1 /** Compute the matrix inverse via Gauss-Jordan elimination.
2 * This program uses only barriers to separate computation steps but no
3 * mutexes. It is an example of a race-free program on which no data races
4 * are reported by the happens-before algorithm (drd), but a lot of data races
5 * (all false positives) are reported by the Eraser-algorithm (helgrind).
6 */
7
8
9 #define _GNU_SOURCE
10
11 /***********************/
12 /* Include directives. */
13 /***********************/
14
15 #include <assert.h>
16 #include <math.h>
17 #include <limits.h> // PTHREAD_STACK_MIN
18 #include <pthread.h>
19 #include <stdio.h>
20 #include <stdlib.h>
21 #include <unistd.h> // getopt()
22
23
24 /*********************/
25 /* Type definitions. */
26 /*********************/
27
28 typedef double elem_t;
29
30 struct gj_threadinfo
31 {
32 pthread_barrier_t* b;
33 pthread_t tid;
34 elem_t* a;
35 int rows;
36 int cols;
37 int r0;
38 int r1;
39 };
40
41
42 /********************/
43 /* Local variables. */
44 /********************/
45
46 static int s_nthread = 1;
47
48
49 /*************************/
50 /* Function definitions. */
51 /*************************/
52
53 /** Allocate memory for a matrix with the specified number of rows and
54 * columns.
55 */
new_matrix(const int rows,const int cols)56 static elem_t* new_matrix(const int rows, const int cols)
57 {
58 assert(rows > 0);
59 assert(cols > 0);
60 return malloc(rows * cols * sizeof(elem_t));
61 }
62
63 /** Free the memory that was allocated for a matrix. */
delete_matrix(elem_t * const a)64 static void delete_matrix(elem_t* const a)
65 {
66 free(a);
67 }
68
69 /** Fill in some numbers in a matrix. */
init_matrix(elem_t * const a,const int rows,const int cols)70 static void init_matrix(elem_t* const a, const int rows, const int cols)
71 {
72 int i, j;
73 for (i = 0; i < rows; i++)
74 {
75 for (j = 0; j < rows; j++)
76 {
77 a[i * cols + j] = 1.0 / (1 + abs(i-j));
78 }
79 }
80 }
81
82 /** Print all elements of a matrix. */
print_matrix(const char * const label,const elem_t * const a,const int rows,const int cols)83 void print_matrix(const char* const label,
84 const elem_t* const a, const int rows, const int cols)
85 {
86 int i, j;
87 printf("%s:\n", label);
88 for (i = 0; i < rows; i++)
89 {
90 for (j = 0; j < cols; j++)
91 {
92 printf("%g ", a[i * cols + j]);
93 }
94 printf("\n");
95 }
96 }
97
98 /** Copy a subset of the elements of a matrix into another matrix. */
copy_matrix(const elem_t * const from,const int from_rows,const int from_cols,const int from_row_first,const int from_row_last,const int from_col_first,const int from_col_last,elem_t * const to,const int to_rows,const int to_cols,const int to_row_first,const int to_row_last,const int to_col_first,const int to_col_last)99 static void copy_matrix(const elem_t* const from,
100 const int from_rows,
101 const int from_cols,
102 const int from_row_first,
103 const int from_row_last,
104 const int from_col_first,
105 const int from_col_last,
106 elem_t* const to,
107 const int to_rows,
108 const int to_cols,
109 const int to_row_first,
110 const int to_row_last,
111 const int to_col_first,
112 const int to_col_last)
113 {
114 int i, j;
115
116 assert(from_row_last - from_row_first == to_row_last - to_row_first);
117 assert(from_col_last - from_col_first == to_col_last - to_col_first);
118
119 for (i = from_row_first; i < from_row_last; i++)
120 {
121 assert(i < from_rows);
122 assert(i - from_row_first + to_row_first < to_rows);
123 for (j = from_col_first; j < from_col_last; j++)
124 {
125 assert(j < from_cols);
126 assert(j - from_col_first + to_col_first < to_cols);
127 to[(i - from_row_first + to_col_first) * to_cols
128 + (j - from_col_first + to_col_first)]
129 = from[i * from_cols + j];
130 }
131 }
132 }
133
134 /** Compute the matrix product of a1 and a2. */
multiply_matrices(const elem_t * const a1,const int rows1,const int cols1,const elem_t * const a2,const int rows2,const int cols2)135 static elem_t* multiply_matrices(const elem_t* const a1,
136 const int rows1,
137 const int cols1,
138 const elem_t* const a2,
139 const int rows2,
140 const int cols2)
141 {
142 int i, j, k;
143 elem_t* prod;
144
145 assert(cols1 == rows2);
146
147 prod = new_matrix(rows1, cols2);
148 for (i = 0; i < rows1; i++)
149 {
150 for (j = 0; j < cols2; j++)
151 {
152 prod[i * cols2 + j] = 0;
153 for (k = 0; k < cols1; k++)
154 {
155 prod[i * cols2 + j] += a1[i * cols1 + k] * a2[k * cols2 + j];
156 }
157 }
158 }
159 return prod;
160 }
161
162 /** Apply the Gauss-Jordan elimination algorithm on the matrix p->a starting
163 * at row r0 and up to but not including row r1. It is assumed that as many
164 * threads execute this function concurrently as the count barrier p->b was
165 * initialized with. If the matrix p->a is nonsingular, and if matrix p->a
166 * has at least as many columns as rows, the result of this algorithm is that
167 * submatrix p->a[0..p->rows-1,0..p->rows-1] is the identity matrix.
168 * @see http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
169 */
gj_threadfunc(struct gj_threadinfo * p)170 static void gj_threadfunc(struct gj_threadinfo* p)
171 {
172 int i, j, k;
173 elem_t* const a = p->a;
174 const int rows = p->rows;
175 const int cols = p->cols;
176 elem_t aii;
177
178 for (i = 0; i < p->rows; i++)
179 {
180 if (pthread_barrier_wait(p->b) == PTHREAD_BARRIER_SERIAL_THREAD)
181 {
182 // Pivoting.
183 j = i;
184 for (k = i + 1; k < rows; k++)
185 {
186 if (a[k * cols + i] > a[j * cols + i])
187 {
188 j = k;
189 }
190 }
191 if (j != i)
192 {
193 for (k = 0; k < cols; k++)
194 {
195 const elem_t t = a[i * cols + k];
196 a[i * cols + k] = a[j * cols + k];
197 a[j * cols + k] = t;
198 }
199 }
200 // Normalize row i.
201 aii = a[i * cols + i];
202 if (aii != 0)
203 for (k = i; k < cols; k++)
204 a[i * cols + k] /= aii;
205 }
206 pthread_barrier_wait(p->b);
207 // Reduce all rows j != i.
208 for (j = p->r0; j < p->r1; j++)
209 {
210 if (i != j)
211 {
212 const elem_t factor = a[j * cols + i];
213 for (k = 0; k < cols; k++)
214 {
215 a[j * cols + k] -= a[i * cols + k] * factor;
216 }
217 }
218 }
219 }
220 }
221
222 /** Multithreaded Gauss-Jordan algorithm. */
gj(elem_t * const a,const int rows,const int cols)223 static void gj(elem_t* const a, const int rows, const int cols)
224 {
225 int i;
226 struct gj_threadinfo* t;
227 pthread_barrier_t b;
228 pthread_attr_t attr;
229 int err;
230
231 assert(rows <= cols);
232
233 t = malloc(sizeof(struct gj_threadinfo) * s_nthread);
234
235 pthread_barrier_init(&b, 0, s_nthread);
236
237 pthread_attr_init(&attr);
238 err = pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN + 4096);
239 assert(err == 0);
240
241 for (i = 0; i < s_nthread; i++)
242 {
243 t[i].b = &b;
244 t[i].a = a;
245 t[i].rows = rows;
246 t[i].cols = cols;
247 t[i].r0 = i * rows / s_nthread;
248 t[i].r1 = (i+1) * rows / s_nthread;
249 pthread_create(&t[i].tid, &attr, (void*(*)(void*))gj_threadfunc, &t[i]);
250 }
251
252 pthread_attr_destroy(&attr);
253
254 for (i = 0; i < s_nthread; i++)
255 {
256 pthread_join(t[i].tid, 0);
257 }
258
259 pthread_barrier_destroy(&b);
260
261 free(t);
262 }
263
264 /** Matrix inversion via the Gauss-Jordan algorithm. */
invert_matrix(const elem_t * const a,const int n)265 static elem_t* invert_matrix(const elem_t* const a, const int n)
266 {
267 int i, j;
268 elem_t* const inv = new_matrix(n, n);
269 elem_t* const tmp = new_matrix(n, 2*n);
270 copy_matrix(a, n, n, 0, n, 0, n, tmp, n, 2 * n, 0, n, 0, n);
271 for (i = 0; i < n; i++)
272 for (j = 0; j < n; j++)
273 tmp[i * 2 * n + n + j] = (i == j);
274 gj(tmp, n, 2*n);
275 copy_matrix(tmp, n, 2*n, 0, n, n, 2*n, inv, n, n, 0, n, 0, n);
276 delete_matrix(tmp);
277 return inv;
278 }
279
280 /** Compute the average square error between the identity matrix and the
281 * product of matrix a with its inverse matrix.
282 */
identity_error(const elem_t * const a,const int n)283 static double identity_error(const elem_t* const a, const int n)
284 {
285 int i, j;
286 elem_t e = 0;
287 for (i = 0; i < n; i++)
288 {
289 for (j = 0; j < n; j++)
290 {
291 const elem_t d = a[i * n + j] - (i == j);
292 e += d * d;
293 }
294 }
295 return sqrt(e / (n * n));
296 }
297
298 /** Compute epsilon for the numeric type elem_t. Epsilon is defined as the
299 * smallest number for which the sum of one and that number is different of
300 * one. It is assumed that the underlying representation of elem_t uses
301 * base two.
302 */
epsilon()303 static elem_t epsilon()
304 {
305 elem_t eps;
306 for (eps = 1; 1 + eps != 1; eps /= 2)
307 ;
308 return 2 * eps;
309 }
310
main(int argc,char ** argv)311 int main(int argc, char** argv)
312 {
313 int matrix_size;
314 int silent = 0;
315 int optchar;
316 elem_t *a, *inv, *prod;
317 elem_t eps;
318 double error;
319 double ratio;
320
321 while ((optchar = getopt(argc, argv, "qt:")) != EOF)
322 {
323 switch (optchar)
324 {
325 case 'q': silent = 1; break;
326 case 't': s_nthread = atoi(optarg); break;
327 default:
328 fprintf(stderr, "Error: unknown option '%c'.\n", optchar);
329 return 1;
330 }
331 }
332
333 if (optind + 1 != argc)
334 {
335 fprintf(stderr, "Error: wrong number of arguments.\n");
336 return 1;
337 }
338 matrix_size = atoi(argv[optind]);
339
340 /* Error checking. */
341 assert(matrix_size >= 1);
342 assert(s_nthread >= 1);
343
344 eps = epsilon();
345 a = new_matrix(matrix_size, matrix_size);
346 init_matrix(a, matrix_size, matrix_size);
347 inv = invert_matrix(a, matrix_size);
348 prod = multiply_matrices(a, matrix_size, matrix_size,
349 inv, matrix_size, matrix_size);
350 error = identity_error(prod, matrix_size);
351 ratio = error / (eps * matrix_size);
352 if (! silent)
353 {
354 printf("error = %g; epsilon = %g; error / (epsilon * n) = %g\n",
355 error, eps, ratio);
356 }
357 if (isfinite(ratio) && ratio < 100)
358 printf("Error within bounds.\n");
359 else
360 printf("Error out of bounds.\n");
361 delete_matrix(prod);
362 delete_matrix(inv);
363 delete_matrix(a);
364
365 return 0;
366 }
367