• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2006 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.os;
18 
19 import android.app.IAlarmManager;
20 import android.content.Context;
21 import android.util.Slog;
22 
23 import dalvik.annotation.optimization.CriticalNative;
24 
25 /**
26  * Core timekeeping facilities.
27  *
28  * <p> Three different clocks are available, and they should not be confused:
29  *
30  * <ul>
31  *     <li> <p> {@link System#currentTimeMillis System.currentTimeMillis()}
32  *     is the standard "wall" clock (time and date) expressing milliseconds
33  *     since the epoch.  The wall clock can be set by the user or the phone
34  *     network (see {@link #setCurrentTimeMillis}), so the time may jump
35  *     backwards or forwards unpredictably.  This clock should only be used
36  *     when correspondence with real-world dates and times is important, such
37  *     as in a calendar or alarm clock application.  Interval or elapsed
38  *     time measurements should use a different clock.  If you are using
39  *     System.currentTimeMillis(), consider listening to the
40  *     {@link android.content.Intent#ACTION_TIME_TICK ACTION_TIME_TICK},
41  *     {@link android.content.Intent#ACTION_TIME_CHANGED ACTION_TIME_CHANGED}
42  *     and {@link android.content.Intent#ACTION_TIMEZONE_CHANGED
43  *     ACTION_TIMEZONE_CHANGED} {@link android.content.Intent Intent}
44  *     broadcasts to find out when the time changes.
45  *
46  *     <li> <p> {@link #uptimeMillis} is counted in milliseconds since the
47  *     system was booted.  This clock stops when the system enters deep
48  *     sleep (CPU off, display dark, device waiting for external input),
49  *     but is not affected by clock scaling, idle, or other power saving
50  *     mechanisms.  This is the basis for most interval timing
51  *     such as {@link Thread#sleep(long) Thread.sleep(millls)},
52  *     {@link Object#wait(long) Object.wait(millis)}, and
53  *     {@link System#nanoTime System.nanoTime()}.  This clock is guaranteed
54  *     to be monotonic, and is suitable for interval timing when the
55  *     interval does not span device sleep.  Most methods that accept a
56  *     timestamp value currently expect the {@link #uptimeMillis} clock.
57  *
58  *     <li> <p> {@link #elapsedRealtime} and {@link #elapsedRealtimeNanos}
59  *     return the time since the system was booted, and include deep sleep.
60  *     This clock is guaranteed to be monotonic, and continues to tick even
61  *     when the CPU is in power saving modes, so is the recommend basis
62  *     for general purpose interval timing.
63  *
64  * </ul>
65  *
66  * There are several mechanisms for controlling the timing of events:
67  *
68  * <ul>
69  *     <li> <p> Standard functions like {@link Thread#sleep(long)
70  *     Thread.sleep(millis)} and {@link Object#wait(long) Object.wait(millis)}
71  *     are always available.  These functions use the {@link #uptimeMillis}
72  *     clock; if the device enters sleep, the remainder of the time will be
73  *     postponed until the device wakes up.  These synchronous functions may
74  *     be interrupted with {@link Thread#interrupt Thread.interrupt()}, and
75  *     you must handle {@link InterruptedException}.
76  *
77  *     <li> <p> {@link #sleep SystemClock.sleep(millis)} is a utility function
78  *     very similar to {@link Thread#sleep(long) Thread.sleep(millis)}, but it
79  *     ignores {@link InterruptedException}.  Use this function for delays if
80  *     you do not use {@link Thread#interrupt Thread.interrupt()}, as it will
81  *     preserve the interrupted state of the thread.
82  *
83  *     <li> <p> The {@link android.os.Handler} class can schedule asynchronous
84  *     callbacks at an absolute or relative time.  Handler objects also use the
85  *     {@link #uptimeMillis} clock, and require an {@link android.os.Looper
86  *     event loop} (normally present in any GUI application).
87  *
88  *     <li> <p> The {@link android.app.AlarmManager} can trigger one-time or
89  *     recurring events which occur even when the device is in deep sleep
90  *     or your application is not running.  Events may be scheduled with your
91  *     choice of {@link java.lang.System#currentTimeMillis} (RTC) or
92  *     {@link #elapsedRealtime} (ELAPSED_REALTIME), and cause an
93  *     {@link android.content.Intent} broadcast when they occur.
94  * </ul>
95  */
96 public final class SystemClock {
97     private static final String TAG = "SystemClock";
98 
99     /**
100      * This class is uninstantiable.
101      */
SystemClock()102     private SystemClock() {
103         // This space intentionally left blank.
104     }
105 
106     /**
107      * Waits a given number of milliseconds (of uptimeMillis) before returning.
108      * Similar to {@link java.lang.Thread#sleep(long)}, but does not throw
109      * {@link InterruptedException}; {@link Thread#interrupt()} events are
110      * deferred until the next interruptible operation.  Does not return until
111      * at least the specified number of milliseconds has elapsed.
112      *
113      * @param ms to sleep before returning, in milliseconds of uptime.
114      */
sleep(long ms)115     public static void sleep(long ms)
116     {
117         long start = uptimeMillis();
118         long duration = ms;
119         boolean interrupted = false;
120         do {
121             try {
122                 Thread.sleep(duration);
123             }
124             catch (InterruptedException e) {
125                 interrupted = true;
126             }
127             duration = start + ms - uptimeMillis();
128         } while (duration > 0);
129 
130         if (interrupted) {
131             // Important: we don't want to quietly eat an interrupt() event,
132             // so we make sure to re-interrupt the thread so that the next
133             // call to Thread.sleep() or Object.wait() will be interrupted.
134             Thread.currentThread().interrupt();
135         }
136     }
137 
138     /**
139      * Sets the current wall time, in milliseconds.  Requires the calling
140      * process to have appropriate permissions.
141      *
142      * @return if the clock was successfully set to the specified time.
143      */
setCurrentTimeMillis(long millis)144     public static boolean setCurrentTimeMillis(long millis) {
145         IBinder b = ServiceManager.getService(Context.ALARM_SERVICE);
146         IAlarmManager mgr = IAlarmManager.Stub.asInterface(b);
147         if (mgr == null) {
148             return false;
149         }
150 
151         try {
152             return mgr.setTime(millis);
153         } catch (RemoteException e) {
154             Slog.e(TAG, "Unable to set RTC", e);
155         } catch (SecurityException e) {
156             Slog.e(TAG, "Unable to set RTC", e);
157         }
158 
159         return false;
160     }
161 
162     /**
163      * Returns milliseconds since boot, not counting time spent in deep sleep.
164      *
165      * @return milliseconds of non-sleep uptime since boot.
166      */
167     @CriticalNative
uptimeMillis()168     native public static long uptimeMillis();
169 
170     /**
171      * Returns milliseconds since boot, including time spent in sleep.
172      *
173      * @return elapsed milliseconds since boot.
174      */
175     @CriticalNative
elapsedRealtime()176     native public static long elapsedRealtime();
177 
178     /**
179      * Returns nanoseconds since boot, including time spent in sleep.
180      *
181      * @return elapsed nanoseconds since boot.
182      */
183     @CriticalNative
elapsedRealtimeNanos()184     public static native long elapsedRealtimeNanos();
185 
186     /**
187      * Returns milliseconds running in the current thread.
188      *
189      * @return elapsed milliseconds in the thread
190      */
191     @CriticalNative
currentThreadTimeMillis()192     public static native long currentThreadTimeMillis();
193 
194     /**
195      * Returns microseconds running in the current thread.
196      *
197      * @return elapsed microseconds in the thread
198      *
199      * @hide
200      */
201     @CriticalNative
currentThreadTimeMicro()202     public static native long currentThreadTimeMicro();
203 
204     /**
205      * Returns current wall time in  microseconds.
206      *
207      * @return elapsed microseconds in wall time
208      *
209      * @hide
210      */
211     @CriticalNative
currentTimeMicro()212     public static native long currentTimeMicro();
213 }
214