1 /////////////////////////////////////////////////////////////////////////////////// 2 /// OpenGL Mathematics (glm.g-truc.net) 3 /// 4 /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) 5 /// Permission is hereby granted, free of charge, to any person obtaining a copy 6 /// of this software and associated documentation files (the "Software"), to deal 7 /// in the Software without restriction, including without limitation the rights 8 /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 /// copies of the Software, and to permit persons to whom the Software is 10 /// furnished to do so, subject to the following conditions: 11 /// 12 /// The above copyright notice and this permission notice shall be included in 13 /// all copies or substantial portions of the Software. 14 /// 15 /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 /// THE SOFTWARE. 22 /// 23 /// @ref gtx_compatibility 24 /// @file glm/gtx/compatibility.hpp 25 /// @date 2007-01-24 / 2011-06-07 26 /// @author Christophe Riccio 27 /// 28 /// @see core (dependence) 29 /// @see gtc_half_float (dependence) 30 /// 31 /// @defgroup gtx_compatibility GLM_GTX_compatibility 32 /// @ingroup gtx 33 /// 34 /// @brief Provide functions to increase the compatibility with Cg and HLSL languages 35 /// 36 /// <glm/gtx/compatibility.hpp> need to be included to use these functionalities. 37 /////////////////////////////////////////////////////////////////////////////////// 38 39 #ifndef GLM_GTX_compatibility 40 #define GLM_GTX_compatibility 41 42 // Dependency: 43 #include "../glm.hpp" 44 #include "../gtc/quaternion.hpp" 45 46 #if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED)) 47 # pragma message("GLM: GLM_GTX_compatibility extension included") 48 #endif 49 50 #if(GLM_COMPILER & GLM_COMPILER_VC) 51 # include <cfloat> 52 #elif(GLM_COMPILER & GLM_COMPILER_GCC) 53 # include <cmath> 54 # if(GLM_PLATFORM & GLM_PLATFORM_ANDROID) 55 # undef isfinite 56 # endif 57 #endif//GLM_COMPILER 58 59 namespace glm 60 { 61 /// @addtogroup gtx_compatibility 62 /// @{ 63 lerp(T x,T y,T a)64 template <typename T> GLM_FUNC_QUALIFIER T lerp(T x, T y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) lerp(const detail::tvec2<T,P> & x,const detail::tvec2<T,P> & y,T a)65 template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> lerp(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) 66 lerp(const detail::tvec3<T,P> & x,const detail::tvec3<T,P> & y,T a)67 template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> lerp(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) lerp(const detail::tvec4<T,P> & x,const detail::tvec4<T,P> & y,T a)68 template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> lerp(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) lerp(const detail::tvec2<T,P> & x,const detail::tvec2<T,P> & y,const detail::tvec2<T,P> & a)69 template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> lerp(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y, const detail::tvec2<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) lerp(const detail::tvec3<T,P> & x,const detail::tvec3<T,P> & y,const detail::tvec3<T,P> & a)70 template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> lerp(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y, const detail::tvec3<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) lerp(const detail::tvec4<T,P> & x,const detail::tvec4<T,P> & y,const detail::tvec4<T,P> & a)71 template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> lerp(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y, const detail::tvec4<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) 72 slerp(detail::tquat<T,P> const & x,detail::tquat<T,P> const & y,T const & a)73 template <typename T, precision P> GLM_FUNC_QUALIFIER T slerp(detail::tquat<T, P> const & x, detail::tquat<T, P> const & y, T const & a){return mix(x, y, a);} //!< \brief Returns the slurp interpolation between two quaternions. 74 saturate(T x)75 template <typename T, precision P> GLM_FUNC_QUALIFIER T saturate(T x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) saturate(const detail::tvec2<T,P> & x)76 template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> saturate(const detail::tvec2<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) saturate(const detail::tvec3<T,P> & x)77 template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> saturate(const detail::tvec3<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) saturate(const detail::tvec4<T,P> & x)78 template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> saturate(const detail::tvec4<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) 79 atan2(T x,T y)80 template <typename T, precision P> GLM_FUNC_QUALIFIER T atan2(T x, T y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) atan2(const detail::tvec2<T,P> & x,const detail::tvec2<T,P> & y)81 template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> atan2(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) atan2(const detail::tvec3<T,P> & x,const detail::tvec3<T,P> & y)82 template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> atan2(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) atan2(const detail::tvec4<T,P> & x,const detail::tvec4<T,P> & y)83 template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> atan2(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) 84 85 template <typename genType> GLM_FUNC_DECL bool isfinite(genType const & x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) 86 template <typename T, precision P> GLM_FUNC_DECL detail::tvec2<bool, P> isfinite(const detail::tvec2<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) 87 template <typename T, precision P> GLM_FUNC_DECL detail::tvec3<bool, P> isfinite(const detail::tvec3<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) 88 template <typename T, precision P> GLM_FUNC_DECL detail::tvec4<bool, P> isfinite(const detail::tvec4<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) 89 90 typedef bool bool1; //!< \brief boolean type with 1 component. (From GLM_GTX_compatibility extension) 91 typedef detail::tvec2<bool, highp> bool2; //!< \brief boolean type with 2 components. (From GLM_GTX_compatibility extension) 92 typedef detail::tvec3<bool, highp> bool3; //!< \brief boolean type with 3 components. (From GLM_GTX_compatibility extension) 93 typedef detail::tvec4<bool, highp> bool4; //!< \brief boolean type with 4 components. (From GLM_GTX_compatibility extension) 94 95 typedef bool bool1x1; //!< \brief boolean matrix with 1 x 1 component. (From GLM_GTX_compatibility extension) 96 typedef detail::tmat2x2<bool, highp> bool2x2; //!< \brief boolean matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) 97 typedef detail::tmat2x3<bool, highp> bool2x3; //!< \brief boolean matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) 98 typedef detail::tmat2x4<bool, highp> bool2x4; //!< \brief boolean matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) 99 typedef detail::tmat3x2<bool, highp> bool3x2; //!< \brief boolean matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) 100 typedef detail::tmat3x3<bool, highp> bool3x3; //!< \brief boolean matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) 101 typedef detail::tmat3x4<bool, highp> bool3x4; //!< \brief boolean matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) 102 typedef detail::tmat4x2<bool, highp> bool4x2; //!< \brief boolean matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) 103 typedef detail::tmat4x3<bool, highp> bool4x3; //!< \brief boolean matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) 104 typedef detail::tmat4x4<bool, highp> bool4x4; //!< \brief boolean matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) 105 106 typedef int int1; //!< \brief integer vector with 1 component. (From GLM_GTX_compatibility extension) 107 typedef detail::tvec2<int, highp> int2; //!< \brief integer vector with 2 components. (From GLM_GTX_compatibility extension) 108 typedef detail::tvec3<int, highp> int3; //!< \brief integer vector with 3 components. (From GLM_GTX_compatibility extension) 109 typedef detail::tvec4<int, highp> int4; //!< \brief integer vector with 4 components. (From GLM_GTX_compatibility extension) 110 111 typedef int int1x1; //!< \brief integer matrix with 1 component. (From GLM_GTX_compatibility extension) 112 typedef detail::tmat2x2<int, highp> int2x2; //!< \brief integer matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) 113 typedef detail::tmat2x3<int, highp> int2x3; //!< \brief integer matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) 114 typedef detail::tmat2x4<int, highp> int2x4; //!< \brief integer matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) 115 typedef detail::tmat3x2<int, highp> int3x2; //!< \brief integer matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) 116 typedef detail::tmat3x3<int, highp> int3x3; //!< \brief integer matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) 117 typedef detail::tmat3x4<int, highp> int3x4; //!< \brief integer matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) 118 typedef detail::tmat4x2<int, highp> int4x2; //!< \brief integer matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) 119 typedef detail::tmat4x3<int, highp> int4x3; //!< \brief integer matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) 120 typedef detail::tmat4x4<int, highp> int4x4; //!< \brief integer matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) 121 122 typedef float float1; //!< \brief single-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension) 123 typedef detail::tvec2<float, highp> float2; //!< \brief single-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension) 124 typedef detail::tvec3<float, highp> float3; //!< \brief single-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension) 125 typedef detail::tvec4<float, highp> float4; //!< \brief single-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension) 126 127 typedef float float1x1; //!< \brief single-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension) 128 typedef detail::tmat2x2<float, highp> float2x2; //!< \brief single-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) 129 typedef detail::tmat2x3<float, highp> float2x3; //!< \brief single-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) 130 typedef detail::tmat2x4<float, highp> float2x4; //!< \brief single-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) 131 typedef detail::tmat3x2<float, highp> float3x2; //!< \brief single-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) 132 typedef detail::tmat3x3<float, highp> float3x3; //!< \brief single-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) 133 typedef detail::tmat3x4<float, highp> float3x4; //!< \brief single-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) 134 typedef detail::tmat4x2<float, highp> float4x2; //!< \brief single-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) 135 typedef detail::tmat4x3<float, highp> float4x3; //!< \brief single-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) 136 typedef detail::tmat4x4<float, highp> float4x4; //!< \brief single-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) 137 138 typedef double double1; //!< \brief double-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension) 139 typedef detail::tvec2<double, highp> double2; //!< \brief double-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension) 140 typedef detail::tvec3<double, highp> double3; //!< \brief double-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension) 141 typedef detail::tvec4<double, highp> double4; //!< \brief double-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension) 142 143 typedef double double1x1; //!< \brief double-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension) 144 typedef detail::tmat2x2<double, highp> double2x2; //!< \brief double-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) 145 typedef detail::tmat2x3<double, highp> double2x3; //!< \brief double-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) 146 typedef detail::tmat2x4<double, highp> double2x4; //!< \brief double-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) 147 typedef detail::tmat3x2<double, highp> double3x2; //!< \brief double-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) 148 typedef detail::tmat3x3<double, highp> double3x3; //!< \brief double-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) 149 typedef detail::tmat3x4<double, highp> double3x4; //!< \brief double-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) 150 typedef detail::tmat4x2<double, highp> double4x2; //!< \brief double-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) 151 typedef detail::tmat4x3<double, highp> double4x3; //!< \brief double-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) 152 typedef detail::tmat4x4<double, highp> double4x4; //!< \brief double-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) 153 154 /// @} 155 }//namespace glm 156 157 #include "compatibility.inl" 158 159 #endif//GLM_GTX_compatibility 160 161