• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.net;
18 
19 import android.os.SystemClock;
20 import android.util.Log;
21 
22 import java.net.DatagramPacket;
23 import java.net.DatagramSocket;
24 import java.net.InetAddress;
25 import java.util.Arrays;
26 
27 /**
28  * {@hide}
29  *
30  * Simple SNTP client class for retrieving network time.
31  *
32  * Sample usage:
33  * <pre>SntpClient client = new SntpClient();
34  * if (client.requestTime("time.foo.com")) {
35  *     long now = client.getNtpTime() + SystemClock.elapsedRealtime() - client.getNtpTimeReference();
36  * }
37  * </pre>
38  */
39 public class SntpClient {
40     private static final String TAG = "SntpClient";
41     private static final boolean DBG = true;
42 
43     private static final int REFERENCE_TIME_OFFSET = 16;
44     private static final int ORIGINATE_TIME_OFFSET = 24;
45     private static final int RECEIVE_TIME_OFFSET = 32;
46     private static final int TRANSMIT_TIME_OFFSET = 40;
47     private static final int NTP_PACKET_SIZE = 48;
48 
49     private static final int NTP_PORT = 123;
50     private static final int NTP_MODE_CLIENT = 3;
51     private static final int NTP_MODE_SERVER = 4;
52     private static final int NTP_MODE_BROADCAST = 5;
53     private static final int NTP_VERSION = 3;
54 
55     private static final int NTP_LEAP_NOSYNC = 3;
56     private static final int NTP_STRATUM_DEATH = 0;
57     private static final int NTP_STRATUM_MAX = 15;
58 
59     // Number of seconds between Jan 1, 1900 and Jan 1, 1970
60     // 70 years plus 17 leap days
61     private static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L;
62 
63     // system time computed from NTP server response
64     private long mNtpTime;
65 
66     // value of SystemClock.elapsedRealtime() corresponding to mNtpTime
67     private long mNtpTimeReference;
68 
69     // round trip time in milliseconds
70     private long mRoundTripTime;
71 
72     private static class InvalidServerReplyException extends Exception {
InvalidServerReplyException(String message)73         public InvalidServerReplyException(String message) {
74             super(message);
75         }
76     }
77 
78     /**
79      * Sends an SNTP request to the given host and processes the response.
80      *
81      * @param host host name of the server.
82      * @param timeout network timeout in milliseconds.
83      * @return true if the transaction was successful.
84      */
requestTime(String host, int timeout)85     public boolean requestTime(String host, int timeout) {
86         InetAddress address = null;
87         try {
88             address = InetAddress.getByName(host);
89         } catch (Exception e) {
90             EventLogTags.writeNtpFailure(host, e.toString());
91             if (DBG) Log.d(TAG, "request time failed: " + e);
92             return false;
93         }
94         return requestTime(address, NTP_PORT, timeout);
95     }
96 
requestTime(InetAddress address, int port, int timeout)97     public boolean requestTime(InetAddress address, int port, int timeout) {
98         DatagramSocket socket = null;
99         final int oldTag = TrafficStats.getAndSetThreadStatsTag(TrafficStats.TAG_SYSTEM_NTP);
100         try {
101             socket = new DatagramSocket();
102             socket.setSoTimeout(timeout);
103             byte[] buffer = new byte[NTP_PACKET_SIZE];
104             DatagramPacket request = new DatagramPacket(buffer, buffer.length, address, port);
105 
106             // set mode = 3 (client) and version = 3
107             // mode is in low 3 bits of first byte
108             // version is in bits 3-5 of first byte
109             buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3);
110 
111             // get current time and write it to the request packet
112             final long requestTime = System.currentTimeMillis();
113             final long requestTicks = SystemClock.elapsedRealtime();
114             writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, requestTime);
115 
116             socket.send(request);
117 
118             // read the response
119             DatagramPacket response = new DatagramPacket(buffer, buffer.length);
120             socket.receive(response);
121             final long responseTicks = SystemClock.elapsedRealtime();
122             final long responseTime = requestTime + (responseTicks - requestTicks);
123 
124             // extract the results
125             final byte leap = (byte) ((buffer[0] >> 6) & 0x3);
126             final byte mode = (byte) (buffer[0] & 0x7);
127             final int stratum = (int) (buffer[1] & 0xff);
128             final long originateTime = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET);
129             final long receiveTime = readTimeStamp(buffer, RECEIVE_TIME_OFFSET);
130             final long transmitTime = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET);
131 
132             /* do sanity check according to RFC */
133             // TODO: validate originateTime == requestTime.
134             checkValidServerReply(leap, mode, stratum, transmitTime);
135 
136             long roundTripTime = responseTicks - requestTicks - (transmitTime - receiveTime);
137             // receiveTime = originateTime + transit + skew
138             // responseTime = transmitTime + transit - skew
139             // clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2
140             //             = ((originateTime + transit + skew - originateTime) +
141             //                (transmitTime - (transmitTime + transit - skew)))/2
142             //             = ((transit + skew) + (transmitTime - transmitTime - transit + skew))/2
143             //             = (transit + skew - transit + skew)/2
144             //             = (2 * skew)/2 = skew
145             long clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2;
146             EventLogTags.writeNtpSuccess(address.toString(), roundTripTime, clockOffset);
147             if (DBG) {
148                 Log.d(TAG, "round trip: " + roundTripTime + "ms, " +
149                         "clock offset: " + clockOffset + "ms");
150             }
151 
152             // save our results - use the times on this side of the network latency
153             // (response rather than request time)
154             mNtpTime = responseTime + clockOffset;
155             mNtpTimeReference = responseTicks;
156             mRoundTripTime = roundTripTime;
157         } catch (Exception e) {
158             EventLogTags.writeNtpFailure(address.toString(), e.toString());
159             if (DBG) Log.d(TAG, "request time failed: " + e);
160             return false;
161         } finally {
162             if (socket != null) {
163                 socket.close();
164             }
165             TrafficStats.setThreadStatsTag(oldTag);
166         }
167 
168         return true;
169     }
170 
171     /**
172      * Returns the time computed from the NTP transaction.
173      *
174      * @return time value computed from NTP server response.
175      */
getNtpTime()176     public long getNtpTime() {
177         return mNtpTime;
178     }
179 
180     /**
181      * Returns the reference clock value (value of SystemClock.elapsedRealtime())
182      * corresponding to the NTP time.
183      *
184      * @return reference clock corresponding to the NTP time.
185      */
getNtpTimeReference()186     public long getNtpTimeReference() {
187         return mNtpTimeReference;
188     }
189 
190     /**
191      * Returns the round trip time of the NTP transaction
192      *
193      * @return round trip time in milliseconds.
194      */
getRoundTripTime()195     public long getRoundTripTime() {
196         return mRoundTripTime;
197     }
198 
checkValidServerReply( byte leap, byte mode, int stratum, long transmitTime)199     private static void checkValidServerReply(
200             byte leap, byte mode, int stratum, long transmitTime)
201             throws InvalidServerReplyException {
202         if (leap == NTP_LEAP_NOSYNC) {
203             throw new InvalidServerReplyException("unsynchronized server");
204         }
205         if ((mode != NTP_MODE_SERVER) && (mode != NTP_MODE_BROADCAST)) {
206             throw new InvalidServerReplyException("untrusted mode: " + mode);
207         }
208         if ((stratum == NTP_STRATUM_DEATH) || (stratum > NTP_STRATUM_MAX)) {
209             throw new InvalidServerReplyException("untrusted stratum: " + stratum);
210         }
211         if (transmitTime == 0) {
212             throw new InvalidServerReplyException("zero transmitTime");
213         }
214     }
215 
216     /**
217      * Reads an unsigned 32 bit big endian number from the given offset in the buffer.
218      */
read32(byte[] buffer, int offset)219     private long read32(byte[] buffer, int offset) {
220         byte b0 = buffer[offset];
221         byte b1 = buffer[offset+1];
222         byte b2 = buffer[offset+2];
223         byte b3 = buffer[offset+3];
224 
225         // convert signed bytes to unsigned values
226         int i0 = ((b0 & 0x80) == 0x80 ? (b0 & 0x7F) + 0x80 : b0);
227         int i1 = ((b1 & 0x80) == 0x80 ? (b1 & 0x7F) + 0x80 : b1);
228         int i2 = ((b2 & 0x80) == 0x80 ? (b2 & 0x7F) + 0x80 : b2);
229         int i3 = ((b3 & 0x80) == 0x80 ? (b3 & 0x7F) + 0x80 : b3);
230 
231         return ((long)i0 << 24) + ((long)i1 << 16) + ((long)i2 << 8) + (long)i3;
232     }
233 
234     /**
235      * Reads the NTP time stamp at the given offset in the buffer and returns
236      * it as a system time (milliseconds since January 1, 1970).
237      */
readTimeStamp(byte[] buffer, int offset)238     private long readTimeStamp(byte[] buffer, int offset) {
239         long seconds = read32(buffer, offset);
240         long fraction = read32(buffer, offset + 4);
241         // Special case: zero means zero.
242         if (seconds == 0 && fraction == 0) {
243             return 0;
244         }
245         return ((seconds - OFFSET_1900_TO_1970) * 1000) + ((fraction * 1000L) / 0x100000000L);
246     }
247 
248     /**
249      * Writes system time (milliseconds since January 1, 1970) as an NTP time stamp
250      * at the given offset in the buffer.
251      */
writeTimeStamp(byte[] buffer, int offset, long time)252     private void writeTimeStamp(byte[] buffer, int offset, long time) {
253         // Special case: zero means zero.
254         if (time == 0) {
255             Arrays.fill(buffer, offset, offset + 8, (byte) 0x00);
256             return;
257         }
258 
259         long seconds = time / 1000L;
260         long milliseconds = time - seconds * 1000L;
261         seconds += OFFSET_1900_TO_1970;
262 
263         // write seconds in big endian format
264         buffer[offset++] = (byte)(seconds >> 24);
265         buffer[offset++] = (byte)(seconds >> 16);
266         buffer[offset++] = (byte)(seconds >> 8);
267         buffer[offset++] = (byte)(seconds >> 0);
268 
269         long fraction = milliseconds * 0x100000000L / 1000L;
270         // write fraction in big endian format
271         buffer[offset++] = (byte)(fraction >> 24);
272         buffer[offset++] = (byte)(fraction >> 16);
273         buffer[offset++] = (byte)(fraction >> 8);
274         // low order bits should be random data
275         buffer[offset++] = (byte)(Math.random() * 255.0);
276     }
277 }
278