_ENDIAN)
116   static const int kMantissaOffset = 4;
117   static const int kExponentOffset = 0;
118 #else
119 #error Unknown endianness
120 #endif
121 
122 
from_codeRegister123   static Register from_code(int code) {
124     DCHECK(code >= 0);
125     DCHECK(code < kNumRegisters);
126     Register r = {code};
127     return r;
128   }
is_validRegister129   bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isRegister130   bool is(Register reg) const { return reg_code == reg.reg_code; }
codeRegister131   int code() const {
132     DCHECK(is_valid());
133     return reg_code;
134   }
bitRegister135   int bit() const {
136     DCHECK(is_valid());
137     return 1 << reg_code;
138   }
139 
140   // Unfortunately we can't make this private in a struct.
141   int reg_code;
142 };
143 
144 // s7: context register
145 // s3: lithium scratch
146 // s4: lithium scratch2
147 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
148 GENERAL_REGISTERS(DECLARE_REGISTER)
149 #undef DECLARE_REGISTER
150 const Register no_reg = {Register::kCode_no_reg};
151 
152 
153 int ToNumber(Register reg);
154 
155 Register ToRegister(int num);
156 
157 static const bool kSimpleFPAliasing = true;
158 static const bool kSimdMaskRegisters = false;
159 
160 // Coprocessor register.
161 struct FPURegister {
162   enum Code {
163 #define REGISTER_CODE(R) kCode_##R,
164     DOUBLE_REGISTERS(REGISTER_CODE)
165 #undef REGISTER_CODE
166         kAfterLast,
167     kCode_no_reg = -1
168   };
169 
170   static const int kMaxNumRegisters = Code::kAfterLast;
171 
172   inline static int NumRegisters();
173 
174   // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
175   // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
176   // number of Double regs (64-bit regs, or FPU-reg-pairs).
177 
is_validFPURegister178   bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
isFPURegister179   bool is(FPURegister reg) const { return reg_code == reg.reg_code; }
lowFPURegister180   FPURegister low() const {
181     // Find low reg of a Double-reg pair, which is the reg itself.
182     DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
183     FPURegister reg;
184     reg.reg_code = reg_code;
185     DCHECK(reg.is_valid());
186     return reg;
187   }
highFPURegister188   FPURegister high() const {
189     // Find high reg of a Doubel-reg pair, which is reg + 1.
190     DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
191     FPURegister reg;
192     reg.reg_code = reg_code + 1;
193     DCHECK(reg.is_valid());
194     return reg;
195   }
196 
codeFPURegister197   int code() const {
198     DCHECK(is_valid());
199     return reg_code;
200   }
bitFPURegister201   int bit() const {
202     DCHECK(is_valid());
203     return 1 << reg_code;
204   }
205 
from_codeFPURegister206   static FPURegister from_code(int code) {
207     FPURegister r = {code};
208     return r;
209   }
setcodeFPURegister210   void setcode(int f) {
211     reg_code = f;
212     DCHECK(is_valid());
213   }
214   // Unfortunately we can't make this private in a struct.
215   int reg_code;
216 };
217 
218 // A few double registers are reserved: one as a scratch register and one to
219 // hold 0.0.
220 //  f28: 0.0
221 //  f30: scratch register.
222 
223 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
224 // 32-bit registers, f0 through f31. When used as 'double' they are used
225 // in pairs, starting with the even numbered register. So a double operation
226 // on f0 really uses f0 and f1.
227 // (Modern mips hardware also supports 32 64-bit registers, via setting
228 // (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
229 // but it is not in common use. Someday we will want to support this in v8.)
230 
231 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
232 typedef FPURegister FloatRegister;
233 
234 typedef FPURegister DoubleRegister;
235 
236 // TODO(mips) Define SIMD registers.
237 typedef FPURegister Simd128Register;
238 
239 const DoubleRegister no_freg = {-1};
240 
241 const DoubleRegister f0 = {0};  // Return value in hard float mode.
242 const DoubleRegister f1 = {1};
243 const DoubleRegister f2 = {2};
244 const DoubleRegister f3 = {3};
245 const DoubleRegister f4 = {4};
246 const DoubleRegister f5 = {5};
247 const DoubleRegister f6 = {6};
248 const DoubleRegister f7 = {7};
249 const DoubleRegister f8 = {8};
250 const DoubleRegister f9 = {9};
251 const DoubleRegister f10 = {10};
252 const DoubleRegister f11 = {11};
253 const DoubleRegister f12 = {12};  // Arg 0 in hard float mode.
254 const DoubleRegister f13 = {13};
255 const DoubleRegister f14 = {14};  // Arg 1 in hard float mode.
256 const DoubleRegister f15 = {15};
257 const DoubleRegister f16 = {16};
258 const DoubleRegister f17 = {17};
259 const DoubleRegister f18 = {18};
260 const DoubleRegister f19 = {19};
261 const DoubleRegister f20 = {20};
262 const DoubleRegister f21 = {21};
263 const DoubleRegister f22 = {22};
264 const DoubleRegister f23 = {23};
265 const DoubleRegister f24 = {24};
266 const DoubleRegister f25 = {25};
267 const DoubleRegister f26 = {26};
268 const DoubleRegister f27 = {27};
269 const DoubleRegister f28 = {28};
270 const DoubleRegister f29 = {29};
271 const DoubleRegister f30 = {30};
272 const DoubleRegister f31 = {31};
273 
274 // Register aliases.
275 // cp is assumed to be a callee saved register.
276 // Defined using #define instead of "static const Register&" because Clang
277 // complains otherwise when a compilation unit that includes this header
278 // doesn't use the variables.
279 #define kRootRegister s6
280 #define cp s7
281 #define kLithiumScratchReg s3
282 #define kLithiumScratchReg2 s4
283 #define kLithiumScratchDouble f30
284 #define kDoubleRegZero f28
285 // Used on mips32r6 for compare operations.
286 #define kDoubleCompareReg f26
287 
288 // FPU (coprocessor 1) control registers.
289 // Currently only FCSR (#31) is implemented.
290 struct FPUControlRegister {
is_validFPUControlRegister291   bool is_valid() const { return reg_code == kFCSRRegister; }
isFPUControlRegister292   bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; }
codeFPUControlRegister293   int code() const {
294     DCHECK(is_valid());
295     return reg_code;
296   }
bitFPUControlRegister297   int bit() const {
298     DCHECK(is_valid());
299     return 1 << reg_code;
300   }
setcodeFPUControlRegister301   void setcode(int f) {
302     reg_code = f;
303     DCHECK(is_valid());
304   }
305   // Unfortunately we can't make this private in a struct.
306   int reg_code;
307 };
308 
309 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
310 const FPUControlRegister FCSR = { kFCSRRegister };
311 
312 // -----------------------------------------------------------------------------
313 // Machine instruction Operands.
314 
315 // Class Operand represents a shifter operand in data processing instructions.
316 class Operand BASE_EMBEDDED {
317  public:
318   // Immediate.
319   INLINE(explicit Operand(int32_t immediate,
320          RelocInfo::Mode rmode = RelocInfo::NONE32));
321   INLINE(explicit Operand(const ExternalReference& f));
322   INLINE(explicit Operand(const char* s));
323   INLINE(explicit Operand(Object** opp));
324   INLINE(explicit Operand(Context** cpp));
325   explicit Operand(Handle<Object> handle);
326   INLINE(explicit Operand(Smi* value));
327 
328   // Register.
329   INLINE(explicit Operand(Register rm));
330 
331   // Return true if this is a register operand.
332   INLINE(bool is_reg() const);
333 
immediate()334   inline int32_t immediate() const {
335     DCHECK(!is_reg());
336     return imm32_;
337   }
338 
rm()339   Register rm() const { return rm_; }
340 
341  private:
342   Register rm_;
343   int32_t imm32_;  // Valid if rm_ == no_reg.
344   RelocInfo::Mode rmode_;
345 
346   friend class Assembler;
347   friend class MacroAssembler;
348 };
349 
350 
351 // On MIPS we have only one adressing mode with base_reg + offset.
352 // Class MemOperand represents a memory operand in load and store instructions.
353 class MemOperand : public Operand {
354  public:
355   // Immediate value attached to offset.
356   enum OffsetAddend {
357     offset_minus_one = -1,
358     offset_zero = 0
359   };
360 
361   explicit MemOperand(Register rn, int32_t offset = 0);
362   explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
363                       OffsetAddend offset_addend = offset_zero);
offset()364   int32_t offset() const { return offset_; }
365 
OffsetIsInt16Encodable()366   bool OffsetIsInt16Encodable() const {
367     return is_int16(offset_);
368   }
369 
370  private:
371   int32_t offset_;
372 
373   friend class Assembler;
374 };
375 
376 
377 class Assembler : public AssemblerBase {
378  public:
379   // Create an assembler. Instructions and relocation information are emitted
380   // into a buffer, with the instructions starting from the beginning and the
381   // relocation information starting from the end of the buffer. See CodeDesc
382   // for a detailed comment on the layout (globals.h).
383   //
384   // If the provided buffer is NULL, the assembler allocates and grows its own
385   // buffer, and buffer_size determines the initial buffer size. The buffer is
386   // owned by the assembler and deallocated upon destruction of the assembler.
387   //
388   // If the provided buffer is not NULL, the assembler uses the provided buffer
389   // for code generation and assumes its size to be buffer_size. If the buffer
390   // is too small, a fatal error occurs. No deallocation of the buffer is done
391   // upon destruction of the assembler.
392   Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()393   virtual ~Assembler() { }
394 
395   // GetCode emits any pending (non-emitted) code and fills the descriptor
396   // desc. GetCode() is idempotent; it returns the same result if no other
397   // Assembler functions are invoked in between GetCode() calls.
398   void GetCode(CodeDesc* desc);
399 
400   // Label operations & relative jumps (PPUM Appendix D).
401   //
402   // Takes a branch opcode (cc) and a label (L) and generates
403   // either a backward branch or a forward branch and links it
404   // to the label fixup chain. Usage:
405   //
406   // Label L;    // unbound label
407   // j(cc, &L);  // forward branch to unbound label
408   // bind(&L);   // bind label to the current pc
409   // j(cc, &L);  // backward branch to bound label
410   // bind(&L);   // illegal: a label may be bound only once
411   //
412   // Note: The same Label can be used for forward and backward branches
413   // but it may be bound only once.
414   void bind(Label* L);  // Binds an unbound label L to current code position.
415 
416   enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 };
417 
418   // Determines if Label is bound and near enough so that branch instruction
419   // can be used to reach it, instead of jump instruction.
420   bool is_near(Label* L);
421   bool is_near(Label* L, OffsetSize bits);
422   bool is_near_branch(Label* L);
is_near_pre_r6(Label * L)423   inline bool is_near_pre_r6(Label* L) {
424     DCHECK(!IsMipsArchVariant(kMips32r6));
425     return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
426   }
is_near_r6(Label * L)427   inline bool is_near_r6(Label* L) {
428     DCHECK(IsMipsArchVariant(kMips32r6));
429     return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize;
430   }
431 
432   int BranchOffset(Instr instr);
433 
434   // Returns the branch offset to the given label from the current code
435   // position. Links the label to the current position if it is still unbound.
436   // Manages the jump elimination optimization if the second parameter is true.
437   int32_t branch_offset_helper(Label* L, OffsetSize bits);
branch_offset(Label * L)438   inline int32_t branch_offset(Label* L) {
439     return branch_offset_helper(L, OffsetSize::kOffset16);
440   }
branch_offset21(Label * L)441   inline int32_t branch_offset21(Label* L) {
442     return branch_offset_helper(L, OffsetSize::kOffset21);
443   }
branch_offset26(Label * L)444   inline int32_t branch_offset26(Label* L) {
445     return branch_offset_helper(L, OffsetSize::kOffset26);
446   }
shifted_branch_offset(Label * L)447   inline int32_t shifted_branch_offset(Label* L) {
448     return branch_offset(L) >> 2;
449   }
shifted_branch_offset21(Label * L)450   inline int32_t shifted_branch_offset21(Label* L) {
451     return branch_offset21(L) >> 2;
452   }
shifted_branch_offset26(Label * L)453   inline int32_t shifted_branch_offset26(Label* L) {
454     return branch_offset26(L) >> 2;
455   }
456   uint32_t jump_address(Label* L);
457 
458   // Puts a labels target address at the given position.
459   // The high 8 bits are set to zero.
460   void label_at_put(Label* L, int at_offset);
461 
462   // Read/Modify the code target address in the branch/call instruction at pc.
463   static Address target_address_at(Address pc);
464   static void set_target_address_at(
465       Isolate* isolate, Address pc, Address target,
466       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
467   // On MIPS there is no Constant Pool so we skip that parameter.
INLINE(static Address target_address_at (Address pc,Address constant_pool))468   INLINE(static Address target_address_at(Address pc, Address constant_pool)) {
469     return target_address_at(pc);
470   }
INLINE(static void set_target_address_at (Isolate * isolate,Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))471   INLINE(static void set_target_address_at(
472       Isolate* isolate, Address pc, Address constant_pool, Address target,
473       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
474     set_target_address_at(isolate, pc, target, icache_flush_mode);
475   }
476   INLINE(static Address target_address_at(Address pc, Code* code));
477   INLINE(static void set_target_address_at(
478       Isolate* isolate, Address pc, Code* code, Address target,
479       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
480 
481   // Return the code target address at a call site from the return address
482   // of that call in the instruction stream.
483   inline static Address target_address_from_return_address(Address pc);
484 
485   static void QuietNaN(HeapObject* nan);
486 
487   // This sets the branch destination (which gets loaded at the call address).
488   // This is for calls and branches within generated code.  The serializer
489   // has already deserialized the lui/ori instructions etc.
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)490   inline static void deserialization_set_special_target_at(
491       Isolate* isolate, Address instruction_payload, Code* code,
492       Address target) {
493     set_target_address_at(
494         isolate,
495         instruction_payload - kInstructionsFor32BitConstant * kInstrSize, code,
496         target);
497   }
498 
499   // This sets the internal reference at the pc.
500   inline static void deserialization_set_target_internal_reference_at(
501       Isolate* isolate, Address pc, Address target,
502       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
503 
504   // Size of an instruction.
505   static const int kInstrSize = sizeof(Instr);
506 
507   // Difference between address of current opcode and target address offset.
508   static const int kBranchPCOffset = 4;
509 
510   // Here we are patching the address in the LUI/ORI instruction pair.
511   // These values are used in the serialization process and must be zero for
512   // MIPS platform, as Code, Embedded Object or External-reference pointers
513   // are split across two consecutive instructions and don't exist separately
514   // in the code, so the serializer should not step forwards in memory after
515   // a target is resolved and written.
516   static const int kSpecialTargetSize = 0;
517 
518   // Number of consecutive instructions used to store 32bit constant. This
519   // constant is used in RelocInfo::target_address_address() function to tell
520   // serializer address of the instruction that follows LUI/ORI instruction
521   // pair.
522   static const int kInstructionsFor32BitConstant = 2;
523 
524   // Distance between the instruction referring to the address of the call
525   // target and the return address.
526 #ifdef _MIPS_ARCH_MIPS32R6
527   static const int kCallTargetAddressOffset = 3 * kInstrSize;
528 #else
529   static const int kCallTargetAddressOffset = 4 * kInstrSize;
530 #endif
531 
532   // Distance between start of patched debug break slot and the emitted address
533   // to jump to.
534   static const int kPatchDebugBreakSlotAddressOffset = 4 * kInstrSize;
535 
536   // Difference between address of current opcode and value read from pc
537   // register.
538   static const int kPcLoadDelta = 4;
539 
540 #ifdef _MIPS_ARCH_MIPS32R6
541   static const int kDebugBreakSlotInstructions = 3;
542 #else
543   static const int kDebugBreakSlotInstructions = 4;
544 #endif
545   static const int kDebugBreakSlotLength =
546       kDebugBreakSlotInstructions * kInstrSize;
547 
548   // Max offset for instructions with 16-bit offset field
549   static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
550 
551   // Max offset for compact branch instructions with 26-bit offset field
552   static const int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1;
553 
554 #ifdef _MIPS_ARCH_MIPS32R6
555   static const int kTrampolineSlotsSize = 2 * kInstrSize;
556 #else
557   static const int kTrampolineSlotsSize = 4 * kInstrSize;
558 #endif
559 
560   // ---------------------------------------------------------------------------
561   // Code generation.
562 
563   // Insert the smallest number of nop instructions
564   // possible to align the pc offset to a multiple
565   // of m. m must be a power of 2 (>= 4).
566   void Align(int m);
567   // Insert the smallest number of zero bytes possible to align the pc offset
568   // to a mulitple of m. m must be a power of 2 (>= 2).
569   void DataAlign(int m);
570   // Aligns code to something that's optimal for a jump target for the platform.
571   void CodeTargetAlign();
572 
573   // Different nop operations are used by the code generator to detect certain
574   // states of the generated code.
575   enum NopMarkerTypes {
576     NON_MARKING_NOP = 0,
577     DEBUG_BREAK_NOP,
578     // IC markers.
579     PROPERTY_ACCESS_INLINED,
580     PROPERTY_ACCESS_INLINED_CONTEXT,
581     PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
582     // Helper values.
583     LAST_CODE_MARKER,
584     FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
585     // Code aging
586     CODE_AGE_MARKER_NOP = 6,
587     CODE_AGE_SEQUENCE_NOP
588   };
589 
590   // Type == 0 is the default non-marking nop. For mips this is a
591   // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
592   // marking, to avoid conflict with ssnop and ehb instructions.
593   void nop(unsigned int type = 0) {
594     DCHECK(type < 32);
595     Register nop_rt_reg = (type == 0) ? zero_reg : at;
596     sll(zero_reg, nop_rt_reg, type, true);
597   }
598 
599 
600   // --------Branch-and-jump-instructions----------
601   // We don't use likely variant of instructions.
602   void b(int16_t offset);
b(Label * L)603   inline void b(Label* L) { b(shifted_branch_offset(L)); }
604   void bal(int16_t offset);
bal(Label * L)605   inline void bal(Label* L) { bal(shifted_branch_offset(L)); }
606   void bc(int32_t offset);
bc(Label * L)607   inline void bc(Label* L) { bc(shifted_branch_offset26(L)); }
608   void balc(int32_t offset);
balc(Label * L)609   inline void balc(Label* L) { balc(shifted_branch_offset26(L)); }
610 
611   void beq(Register rs, Register rt, int16_t offset);
beq(Register rs,Register rt,Label * L)612   inline void beq(Register rs, Register rt, Label* L) {
613     beq(rs, rt, shifted_branch_offset(L));
614   }
615   void bgez(Register rs, int16_t offset);
616   void bgezc(Register rt, int16_t offset);
bgezc(Register rt,Label * L)617   inline void bgezc(Register rt, Label* L) {
618     bgezc(rt, shifted_branch_offset(L));
619   }
620   void bgeuc(Register rs, Register rt, int16_t offset);
bgeuc(Register rs,Register rt,Label * L)621   inline void bgeuc(Register rs, Register rt, Label* L) {
622     bgeuc(rs, rt, shifted_branch_offset(L));
623   }
624   void bgec(Register rs, Register rt, int16_t offset);
bgec(Register rs,Register rt,Label * L)625   inline void bgec(Register rs, Register rt, Label* L) {
626     bgec(rs, rt, shifted_branch_offset(L));
627   }
628   void bgezal(Register rs, int16_t offset);
629   void bgezalc(Register rt, int16_t offset);
bgezalc(Register rt,Label * L)630   inline void bgezalc(Register rt, Label* L) {
631     bgezalc(rt, shifted_branch_offset(L));
632   }
633   void bgezall(Register rs, int16_t offset);
bgezall(Register rs,Label * L)634   inline void bgezall(Register rs, Label* L) {
635     bgezall(rs, branch_offset(L) >> 2);
636   }
637   void bgtz(Register rs, int16_t offset);
638   void bgtzc(Register rt, int16_t offset);
bgtzc(Register rt,Label * L)639   inline void bgtzc(Register rt, Label* L) {
640     bgtzc(rt, shifted_branch_offset(L));
641   }
642   void blez(Register rs, int16_t offset);
643   void blezc(Register rt, int16_t offset);
blezc(Register rt,Label * L)644   inline void blezc(Register rt, Label* L) {
645     blezc(rt, shifted_branch_offset(L));
646   }
647   void bltz(Register rs, int16_t offset);
648   void bltzc(Register rt, int16_t offset);
bltzc(Register rt,Label * L)649   inline void bltzc(Register rt, Label* L) {
650     bltzc(rt, shifted_branch_offset(L));
651   }
652   void bltuc(Register rs, Register rt, int16_t offset);
bltuc(Register rs,Register rt,Label * L)653   inline void bltuc(Register rs, Register rt, Label* L) {
654     bltuc(rs, rt, shifted_branch_offset(L));
655   }
656   void bltc(Register rs, Register rt, int16_t offset);
bltc(Register rs,Register rt,Label * L)657   inline void bltc(Register rs, Register rt, Label* L) {
658     bltc(rs, rt, shifted_branch_offset(L));
659   }
660   void bltzal(Register rs, int16_t offset);
661   void blezalc(Register rt, int16_t offset);
blezalc(Register rt,Label * L)662   inline void blezalc(Register rt, Label* L) {
663     blezalc(rt, shifted_branch_offset(L));
664   }
665   void bltzalc(Register rt, int16_t offset);
bltzalc(Register rt,Label * L)666   inline void bltzalc(Register rt, Label* L) {
667     bltzalc(rt, shifted_branch_offset(L));
668   }
669   void bgtzalc(Register rt, int16_t offset);
bgtzalc(Register rt,Label * L)670   inline void bgtzalc(Register rt, Label* L) {
671     bgtzalc(rt, shifted_branch_offset(L));
672   }
673   void beqzalc(Register rt, int16_t offset);
beqzalc(Register rt,Label * L)674   inline void beqzalc(Register rt, Label* L) {
675     beqzalc(rt, shifted_branch_offset(L));
676   }
677   void beqc(Register rs, Register rt, int16_t offset);
beqc(Register rs,Register rt,Label * L)678   inline void beqc(Register rs, Register rt, Label* L) {
679     beqc(rs, rt, shifted_branch_offset(L));
680   }
681   void beqzc(Register rs, int32_t offset);
beqzc(Register rs,Label * L)682   inline void beqzc(Register rs, Label* L) {
683     beqzc(rs, shifted_branch_offset21(L));
684   }
685   void bnezalc(Register rt, int16_t offset);
bnezalc(Register rt,Label * L)686   inline void bnezalc(Register rt, Label* L) {
687     bnezalc(rt, shifted_branch_offset(L));
688   }
689   void bnec(Register rs, Register rt, int16_t offset);
bnec(Register rs,Register rt,Label * L)690   inline void bnec(Register rs, Register rt, Label* L) {
691     bnec(rs, rt, shifted_branch_offset(L));
692   }
693   void bnezc(Register rt, int32_t offset);
bnezc(Register rt,Label * L)694   inline void bnezc(Register rt, Label* L) {
695     bnezc(rt, shifted_branch_offset21(L));
696   }
697   void bne(Register rs, Register rt, int16_t offset);
bne(Register rs,Register rt,Label * L)698   inline void bne(Register rs, Register rt, Label* L) {
699     bne(rs, rt, shifted_branch_offset(L));
700   }
701   void bovc(Register rs, Register rt, int16_t offset);
bovc(Register rs,Register rt,Label * L)702   inline void bovc(Register rs, Register rt, Label* L) {
703     bovc(rs, rt, shifted_branch_offset(L));
704   }
705   void bnvc(Register rs, Register rt, int16_t offset);
bnvc(Register rs,Register rt,Label * L)706   inline void bnvc(Register rs, Register rt, Label* L) {
707     bnvc(rs, rt, shifted_branch_offset(L));
708   }
709 
710   // Never use the int16_t b(l)cond version with a branch offset
711   // instead of using the Label* version.
712 
713   // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
714   void j(int32_t target);
715   void jal(int32_t target);
716   void jalr(Register rs, Register rd = ra);
717   void jr(Register target);
718   void jic(Register rt, int16_t offset);
719   void jialc(Register rt, int16_t offset);
720 
721 
722   // -------Data-processing-instructions---------
723 
724   // Arithmetic.
725   void addu(Register rd, Register rs, Register rt);
726   void subu(Register rd, Register rs, Register rt);
727   void mult(Register rs, Register rt);
728   void multu(Register rs, Register rt);
729   void div(Register rs, Register rt);
730   void divu(Register rs, Register rt);
731   void div(Register rd, Register rs, Register rt);
732   void divu(Register rd, Register rs, Register rt);
733   void mod(Register rd, Register rs, Register rt);
734   void modu(Register rd, Register rs, Register rt);
735   void mul(Register rd, Register rs, Register rt);
736   void muh(Register rd, Register rs, Register rt);
737   void mulu(Register rd, Register rs, Register rt);
738   void muhu(Register rd, Register rs, Register rt);
739 
740   void addiu(Register rd, Register rs, int32_t j);
741 
742   // Logical.
743   void and_(Register rd, Register rs, Register rt);
744   void or_(Register rd, Register rs, Register rt);
745   void xor_(Register rd, Register rs, Register rt);
746   void nor(Register rd, Register rs, Register rt);
747 
748   void andi(Register rd, Register rs, int32_t j);
749   void ori(Register rd, Register rs, int32_t j);
750   void xori(Register rd, Register rs, int32_t j);
751   void lui(Register rd, int32_t j);
752   void aui(Register rs, Register rt, int32_t j);
753 
754   // Shifts.
755   // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
756   // and may cause problems in normal code. coming_from_nop makes sure this
757   // doesn't happen.
758   void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
759   void sllv(Register rd, Register rt, Register rs);
760   void srl(Register rd, Register rt, uint16_t sa);
761   void srlv(Register rd, Register rt, Register rs);
762   void sra(Register rt, Register rd, uint16_t sa);
763   void srav(Register rt, Register rd, Register rs);
764   void rotr(Register rd, Register rt, uint16_t sa);
765   void rotrv(Register rd, Register rt, Register rs);
766 
767   // ------------Memory-instructions-------------
768 
769   void lb(Register rd, const MemOperand& rs);
770   void lbu(Register rd, const MemOperand& rs);
771   void lh(Register rd, const MemOperand& rs);
772   void lhu(Register rd, const MemOperand& rs);
773   void lw(Register rd, const MemOperand& rs);
774   void lwl(Register rd, const MemOperand& rs);
775   void lwr(Register rd, const MemOperand& rs);
776   void sb(Register rd, const MemOperand& rs);
777   void sh(Register rd, const MemOperand& rs);
778   void sw(Register rd, const MemOperand& rs);
779   void swl(Register rd, const MemOperand& rs);
780   void swr(Register rd, const MemOperand& rs);
781 
782 
783   // ---------PC-Relative-instructions-----------
784 
785   void addiupc(Register rs, int32_t imm19);
786   void lwpc(Register rs, int32_t offset19);
787   void auipc(Register rs, int16_t imm16);
788   void aluipc(Register rs, int16_t imm16);
789 
790 
791   // ----------------Prefetch--------------------
792 
793   void pref(int32_t hint, const MemOperand& rs);
794 
795 
796   // -------------Misc-instructions--------------
797 
798   // Break / Trap instructions.
799   void break_(uint32_t code, bool break_as_stop = false);
800   void stop(const char* msg, uint32_t code = kMaxStopCode);
801   void tge(Register rs, Register rt, uint16_t code);
802   void tgeu(Register rs, Register rt, uint16_t code);
803   void tlt(Register rs, Register rt, uint16_t code);
804   void tltu(Register rs, Register rt, uint16_t code);
805   void teq(Register rs, Register rt, uint16_t code);
806   void tne(Register rs, Register rt, uint16_t code);
807 
808   // Memory barrier instruction.
809   void sync();
810 
811   // Move from HI/LO register.
812   void mfhi(Register rd);
813   void mflo(Register rd);
814 
815   // Set on less than.
816   void slt(Register rd, Register rs, Register rt);
817   void sltu(Register rd, Register rs, Register rt);
818   void slti(Register rd, Register rs, int32_t j);
819   void sltiu(Register rd, Register rs, int32_t j);
820 
821   // Conditional move.
822   void movz(Register rd, Register rs, Register rt);
823   void movn(Register rd, Register rs, Register rt);
824   void movt(Register rd, Register rs, uint16_t cc = 0);
825   void movf(Register rd, Register rs, uint16_t cc = 0);
826 
827   void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
828   void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
829   void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
830   void seleqz(Register rd, Register rs, Register rt);
831   void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
832               FPURegister ft);
833   void selnez(Register rd, Register rs, Register rt);
834   void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
835               FPURegister ft);
836   void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
837   void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
838   void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
839   void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
840 
841   void movz_s(FPURegister fd, FPURegister fs, Register rt);
842   void movz_d(FPURegister fd, FPURegister fs, Register rt);
843   void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
844   void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
845   void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
846   void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
847   void movn_s(FPURegister fd, FPURegister fs, Register rt);
848   void movn_d(FPURegister fd, FPURegister fs, Register rt);
849   // Bit twiddling.
850   void clz(Register rd, Register rs);
851   void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
852   void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
853   void bitswap(Register rd, Register rt);
854   void align(Register rd, Register rs, Register rt, uint8_t bp);
855 
856   void wsbh(Register rd, Register rt);
857   void seh(Register rd, Register rt);
858   void seb(Register rd, Register rt);
859 
860   // --------Coprocessor-instructions----------------
861 
862   // Load, store, and move.
863   void lwc1(FPURegister fd, const MemOperand& src);
864   void ldc1(FPURegister fd, const MemOperand& src);
865 
866   void swc1(FPURegister fs, const MemOperand& dst);
867   void sdc1(FPURegister fs, const MemOperand& dst);
868 
869   void mtc1(Register rt, FPURegister fs);
870   void mthc1(Register rt, FPURegister fs);
871 
872   void mfc1(Register rt, FPURegister fs);
873   void mfhc1(Register rt, FPURegister fs);
874 
875   void ctc1(Register rt, FPUControlRegister fs);
876   void cfc1(Register rt, FPUControlRegister fs);
877 
878   // Arithmetic.
879   void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
880   void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
881   void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
882   void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
883   void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
884   void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
885   void madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
886   void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
887   void msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
888   void msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
889   void maddf_s(FPURegister fd, FPURegister fs, FPURegister ft);
890   void maddf_d(FPURegister fd, FPURegister fs, FPURegister ft);
891   void msubf_s(FPURegister fd, FPURegister fs, FPURegister ft);
892   void msubf_d(FPURegister fd, FPURegister fs, FPURegister ft);
893   void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
894   void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
895   void abs_s(FPURegister fd, FPURegister fs);
896   void abs_d(FPURegister fd, FPURegister fs);
897   void mov_d(FPURegister fd, FPURegister fs);
898   void mov_s(FPURegister fd, FPURegister fs);
899   void neg_s(FPURegister fd, FPURegister fs);
900   void neg_d(FPURegister fd, FPURegister fs);
901   void sqrt_s(FPURegister fd, FPURegister fs);
902   void sqrt_d(FPURegister fd, FPURegister fs);
903   void rsqrt_s(FPURegister fd, FPURegister fs);
904   void rsqrt_d(FPURegister fd, FPURegister fs);
905   void recip_d(FPURegister fd, FPURegister fs);
906   void recip_s(FPURegister fd, FPURegister fs);
907 
908   // Conversion.
909   void cvt_w_s(FPURegister fd, FPURegister fs);
910   void cvt_w_d(FPURegister fd, FPURegister fs);
911   void trunc_w_s(FPURegister fd, FPURegister fs);
912   void trunc_w_d(FPURegister fd, FPURegister fs);
913   void round_w_s(FPURegister fd, FPURegister fs);
914   void round_w_d(FPURegister fd, FPURegister fs);
915   void floor_w_s(FPURegister fd, FPURegister fs);
916   void floor_w_d(FPURegister fd, FPURegister fs);
917   void ceil_w_s(FPURegister fd, FPURegister fs);
918   void ceil_w_d(FPURegister fd, FPURegister fs);
919   void rint_s(FPURegister fd, FPURegister fs);
920   void rint_d(FPURegister fd, FPURegister fs);
921   void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
922 
923   void cvt_l_s(FPURegister fd, FPURegister fs);
924   void cvt_l_d(FPURegister fd, FPURegister fs);
925   void trunc_l_s(FPURegister fd, FPURegister fs);
926   void trunc_l_d(FPURegister fd, FPURegister fs);
927   void round_l_s(FPURegister fd, FPURegister fs);
928   void round_l_d(FPURegister fd, FPURegister fs);
929   void floor_l_s(FPURegister fd, FPURegister fs);
930   void floor_l_d(FPURegister fd, FPURegister fs);
931   void ceil_l_s(FPURegister fd, FPURegister fs);
932   void ceil_l_d(FPURegister fd, FPURegister fs);
933 
934   void class_s(FPURegister fd, FPURegister fs);
935   void class_d(FPURegister fd, FPURegister fs);
936 
937   void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
938   void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
939   void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
940   void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
941   void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
942   void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
943   void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
944   void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
945   void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
946   void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
947   void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
948   void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
949 
950   void cvt_s_w(FPURegister fd, FPURegister fs);
951   void cvt_s_l(FPURegister fd, FPURegister fs);
952   void cvt_s_d(FPURegister fd, FPURegister fs);
953 
954   void cvt_d_w(FPURegister fd, FPURegister fs);
955   void cvt_d_l(FPURegister fd, FPURegister fs);
956   void cvt_d_s(FPURegister fd, FPURegister fs);
957 
958   // Conditions and branches for MIPSr6.
959   void cmp(FPUCondition cond, SecondaryField fmt,
960          FPURegister fd, FPURegister ft, FPURegister fs);
961   void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
962   void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
963 
964   void bc1eqz(int16_t offset, FPURegister ft);
bc1eqz(Label * L,FPURegister ft)965   inline void bc1eqz(Label* L, FPURegister ft) {
966     bc1eqz(shifted_branch_offset(L), ft);
967   }
968   void bc1nez(int16_t offset, FPURegister ft);
bc1nez(Label * L,FPURegister ft)969   inline void bc1nez(Label* L, FPURegister ft) {
970     bc1nez(shifted_branch_offset(L), ft);
971   }
972 
973   // Conditions and branches for non MIPSr6.
974   void c(FPUCondition cond, SecondaryField fmt,
975          FPURegister ft, FPURegister fs, uint16_t cc = 0);
976   void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
977   void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
978 
979   void bc1f(int16_t offset, uint16_t cc = 0);
980   inline void bc1f(Label* L, uint16_t cc = 0) {
981     bc1f(shifted_branch_offset(L), cc);
982   }
983   void bc1t(int16_t offset, uint16_t cc = 0);
984   inline void bc1t(Label* L, uint16_t cc = 0) {
985     bc1t(shifted_branch_offset(L), cc);
986   }
987   void fcmp(FPURegister src1, const double src2, FPUCondition cond);
988 
989   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)990   int SizeOfCodeGeneratedSince(Label* label) {
991     return pc_offset() - label->pos();
992   }
993 
994   // Check the number of instructions generated from label to here.
InstructionsGeneratedSince(Label * label)995   int InstructionsGeneratedSince(Label* label) {
996     return SizeOfCodeGeneratedSince(label) / kInstrSize;
997   }
998 
999   // Class for scoping postponing the trampoline pool generation.
1000   class BlockTrampolinePoolScope {
1001    public:
BlockTrampolinePoolScope(Assembler * assem)1002     explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
1003       assem_->StartBlockTrampolinePool();
1004     }
~BlockTrampolinePoolScope()1005     ~BlockTrampolinePoolScope() {
1006       assem_->EndBlockTrampolinePool();
1007     }
1008 
1009    private:
1010     Assembler* assem_;
1011 
1012     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1013   };
1014 
1015   // Class for postponing the assembly buffer growth. Typically used for
1016   // sequences of instructions that must be emitted as a unit, before
1017   // buffer growth (and relocation) can occur.
1018   // This blocking scope is not nestable.
1019   class BlockGrowBufferScope {
1020    public:
BlockGrowBufferScope(Assembler * assem)1021     explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1022       assem_->StartBlockGrowBuffer();
1023     }
~BlockGrowBufferScope()1024     ~BlockGrowBufferScope() {
1025       assem_->EndBlockGrowBuffer();
1026     }
1027 
1028    private:
1029     Assembler* assem_;
1030 
1031     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1032   };
1033 
1034   // Debugging.
1035 
1036   // Mark address of a debug break slot.
1037   void RecordDebugBreakSlot(RelocInfo::Mode mode);
1038 
1039   // Record the AST id of the CallIC being compiled, so that it can be placed
1040   // in the relocation information.
SetRecordedAstId(TypeFeedbackId ast_id)1041   void SetRecordedAstId(TypeFeedbackId ast_id) {
1042     DCHECK(recorded_ast_id_.IsNone());
1043     recorded_ast_id_ = ast_id;
1044   }
1045 
RecordedAstId()1046   TypeFeedbackId RecordedAstId() {
1047     DCHECK(!recorded_ast_id_.IsNone());
1048     return recorded_ast_id_;
1049   }
1050 
ClearRecordedAstId()1051   void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1052 
1053   // Record a comment relocation entry that can be used by a disassembler.
1054   // Use --code-comments to enable.
1055   void RecordComment(const char* msg);
1056 
1057   // Record a deoptimization reason that can be used by a log or cpu profiler.
1058   // Use --trace-deopt to enable.
1059   void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
1060                          int id);
1061 
1062   static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
1063                                        intptr_t pc_delta);
1064 
1065   // Writes a single byte or word of data in the code stream.  Used for
1066   // inline tables, e.g., jump-tables.
1067   void db(uint8_t data);
1068   void dd(uint32_t data);
1069   void dq(uint64_t data);
dp(uintptr_t data)1070   void dp(uintptr_t data) { dd(data); }
1071   void dd(Label* label);
1072 
1073   // Postpone the generation of the trampoline pool for the specified number of
1074   // instructions.
1075   void BlockTrampolinePoolFor(int instructions);
1076 
1077   // Check if there is less than kGap bytes available in the buffer.
1078   // If this is the case, we need to grow the buffer before emitting
1079   // an instruction or relocation information.
overflow()1080   inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1081 
1082   // Get the number of bytes available in the buffer.
available_space()1083   inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1084 
1085   // Read/patch instructions.
instr_at(byte * pc)1086   static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
instr_at_put(byte * pc,Instr instr)1087   static void instr_at_put(byte* pc, Instr instr) {
1088     *reinterpret_cast<Instr*>(pc) = instr;
1089   }
instr_at(int pos)1090   Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
instr_at_put(int pos,Instr instr)1091   void instr_at_put(int pos, Instr instr) {
1092     *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1093   }
1094 
1095   // Check if an instruction is a branch of some kind.
1096   static bool IsBranch(Instr instr);
1097   static bool IsBc(Instr instr);
1098   static bool IsBzc(Instr instr);
1099   static bool IsBeq(Instr instr);
1100   static bool IsBne(Instr instr);
1101   static bool IsBeqzc(Instr instr);
1102   static bool IsBnezc(Instr instr);
1103   static bool IsBeqc(Instr instr);
1104   static bool IsBnec(Instr instr);
1105   static bool IsJicOrJialc(Instr instr);
1106 
1107   static bool IsJump(Instr instr);
1108   static bool IsJ(Instr instr);
1109   static bool IsLui(Instr instr);
1110   static bool IsOri(Instr instr);
1111 
1112   static bool IsJal(Instr instr);
1113   static bool IsJr(Instr instr);
1114   static bool IsJalr(Instr instr);
1115 
1116   static bool IsNop(Instr instr, unsigned int type);
1117   static bool IsPop(Instr instr);
1118   static bool IsPush(Instr instr);
1119   static bool IsLwRegFpOffset(Instr instr);
1120   static bool IsSwRegFpOffset(Instr instr);
1121   static bool IsLwRegFpNegOffset(Instr instr);
1122   static bool IsSwRegFpNegOffset(Instr instr);
1123 
1124   static Register GetRtReg(Instr instr);
1125   static Register GetRsReg(Instr instr);
1126   static Register GetRdReg(Instr instr);
1127 
1128   static uint32_t GetRt(Instr instr);
1129   static uint32_t GetRtField(Instr instr);
1130   static uint32_t GetRs(Instr instr);
1131   static uint32_t GetRsField(Instr instr);
1132   static uint32_t GetRd(Instr instr);
1133   static uint32_t GetRdField(Instr instr);
1134   static uint32_t GetSa(Instr instr);
1135   static uint32_t GetSaField(Instr instr);
1136   static uint32_t GetOpcodeField(Instr instr);
1137   static uint32_t GetFunction(Instr instr);
1138   static uint32_t GetFunctionField(Instr instr);
1139   static uint32_t GetImmediate16(Instr instr);
1140   static uint32_t GetLabelConst(Instr instr);
1141 
1142   static int32_t GetBranchOffset(Instr instr);
1143   static bool IsLw(Instr instr);
1144   static int16_t GetLwOffset(Instr instr);
1145   static int16_t GetJicOrJialcOffset(Instr instr);
1146   static int16_t GetLuiOffset(Instr instr);
1147   static Instr SetLwOffset(Instr instr, int16_t offset);
1148 
1149   static bool IsSw(Instr instr);
1150   static Instr SetSwOffset(Instr instr, int16_t offset);
1151   static bool IsAddImmediate(Instr instr);
1152   static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1153   static uint32_t CreateTargetAddress(Instr instr_lui, Instr instr_jic);
1154   static void UnpackTargetAddress(uint32_t address, int16_t& lui_offset,
1155                                   int16_t& jic_offset);
1156   static void UnpackTargetAddressUnsigned(uint32_t address,
1157                                           uint32_t& lui_offset,
1158                                           uint32_t& jic_offset);
1159 
1160   static bool IsAndImmediate(Instr instr);
1161   static bool IsEmittedConstant(Instr instr);
1162 
1163   void CheckTrampolinePool();
1164 
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1165   void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1166                                           ConstantPoolEntry::Access access,
1167                                           ConstantPoolEntry::Type type) {
1168     // No embedded constant pool support.
1169     UNREACHABLE();
1170   }
1171 
IsPrevInstrCompactBranch()1172   bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; }
IsCompactBranchSupported()1173   static bool IsCompactBranchSupported() {
1174     return IsMipsArchVariant(kMips32r6);
1175   }
1176 
UnboundLabelsCount()1177   inline int UnboundLabelsCount() { return unbound_labels_count_; }
1178 
1179  protected:
1180   // Load Scaled Address instruction.
1181   void lsa(Register rd, Register rt, Register rs, uint8_t sa);
1182 
1183   // Helpers.
1184   void LoadRegPlusOffsetToAt(const MemOperand& src);
1185   int32_t LoadRegPlusUpperOffsetPartToAt(const MemOperand& src);
1186   int32_t LoadUpperOffsetForTwoMemoryAccesses(const MemOperand& src);
1187 
1188   // Relocation for a type-recording IC has the AST id added to it.  This
1189   // member variable is a way to pass the information from the call site to
1190   // the relocation info.
1191   TypeFeedbackId recorded_ast_id_;
1192 
buffer_space()1193   int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1194 
1195   // Decode branch instruction at pos and return branch target pos.
1196   int target_at(int pos, bool is_internal);
1197 
1198   // Patch branch instruction at pos to branch to given branch target pos.
1199   void target_at_put(int pos, int target_pos, bool is_internal);
1200 
1201   // Say if we need to relocate with this mode.
1202   bool MustUseReg(RelocInfo::Mode rmode);
1203 
1204   // Record reloc info for current pc_.
1205   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1206 
1207   // Block the emission of the trampoline pool before pc_offset.
BlockTrampolinePoolBefore(int pc_offset)1208   void BlockTrampolinePoolBefore(int pc_offset) {
1209     if (no_trampoline_pool_before_ < pc_offset)
1210       no_trampoline_pool_before_ = pc_offset;
1211   }
1212 
StartBlockTrampolinePool()1213   void StartBlockTrampolinePool() {
1214     trampoline_pool_blocked_nesting_++;
1215   }
1216 
EndBlockTrampolinePool()1217   void EndBlockTrampolinePool() {
1218     trampoline_pool_blocked_nesting_--;
1219   }
1220 
is_trampoline_pool_blocked()1221   bool is_trampoline_pool_blocked() const {
1222     return trampoline_pool_blocked_nesting_ > 0;
1223   }
1224 
has_exception()1225   bool has_exception() const {
1226     return internal_trampoline_exception_;
1227   }
1228 
1229   void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1230 
is_trampoline_emitted()1231   bool is_trampoline_emitted() const {
1232     return trampoline_emitted_;
1233   }
1234 
1235   // Temporarily block automatic assembly buffer growth.
StartBlockGrowBuffer()1236   void StartBlockGrowBuffer() {
1237     DCHECK(!block_buffer_growth_);
1238     block_buffer_growth_ = true;
1239   }
1240 
EndBlockGrowBuffer()1241   void EndBlockGrowBuffer() {
1242     DCHECK(block_buffer_growth_);
1243     block_buffer_growth_ = false;
1244   }
1245 
is_buffer_growth_blocked()1246   bool is_buffer_growth_blocked() const {
1247     return block_buffer_growth_;
1248   }
1249 
EmitForbiddenSlotInstruction()1250   void EmitForbiddenSlotInstruction() {
1251     if (IsPrevInstrCompactBranch()) {
1252       nop();
1253     }
1254   }
1255 
1256   inline void CheckTrampolinePoolQuick(int extra_instructions = 0);
1257 
1258   inline void CheckBuffer();
1259 
1260  private:
1261   inline static void set_target_internal_reference_encoded_at(Address pc,
1262                                                               Address target);
1263 
1264   // Buffer size and constant pool distance are checked together at regular
1265   // intervals of kBufferCheckInterval emitted bytes.
1266   static const int kBufferCheckInterval = 1*KB/2;
1267 
1268   // Code generation.
1269   // The relocation writer's position is at least kGap bytes below the end of
1270   // the generated instructions. This is so that multi-instruction sequences do
1271   // not have to check for overflow. The same is true for writes of large
1272   // relocation info entries.
1273   static const int kGap = 32;
1274 
1275 
1276   // Repeated checking whether the trampoline pool should be emitted is rather
1277   // expensive. By default we only check again once a number of instructions
1278   // has been generated.
1279   static const int kCheckConstIntervalInst = 32;
1280   static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1281 
1282   int next_buffer_check_;  // pc offset of next buffer check.
1283 
1284   // Emission of the trampoline pool may be blocked in some code sequences.
1285   int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1286   int no_trampoline_pool_before_;  // Block emission before this pc offset.
1287 
1288   // Keep track of the last emitted pool to guarantee a maximal distance.
1289   int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1290 
1291   // Automatic growth of the assembly buffer may be blocked for some sequences.
1292   bool block_buffer_growth_;  // Block growth when true.
1293 
1294   // Relocation information generation.
1295   // Each relocation is encoded as a variable size value.
1296   static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1297   RelocInfoWriter reloc_info_writer;
1298 
1299   // The bound position, before this we cannot do instruction elimination.
1300   int last_bound_pos_;
1301 
1302   // Readable constants for compact branch handling in emit()
1303   enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true };
1304 
1305   // Code emission.
1306   void GrowBuffer();
1307   inline void emit(Instr x,
1308                    CompactBranchType is_compact_branch = CompactBranchType::NO);
1309   inline void emit(uint64_t x);
1310   inline void CheckForEmitInForbiddenSlot();
1311   template <typename T>
1312   inline void EmitHelper(T x);
1313   inline void EmitHelper(Instr x, CompactBranchType is_compact_branch);
1314 
1315   // Instruction generation.
1316   // We have 3 different kind of encoding layout on MIPS.
1317   // However due to many different types of objects encoded in the same fields
1318   // we have quite a few aliases for each mode.
1319   // Using the same structure to refer to Register and FPURegister would spare a
1320   // few aliases, but mixing both does not look clean to me.
1321   // Anyway we could surely implement this differently.
1322 
1323   void GenInstrRegister(Opcode opcode,
1324                         Register rs,
1325                         Register rt,
1326                         Register rd,
1327                         uint16_t sa = 0,
1328                         SecondaryField func = NULLSF);
1329 
1330   void GenInstrRegister(Opcode opcode,
1331                         Register rs,
1332                         Register rt,
1333                         uint16_t msb,
1334                         uint16_t lsb,
1335                         SecondaryField func);
1336 
1337   void GenInstrRegister(Opcode opcode,
1338                         SecondaryField fmt,
1339                         FPURegister ft,
1340                         FPURegister fs,
1341                         FPURegister fd,
1342                         SecondaryField func = NULLSF);
1343 
1344   void GenInstrRegister(Opcode opcode,
1345                         FPURegister fr,
1346                         FPURegister ft,
1347                         FPURegister fs,
1348                         FPURegister fd,
1349                         SecondaryField func = NULLSF);
1350 
1351   void GenInstrRegister(Opcode opcode,
1352                         SecondaryField fmt,
1353                         Register rt,
1354                         FPURegister fs,
1355                         FPURegister fd,
1356                         SecondaryField func = NULLSF);
1357 
1358   void GenInstrRegister(Opcode opcode,
1359                         SecondaryField fmt,
1360                         Register rt,
1361                         FPUControlRegister fs,
1362                         SecondaryField func = NULLSF);
1363 
1364   void GenInstrImmediate(
1365       Opcode opcode, Register rs, Register rt, int32_t j,
1366       CompactBranchType is_compact_branch = CompactBranchType::NO);
1367   void GenInstrImmediate(
1368       Opcode opcode, Register rs, SecondaryField SF, int32_t j,
1369       CompactBranchType is_compact_branch = CompactBranchType::NO);
1370   void GenInstrImmediate(
1371       Opcode opcode, Register r1, FPURegister r2, int32_t j,
1372       CompactBranchType is_compact_branch = CompactBranchType::NO);
1373   void GenInstrImmediate(
1374       Opcode opcode, Register rs, int32_t offset21,
1375       CompactBranchType is_compact_branch = CompactBranchType::NO);
1376   void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21);
1377   void GenInstrImmediate(
1378       Opcode opcode, int32_t offset26,
1379       CompactBranchType is_compact_branch = CompactBranchType::NO);
1380 
1381 
1382   void GenInstrJump(Opcode opcode,
1383                      uint32_t address);
1384 
1385 
1386   // Labels.
1387   void print(Label* L);
1388   void bind_to(Label* L, int pos);
1389   void next(Label* L, bool is_internal);
1390 
1391   // One trampoline consists of:
1392   // - space for trampoline slots,
1393   // - space for labels.
1394   //
1395   // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1396   // Space for trampoline slots preceeds space for labels. Each label is of one
1397   // instruction size, so total amount for labels is equal to
1398   // label_count *  kInstrSize.
1399   class Trampoline {
1400    public:
Trampoline()1401     Trampoline() {
1402       start_ = 0;
1403       next_slot_ = 0;
1404       free_slot_count_ = 0;
1405       end_ = 0;
1406     }
Trampoline(int start,int slot_count)1407     Trampoline(int start, int slot_count) {
1408       start_ = start;
1409       next_slot_ = start;
1410       free_slot_count_ = slot_count;
1411       end_ = start + slot_count * kTrampolineSlotsSize;
1412     }
start()1413     int start() {
1414       return start_;
1415     }
end()1416     int end() {
1417       return end_;
1418     }
take_slot()1419     int take_slot() {
1420       int trampoline_slot = kInvalidSlotPos;
1421       if (free_slot_count_ <= 0) {
1422         // We have run out of space on trampolines.
1423         // Make sure we fail in debug mode, so we become aware of each case
1424         // when this happens.
1425         DCHECK(0);
1426         // Internal exception will be caught.
1427       } else {
1428         trampoline_slot = next_slot_;
1429         free_slot_count_--;
1430         next_slot_ += kTrampolineSlotsSize;
1431       }
1432       return trampoline_slot;
1433     }
1434 
1435    private:
1436     int start_;
1437     int end_;
1438     int next_slot_;
1439     int free_slot_count_;
1440   };
1441 
1442   int32_t get_trampoline_entry(int32_t pos);
1443   int unbound_labels_count_;
1444   // If trampoline is emitted, generated code is becoming large. As this is
1445   // already a slow case which can possibly break our code generation for the
1446   // extreme case, we use this information to trigger different mode of
1447   // branch instruction generation, where we use jump instructions rather
1448   // than regular branch instructions.
1449   bool trampoline_emitted_;
1450   static const int kInvalidSlotPos = -1;
1451 
1452   // Internal reference positions, required for unbounded internal reference
1453   // labels.
1454   std::set<int> internal_reference_positions_;
is_internal_reference(Label * L)1455   bool is_internal_reference(Label* L) {
1456     return internal_reference_positions_.find(L->pos()) !=
1457            internal_reference_positions_.end();
1458   }
1459 
EmittedCompactBranchInstruction()1460   void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; }
ClearCompactBranchState()1461   void ClearCompactBranchState() { prev_instr_compact_branch_ = false; }
1462   bool prev_instr_compact_branch_ = false;
1463 
1464   Trampoline trampoline_;
1465   bool internal_trampoline_exception_;
1466 
1467   friend class RegExpMacroAssemblerMIPS;
1468   friend class RelocInfo;
1469   friend class CodePatcher;
1470   friend class BlockTrampolinePoolScope;
1471   friend class EnsureSpace;
1472 };
1473 
1474 
1475 class EnsureSpace BASE_EMBEDDED {
1476  public:
EnsureSpace(Assembler * assembler)1477   explicit EnsureSpace(Assembler* assembler) {
1478     assembler->CheckBuffer();
1479   }
1480 };
1481 
1482 }  // namespace internal
1483 }  // namespace v8
1484 
1485 #endif  // V8_ARM_ASSEMBLER_MIPS_H_
1486