• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "AudioResamplerDyn"
18 //#define LOG_NDEBUG 0
19 
20 #include <malloc.h>
21 #include <string.h>
22 #include <stdlib.h>
23 #include <dlfcn.h>
24 #include <math.h>
25 
26 #include <cutils/compiler.h>
27 #include <cutils/properties.h>
28 #include <utils/Debug.h>
29 #include <utils/Log.h>
30 #include <audio_utils/primitives.h>
31 
32 #include "AudioResamplerFirOps.h" // USE_NEON, USE_SSE and USE_INLINE_ASSEMBLY defined here
33 #include "AudioResamplerFirProcess.h"
34 #include "AudioResamplerFirProcessNeon.h"
35 #include "AudioResamplerFirProcessSSE.h"
36 #include "AudioResamplerFirGen.h" // requires math.h
37 #include "AudioResamplerDyn.h"
38 
39 //#define DEBUG_RESAMPLER
40 
41 namespace android {
42 
43 /*
44  * InBuffer is a type agnostic input buffer.
45  *
46  * Layout of the state buffer for halfNumCoefs=8.
47  *
48  * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
49  *  S            I                                R
50  *
51  * S = mState
52  * I = mImpulse
53  * R = mRingFull
54  * p = past samples, convoluted with the (p)ositive side of sinc()
55  * n = future samples, convoluted with the (n)egative side of sinc()
56  * r = extra space for implementing the ring buffer
57  */
58 
59 template<typename TC, typename TI, typename TO>
InBuffer()60 AudioResamplerDyn<TC, TI, TO>::InBuffer::InBuffer()
61     : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateCount(0)
62 {
63 }
64 
65 template<typename TC, typename TI, typename TO>
~InBuffer()66 AudioResamplerDyn<TC, TI, TO>::InBuffer::~InBuffer()
67 {
68     init();
69 }
70 
71 template<typename TC, typename TI, typename TO>
init()72 void AudioResamplerDyn<TC, TI, TO>::InBuffer::init()
73 {
74     free(mState);
75     mState = NULL;
76     mImpulse = NULL;
77     mRingFull = NULL;
78     mStateCount = 0;
79 }
80 
81 // resizes the state buffer to accommodate the appropriate filter length
82 template<typename TC, typename TI, typename TO>
resize(int CHANNELS,int halfNumCoefs)83 void AudioResamplerDyn<TC, TI, TO>::InBuffer::resize(int CHANNELS, int halfNumCoefs)
84 {
85     // calculate desired state size
86     size_t stateCount = halfNumCoefs * CHANNELS * 2 * kStateSizeMultipleOfFilterLength;
87 
88     // check if buffer needs resizing
89     if (mState
90             && stateCount == mStateCount
91             && mRingFull-mState == (ssize_t) (mStateCount-halfNumCoefs*CHANNELS)) {
92         return;
93     }
94 
95     // create new buffer
96     TI* state = NULL;
97     (void)posix_memalign(reinterpret_cast<void**>(&state), 32, stateCount*sizeof(*state));
98     memset(state, 0, stateCount*sizeof(*state));
99 
100     // attempt to preserve state
101     if (mState) {
102         TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
103         TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
104         TI* dst = state;
105 
106         if (srcLo < mState) {
107             dst += mState-srcLo;
108             srcLo = mState;
109         }
110         if (srcHi > mState + mStateCount) {
111             srcHi = mState + mStateCount;
112         }
113         memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
114         free(mState);
115     }
116 
117     // set class member vars
118     mState = state;
119     mStateCount = stateCount;
120     mImpulse = state + halfNumCoefs*CHANNELS; // actually one sample greater than needed
121     mRingFull = state + mStateCount - halfNumCoefs*CHANNELS;
122 }
123 
124 // copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
125 template<typename TC, typename TI, typename TO>
126 template<int CHANNELS>
readAgain(TI * & impulse,const int halfNumCoefs,const TI * const in,const size_t inputIndex)127 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAgain(TI*& impulse, const int halfNumCoefs,
128         const TI* const in, const size_t inputIndex)
129 {
130     TI* head = impulse + halfNumCoefs*CHANNELS;
131     for (size_t i=0 ; i<CHANNELS ; i++) {
132         head[i] = in[inputIndex*CHANNELS + i];
133     }
134 }
135 
136 // advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
137 template<typename TC, typename TI, typename TO>
138 template<int CHANNELS>
readAdvance(TI * & impulse,const int halfNumCoefs,const TI * const in,const size_t inputIndex)139 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAdvance(TI*& impulse, const int halfNumCoefs,
140         const TI* const in, const size_t inputIndex)
141 {
142     impulse += CHANNELS;
143 
144     if (CC_UNLIKELY(impulse >= mRingFull)) {
145         const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
146         memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
147         impulse -= shiftDown;
148     }
149     readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
150 }
151 
152 template<typename TC, typename TI, typename TO>
reset()153 void AudioResamplerDyn<TC, TI, TO>::InBuffer::reset()
154 {
155     // clear resampler state
156     if (mState != nullptr) {
157         memset(mState, 0, mStateCount * sizeof(TI));
158     }
159 }
160 
161 template<typename TC, typename TI, typename TO>
set(int L,int halfNumCoefs,int inSampleRate,int outSampleRate)162 void AudioResamplerDyn<TC, TI, TO>::Constants::set(
163         int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
164 {
165     int bits = 0;
166     int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
167             static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
168     for (int i=lscale; i; ++bits, i>>=1)
169         ;
170     mL = L;
171     mShift = kNumPhaseBits - bits;
172     mHalfNumCoefs = halfNumCoefs;
173 }
174 
175 template<typename TC, typename TI, typename TO>
AudioResamplerDyn(int inChannelCount,int32_t sampleRate,src_quality quality)176 AudioResamplerDyn<TC, TI, TO>::AudioResamplerDyn(
177         int inChannelCount, int32_t sampleRate, src_quality quality)
178     : AudioResampler(inChannelCount, sampleRate, quality),
179       mResampleFunc(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY),
180     mCoefBuffer(NULL)
181 {
182     mVolumeSimd[0] = mVolumeSimd[1] = 0;
183     // The AudioResampler base class assumes we are always ready for 1:1 resampling.
184     // We reset mInSampleRate to 0, so setSampleRate() will calculate filters for
185     // setSampleRate() for 1:1. (May be removed if precalculated filters are used.)
186     mInSampleRate = 0;
187     mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
188 }
189 
190 template<typename TC, typename TI, typename TO>
~AudioResamplerDyn()191 AudioResamplerDyn<TC, TI, TO>::~AudioResamplerDyn()
192 {
193     free(mCoefBuffer);
194 }
195 
196 template<typename TC, typename TI, typename TO>
init()197 void AudioResamplerDyn<TC, TI, TO>::init()
198 {
199     mFilterSampleRate = 0; // always trigger new filter generation
200     mInBuffer.init();
201 }
202 
203 template<typename TC, typename TI, typename TO>
setVolume(float left,float right)204 void AudioResamplerDyn<TC, TI, TO>::setVolume(float left, float right)
205 {
206     AudioResampler::setVolume(left, right);
207     if (is_same<TO, float>::value || is_same<TO, double>::value) {
208         mVolumeSimd[0] = static_cast<TO>(left);
209         mVolumeSimd[1] = static_cast<TO>(right);
210     } else {  // integer requires scaling to U4_28 (rounding down)
211         // integer volumes are clamped to 0 to UNITY_GAIN so there
212         // are no issues with signed overflow.
213         mVolumeSimd[0] = u4_28_from_float(clampFloatVol(left));
214         mVolumeSimd[1] = u4_28_from_float(clampFloatVol(right));
215     }
216 }
217 
max(T a,T b)218 template<typename T> T max(T a, T b) {return a > b ? a : b;}
219 
absdiff(T a,T b)220 template<typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}
221 
222 template<typename TC, typename TI, typename TO>
createKaiserFir(Constants & c,double stopBandAtten,int inSampleRate,int outSampleRate,double tbwCheat)223 void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
224         double stopBandAtten, int inSampleRate, int outSampleRate, double tbwCheat)
225 {
226     TC* buf = NULL;
227     static const double atten = 0.9998;   // to avoid ripple overflow
228     double fcr;
229     double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
230 
231     (void)posix_memalign(reinterpret_cast<void**>(&buf), 32, (c.mL+1)*c.mHalfNumCoefs*sizeof(TC));
232     if (inSampleRate < outSampleRate) { // upsample
233         fcr = max(0.5*tbwCheat - tbw/2, tbw/2);
234     } else { // downsample
235         fcr = max(0.5*tbwCheat*outSampleRate/inSampleRate - tbw/2, tbw/2);
236     }
237     // create and set filter
238     firKaiserGen(buf, c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten);
239     c.mFirCoefs = buf;
240     if (mCoefBuffer) {
241         free(mCoefBuffer);
242     }
243     mCoefBuffer = buf;
244 #ifdef DEBUG_RESAMPLER
245     // print basic filter stats
246     printf("L:%d  hnc:%d  stopBandAtten:%lf  fcr:%lf  atten:%lf  tbw:%lf\n",
247             c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten, tbw);
248     // test the filter and report results
249     double fp = (fcr - tbw/2)/c.mL;
250     double fs = (fcr + tbw/2)/c.mL;
251     double passMin, passMax, passRipple;
252     double stopMax, stopRipple;
253     testFir(buf, c.mL, c.mHalfNumCoefs, fp, fs, /*passSteps*/ 1000, /*stopSteps*/ 100000,
254             passMin, passMax, passRipple, stopMax, stopRipple);
255     printf("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple);
256     printf("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple);
257 #endif
258 }
259 
260 // recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop.
gcd(int n,int m)261 static int gcd(int n, int m)
262 {
263     if (m == 0) {
264         return n;
265     }
266     return gcd(m, n % m);
267 }
268 
isClose(int32_t newSampleRate,int32_t prevSampleRate,int32_t filterSampleRate,int32_t outSampleRate)269 static bool isClose(int32_t newSampleRate, int32_t prevSampleRate,
270         int32_t filterSampleRate, int32_t outSampleRate)
271 {
272 
273     // different upsampling ratios do not need a filter change.
274     if (filterSampleRate != 0
275             && filterSampleRate < outSampleRate
276             && newSampleRate < outSampleRate)
277         return true;
278 
279     // check design criteria again if downsampling is detected.
280     int pdiff = absdiff(newSampleRate, prevSampleRate);
281     int adiff = absdiff(newSampleRate, filterSampleRate);
282 
283     // allow up to 6% relative change increments.
284     // allow up to 12% absolute change increments (from filter design)
285     return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
286 }
287 
288 template<typename TC, typename TI, typename TO>
setSampleRate(int32_t inSampleRate)289 void AudioResamplerDyn<TC, TI, TO>::setSampleRate(int32_t inSampleRate)
290 {
291     if (mInSampleRate == inSampleRate) {
292         return;
293     }
294     int32_t oldSampleRate = mInSampleRate;
295     uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
296     bool useS32 = false;
297 
298     mInSampleRate = inSampleRate;
299 
300     // TODO: Add precalculated Equiripple filters
301 
302     if (mFilterQuality != getQuality() ||
303             !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) {
304         mFilterSampleRate = inSampleRate;
305         mFilterQuality = getQuality();
306 
307         // Begin Kaiser Filter computation
308         //
309         // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
310         // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
311         //
312         // For s32 we keep the stop band attenuation at the same as 16b resolution, about
313         // 96-98dB
314         //
315 
316         double stopBandAtten;
317         double tbwCheat = 1.; // how much we "cheat" into aliasing
318         int halfLength;
319         if (mFilterQuality == DYN_HIGH_QUALITY) {
320             // 32b coefficients, 64 length
321             useS32 = true;
322             stopBandAtten = 98.;
323             if (inSampleRate >= mSampleRate * 4) {
324                 halfLength = 48;
325             } else if (inSampleRate >= mSampleRate * 2) {
326                 halfLength = 40;
327             } else {
328                 halfLength = 32;
329             }
330         } else if (mFilterQuality == DYN_LOW_QUALITY) {
331             // 16b coefficients, 16-32 length
332             useS32 = false;
333             stopBandAtten = 80.;
334             if (inSampleRate >= mSampleRate * 4) {
335                 halfLength = 24;
336             } else if (inSampleRate >= mSampleRate * 2) {
337                 halfLength = 16;
338             } else {
339                 halfLength = 8;
340             }
341             if (inSampleRate <= mSampleRate) {
342                 tbwCheat = 1.05;
343             } else {
344                 tbwCheat = 1.03;
345             }
346         } else { // DYN_MED_QUALITY
347             // 16b coefficients, 32-64 length
348             // note: > 64 length filters with 16b coefs can have quantization noise problems
349             useS32 = false;
350             stopBandAtten = 84.;
351             if (inSampleRate >= mSampleRate * 4) {
352                 halfLength = 32;
353             } else if (inSampleRate >= mSampleRate * 2) {
354                 halfLength = 24;
355             } else {
356                 halfLength = 16;
357             }
358             if (inSampleRate <= mSampleRate) {
359                 tbwCheat = 1.03;
360             } else {
361                 tbwCheat = 1.01;
362             }
363         }
364 
365         // determine the number of polyphases in the filterbank.
366         // for 16b, it is desirable to have 2^(16/2) = 256 phases.
367         // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
368         //
369         // We are a bit more lax on this.
370 
371         int phases = mSampleRate / gcd(mSampleRate, inSampleRate);
372 
373         // TODO: Once dynamic sample rate change is an option, the code below
374         // should be modified to execute only when dynamic sample rate change is enabled.
375         //
376         // as above, #phases less than 63 is too few phases for accurate linear interpolation.
377         // we increase the phases to compensate, but more phases means more memory per
378         // filter and more time to compute the filter.
379         //
380         // if we know that the filter will be used for dynamic sample rate changes,
381         // that would allow us skip this part for fixed sample rate resamplers.
382         //
383         while (phases<63) {
384             phases *= 2; // this code only needed to support dynamic rate changes
385         }
386 
387         if (phases>=256) {  // too many phases, always interpolate
388             phases = 127;
389         }
390 
391         // create the filter
392         mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
393         createKaiserFir(mConstants, stopBandAtten,
394                 inSampleRate, mSampleRate, tbwCheat);
395     } // End Kaiser filter
396 
397     // update phase and state based on the new filter.
398     const Constants& c(mConstants);
399     mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
400     const uint32_t phaseWrapLimit = c.mL << c.mShift;
401     // try to preserve as much of the phase fraction as possible for on-the-fly changes
402     mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
403             * phaseWrapLimit / oldPhaseWrapLimit;
404     mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
405     mPhaseIncrement = static_cast<uint32_t>(static_cast<uint64_t>(phaseWrapLimit)
406             * inSampleRate / mSampleRate);
407 
408     // determine which resampler to use
409     // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
410     int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
411     if (locked) {
412         mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
413     }
414 
415     // stride is the minimum number of filter coefficients processed per loop iteration.
416     // We currently only allow a stride of 16 to match with SIMD processing.
417     // This means that the filter length must be a multiple of 16,
418     // or half the filter length (mHalfNumCoefs) must be a multiple of 8.
419     //
420     // Note: A stride of 2 is achieved with non-SIMD processing.
421     int stride = ((c.mHalfNumCoefs & 7) == 0) ? 16 : 2;
422     LOG_ALWAYS_FATAL_IF(stride < 16, "Resampler stride must be 16 or more");
423     LOG_ALWAYS_FATAL_IF(mChannelCount < 1 || mChannelCount > 8,
424             "Resampler channels(%d) must be between 1 to 8", mChannelCount);
425     // stride 16 (falls back to stride 2 for machines that do not support NEON)
426     if (locked) {
427         switch (mChannelCount) {
428         case 1:
429             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, true, 16>;
430             break;
431         case 2:
432             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, true, 16>;
433             break;
434         case 3:
435             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, true, 16>;
436             break;
437         case 4:
438             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, true, 16>;
439             break;
440         case 5:
441             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, true, 16>;
442             break;
443         case 6:
444             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, true, 16>;
445             break;
446         case 7:
447             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, true, 16>;
448             break;
449         case 8:
450             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, true, 16>;
451             break;
452         }
453     } else {
454         switch (mChannelCount) {
455         case 1:
456             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, false, 16>;
457             break;
458         case 2:
459             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, false, 16>;
460             break;
461         case 3:
462             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, false, 16>;
463             break;
464         case 4:
465             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, false, 16>;
466             break;
467         case 5:
468             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, false, 16>;
469             break;
470         case 6:
471             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, false, 16>;
472             break;
473         case 7:
474             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, false, 16>;
475             break;
476         case 8:
477             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, false, 16>;
478             break;
479         }
480     }
481 #ifdef DEBUG_RESAMPLER
482     printf("channels:%d  %s  stride:%d  %s  coef:%d  shift:%d\n",
483             mChannelCount, locked ? "locked" : "interpolated",
484             stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
485 #endif
486 }
487 
488 template<typename TC, typename TI, typename TO>
resample(int32_t * out,size_t outFrameCount,AudioBufferProvider * provider)489 size_t AudioResamplerDyn<TC, TI, TO>::resample(int32_t* out, size_t outFrameCount,
490             AudioBufferProvider* provider)
491 {
492     return (this->*mResampleFunc)(reinterpret_cast<TO*>(out), outFrameCount, provider);
493 }
494 
495 template<typename TC, typename TI, typename TO>
496 template<int CHANNELS, bool LOCKED, int STRIDE>
resample(TO * out,size_t outFrameCount,AudioBufferProvider * provider)497 size_t AudioResamplerDyn<TC, TI, TO>::resample(TO* out, size_t outFrameCount,
498         AudioBufferProvider* provider)
499 {
500     // TODO Mono -> Mono is not supported. OUTPUT_CHANNELS reflects minimum of stereo out.
501     const int OUTPUT_CHANNELS = (CHANNELS < 2) ? 2 : CHANNELS;
502     const Constants& c(mConstants);
503     const TC* const coefs = mConstants.mFirCoefs;
504     TI* impulse = mInBuffer.getImpulse();
505     size_t inputIndex = 0;
506     uint32_t phaseFraction = mPhaseFraction;
507     const uint32_t phaseIncrement = mPhaseIncrement;
508     size_t outputIndex = 0;
509     size_t outputSampleCount = outFrameCount * OUTPUT_CHANNELS;
510     const uint32_t phaseWrapLimit = c.mL << c.mShift;
511     size_t inFrameCount = (phaseIncrement * (uint64_t)outFrameCount + phaseFraction)
512             / phaseWrapLimit;
513     // sanity check that inFrameCount is in signed 32 bit integer range.
514     ALOG_ASSERT(0 <= inFrameCount && inFrameCount < (1U << 31));
515 
516     //ALOGV("inFrameCount:%d  outFrameCount:%d"
517     //        "  phaseIncrement:%u  phaseFraction:%u  phaseWrapLimit:%u",
518     //        inFrameCount, outFrameCount, phaseIncrement, phaseFraction, phaseWrapLimit);
519 
520     // NOTE: be very careful when modifying the code here. register
521     // pressure is very high and a small change might cause the compiler
522     // to generate far less efficient code.
523     // Always sanity check the result with objdump or test-resample.
524 
525     // the following logic is a bit convoluted to keep the main processing loop
526     // as tight as possible with register allocation.
527     while (outputIndex < outputSampleCount) {
528         //ALOGV("LOOP: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
529         //        "  phaseFraction:%u  phaseWrapLimit:%u",
530         //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
531 
532         // check inputIndex overflow
533         ALOG_ASSERT(inputIndex <= mBuffer.frameCount, "inputIndex%zu > frameCount%zu",
534                 inputIndex, mBuffer.frameCount);
535         // Buffer is empty, fetch a new one if necessary (inFrameCount > 0).
536         // We may not fetch a new buffer if the existing data is sufficient.
537         while (mBuffer.frameCount == 0 && inFrameCount > 0) {
538             mBuffer.frameCount = inFrameCount;
539             provider->getNextBuffer(&mBuffer);
540             if (mBuffer.raw == NULL) {
541                 // We are either at the end of playback or in an underrun situation.
542                 // Reset buffer to prevent pop noise at the next buffer.
543                 mInBuffer.reset();
544                 goto resample_exit;
545             }
546             inFrameCount -= mBuffer.frameCount;
547             if (phaseFraction >= phaseWrapLimit) { // read in data
548                 mInBuffer.template readAdvance<CHANNELS>(
549                         impulse, c.mHalfNumCoefs,
550                         reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
551                 inputIndex++;
552                 phaseFraction -= phaseWrapLimit;
553                 while (phaseFraction >= phaseWrapLimit) {
554                     if (inputIndex >= mBuffer.frameCount) {
555                         inputIndex = 0;
556                         provider->releaseBuffer(&mBuffer);
557                         break;
558                     }
559                     mInBuffer.template readAdvance<CHANNELS>(
560                             impulse, c.mHalfNumCoefs,
561                             reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
562                     inputIndex++;
563                     phaseFraction -= phaseWrapLimit;
564                 }
565             }
566         }
567         const TI* const in = reinterpret_cast<const TI*>(mBuffer.raw);
568         const size_t frameCount = mBuffer.frameCount;
569         const int coefShift = c.mShift;
570         const int halfNumCoefs = c.mHalfNumCoefs;
571         const TO* const volumeSimd = mVolumeSimd;
572 
573         // main processing loop
574         while (CC_LIKELY(outputIndex < outputSampleCount)) {
575             // caution: fir() is inlined and may be large.
576             // output will be loaded with the appropriate values
577             //
578             // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
579             // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
580             //
581             //ALOGV("LOOP2: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
582             //        "  phaseFraction:%u  phaseWrapLimit:%u",
583             //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
584             ALOG_ASSERT(phaseFraction < phaseWrapLimit);
585             fir<CHANNELS, LOCKED, STRIDE>(
586                     &out[outputIndex],
587                     phaseFraction, phaseWrapLimit,
588                     coefShift, halfNumCoefs, coefs,
589                     impulse, volumeSimd);
590 
591             outputIndex += OUTPUT_CHANNELS;
592 
593             phaseFraction += phaseIncrement;
594             while (phaseFraction >= phaseWrapLimit) {
595                 if (inputIndex >= frameCount) {
596                     goto done;  // need a new buffer
597                 }
598                 mInBuffer.template readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
599                 inputIndex++;
600                 phaseFraction -= phaseWrapLimit;
601             }
602         }
603 done:
604         // We arrive here when we're finished or when the input buffer runs out.
605         // Regardless we need to release the input buffer if we've acquired it.
606         if (inputIndex > 0) {  // we've acquired a buffer (alternatively could check frameCount)
607             ALOG_ASSERT(inputIndex == frameCount, "inputIndex(%zu) != frameCount(%zu)",
608                     inputIndex, frameCount);  // must have been fully read.
609             inputIndex = 0;
610             provider->releaseBuffer(&mBuffer);
611             ALOG_ASSERT(mBuffer.frameCount == 0);
612         }
613     }
614 
615 resample_exit:
616     // inputIndex must be zero in all three cases:
617     // (1) the buffer never was been acquired; (2) the buffer was
618     // released at "done:"; or (3) getNextBuffer() failed.
619     ALOG_ASSERT(inputIndex == 0, "Releasing: inputindex:%zu frameCount:%zu  phaseFraction:%u",
620             inputIndex, mBuffer.frameCount, phaseFraction);
621     ALOG_ASSERT(mBuffer.frameCount == 0); // there must be no frames in the buffer
622     mInBuffer.setImpulse(impulse);
623     mPhaseFraction = phaseFraction;
624     return outputIndex / OUTPUT_CHANNELS;
625 }
626 
627 /* instantiate templates used by AudioResampler::create */
628 template class AudioResamplerDyn<float, float, float>;
629 template class AudioResamplerDyn<int16_t, int16_t, int32_t>;
630 template class AudioResamplerDyn<int32_t, int16_t, int32_t>;
631 
632 // ----------------------------------------------------------------------------
633 } // namespace android
634