• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This program is a thorough test of the LOADVn/STOREVn shadow memory
2 // operations.
3 
4 #include <assert.h>
5 #include <stdlib.h>
6 #include <stdio.h>
7 #include <string.h>
8 #include "memcheck/memcheck.h"
9 
10 // All the sizes here are in *bytes*, not bits.
11 
12 typedef unsigned char        U1;
13 typedef unsigned short       U2;
14 typedef unsigned int         U4;
15 typedef unsigned long long   U8;
16 
17 typedef float                F4;
18 typedef double               F8;
19 
20 #define SZB_OF_a    64
21 
22 // a[] is the array in which we do our loads and stores.
23 // b[] is another one in which we do some copying.
24 U8 a [SZB_OF_a / 8];    // Type is U8 to ensure it's 8-aligned
25 U8 b [SZB_OF_a / 8];    // same size as a[]
26 
27 // XXX: should check the error cases for SET/GET_VBITS also
28 
29 // For the byte 'x', build a value of 'size' bytes from that byte, eg:
30 //   size 1 --> x
31 //   size 2 --> xx
32 //   size 4 --> xxxx
33 //   size 8 --> xxxxxxxx
34 // where the 0 bits are seen by Memcheck as defined, and the 1 bits are
35 // seen as undefined (ie. the value of each bit matches its V bit, ie. the
36 // resulting value is the same as its metavalue).
37 //
build(int size,U1 byte)38 U8 build(int size, U1 byte)
39 {
40    int i;
41    U8 mask = 0;
42    U8 shres;
43    U8 res = 0xffffffffffffffffULL, res2;
44    (void)VALGRIND_MAKE_MEM_UNDEFINED(&res, 8);
45    assert(1 == size || 2 == size || 4 == size || 8 == size);
46 
47    for (i = 0; i < size; i++) {
48       mask <<= 8;
49       mask |= (U8)byte;
50    }
51 
52    res &= mask;
53 
54    // res is now considered partially defined, but we know exactly what its
55    // value is (it happens to be the same as its metavalue).
56 
57    (void)VALGRIND_GET_VBITS(&res, &shres, 8);
58    res2 = res;
59    (void)VALGRIND_MAKE_MEM_DEFINED(&res2, 8);  // avoid the 'undefined' warning
60    assert(res2 == shres);
61    return res;
62 }
63 
64 // Check that all the bytes in a[x..y-1] have their V byte equal
65 // to either 'expected_byte' or 'expected_byte_alt'.
66 // 'str' and 'offset' are only used for printing an error message if
67 // something goes wrong.
check_all(U4 x,U4 y,U1 expected_byte,U1 expected_byte_alt,char * str,int offset)68 void check_all(U4 x, U4 y, U1 expected_byte, U1 expected_byte_alt,
69                            char* str, int offset)
70 {
71    U1 sh[SZB_OF_a];     // Used for getting a[]'s V bits
72    int i;
73 
74    (void)VALGRIND_GET_VBITS(a, sh, sizeof(a));
75    for (i = x; i < y; i++) {
76       if ( expected_byte != sh[i] && expected_byte_alt != sh[i] ) {
77          fprintf(stderr, "\n\nFAILURE: %s, offset %d, byte %d -- "
78                          "is 0x%x, should be 0x%x or 0x%x\n\n",
79                          str, offset, i, sh[i], expected_byte,
80                          expected_byte_alt);
81          exit(1);
82       }
83    }
84 }
85 
main(void)86 int main(void)
87 {
88    int h, i, j;
89    U1 *undefA, expected_byte, expected_byte_alt;
90 
91    if (0 == RUNNING_ON_VALGRIND) {
92       fprintf(stderr,
93               "error: this program only works when run under Valgrind\n");
94       exit(1);
95    }
96 
97    // Check a[] has the expected alignment, and that it's not too high in
98    // the address space (which would trigger the slow cases in
99    // LOADVn/STOREVn) on 64-bit platforms).
100    assert( 0 == (long)a % 8);
101    if (sizeof(void*) == 8) {
102       assert( ((U1*)(&a[0])) < ((U1*)(32ULL * 1024*1024*1024)/*32G*/) );
103    }
104 
105    // Check basic types have the expected sizes.
106    assert(1 == sizeof(U1));
107    assert(2 == sizeof(U2));
108    assert(4 == sizeof(U4));
109    assert(8 == sizeof(U8));
110 
111    // Create an array of values that has all the possible V bit metavalues.
112    // Because 0 represents a defined bit, and because undefA[] is initially
113    // zeroed, we have the nice property that:
114    //
115    //    i == undefA[i] == V_bits_of(undefA[i])
116    //
117    // which is useful for testing below.
118    undefA = calloc(1, 256);         // one for each possible undefinedness value
119    (void)VALGRIND_MAKE_MEM_UNDEFINED(undefA, 256);
120    for (i = 0; i < 256; i++) {
121       undefA[i] &= i;
122    }
123 
124    // This code does a whole lot of reads and writes of a particular size
125    // (NNN = 1, 2, 4 or 8), with varying alignments, of values with
126    // different not/partially/fully defined metavalues, and checks that the
127    // V bits are set in a[] as expected using GET_VBITS.
128    //
129    // 'Ty' is the type of the thing we are copying.  It can be an integer
130    // type or an FP type.  'ITy' is the same-sized integer type (and thus
131    // will be the same as 'Ty' if 'ITy' is an integer type).  'ITy' is used
132    // when doing shifting/masking and stuff like that.
133 
134 #define DO(NNN, Ty, ITy, isF4) \
135    fprintf(stderr, "-- NNN: %d %s %s ------------------------\n", \
136            NNN, #Ty, #ITy); \
137    /* For all of the alignments from (0..NNN-1), eg. if NNN==4, we do */ \
138    /* alignments of 0, 1, 2, 3. */ \
139    for (h = 0; h < NNN; h++) { \
140       \
141       size_t n  = sizeof(a); \
142       size_t nN = n / sizeof(Ty); \
143       Ty* aN    = (Ty*)a; \
144       Ty* bN    = (Ty*)b; \
145       Ty* aNb   = (Ty*)(((U1*)aN) + h); /* set offset from a[] */ \
146       Ty* bNb   = (Ty*)(((U1*)bN) + h); /* set offset from b[] */ \
147       \
148       fprintf(stderr, "h = %d (checking %d..%d)   ", h, h, (int)(n-NNN+h)); \
149       \
150       /* For each of the 256 possible V byte values... */ \
151       for (j = 0; j < 256; j++) { \
152          /* build the value for i (one of: i, ii, iiii, iiiiiiii) */ \
153          U8  tmp        = build(NNN, j); \
154          ITy undefN_ITy = (ITy)tmp; \
155          Ty* undefN_Ty; \
156          { /* This just checks that no overflow occurred when squeezing */ \
157            /* the output of build() into a variable of type 'Ty'. */ \
158             U8  tmpDef     = tmp; \
159             ITy undefN_ITyDef = undefN_ITy; \
160             (void)VALGRIND_MAKE_MEM_DEFINED(&tmpDef,        8  );       \
161             (void)VALGRIND_MAKE_MEM_DEFINED(&undefN_ITyDef, NNN);       \
162             assert(tmpDef == (U8)undefN_ITyDef); \
163          } \
164          \
165          /* We have to use an array for undefN_Ty -- because if we try to
166           * convert an integer type from build into an FP type with a
167           * straight cast -- eg "float f = (float)i" -- the value gets
168           * converted.  With this pointer/array nonsense the exact bit
169           * pattern gets used as an FP value unchanged (that FP value is
170           * undoubtedly nonsense, but that's not a problem here). */ \
171          undefN_Ty = (Ty*)&undefN_ITy; \
172          if (0 == j % 32) fprintf(stderr, "%d...", j); /* progress meter */ \
173          \
174          /* A nasty exception: most machines so far (x86/PPC32/PPC64)
175           * don't have 32-bit floats.  So 32-bit floats get cast to 64-bit
176           * floats.  Memcheck does a PCast in this case, which means that if
177           * any V bits for the 32-bit float are undefined (ie. 0 != j), all
178           * the V bits in the 64-bit float are undefined.  So account for
179           * this when checking.  AMD64 typically does FP arithmetic on
180           * SSE, effectively giving it access to 32-bit FP registers.  So
181           * in short, for floats, we have to allow either 'j' or 0xFF
182           * as an acceptable result.  Sigh. */ \
183          if (isF4) { \
184             expected_byte = j; \
185             expected_byte_alt = 0 != j ? 0xFF : j; \
186          } else { \
187             expected_byte = j; \
188             expected_byte_alt = j; \
189          } \
190          \
191          /* STOREVn.  Note that we use the first element of the undefN_Ty
192           * array, as explained above. */ \
193          for (i = 0; i < nN-1; i++) { aNb[i] = undefN_Ty[0]; } \
194          check_all(h, n-NNN+h, expected_byte, expected_byte_alt, \
195                    "STOREVn", h); \
196          \
197          /* LOADVn -- by copying the values to one place and then back,
198           * we ensure that LOADVn gets exercised. */ \
199          for (i = 0; i < nN-1; i++) { bNb[i] = aNb[i]; } \
200          for (i = 0; i < nN-1; i++) { aNb[i] = bNb[i]; } \
201          check_all(h, n-NNN+h, expected_byte, expected_byte_alt, "LOADVn", h); \
202       } \
203       fprintf(stderr, "\n"); \
204    }
205 
206    // For sizes 4 and 8 we do both integer and floating-point types.  The
207    // reason being that on 32-bit machines just using integer types never
208    // exercises LOADV8/STOREV8 -- for integer types these loads/stores get
209    // broken into two 32-bit loads/stores.
210    DO(1, U1, U1, /*isF4*/0);
211    DO(2, U2, U2, /*isF4*/0);
212    DO(4, U4, U4, /*isF4*/0);
213    DO(4, F4, U4, /*isF4*/1);
214    DO(8, U8, U8, /*isF4*/0);
215    DO(8, F8, U8, /*isF4*/0);
216 
217    return 0;
218 }
219